

Commissioning and first efficiency measurements of the cryogenic gas stopping Cell at SHIPTRAP

Christian Droese

Ernst-Moritz-Arndt-Universität Greifswald

Christian Droese

TASCA Workshop 14.9.12

Direct mass measurements are an important tool to

• to obtain absolute nuclear binding energies

 $M(Z,N) = ZM_p + NM_n - B(N,Z)$

- to gain informations about the nuclear shell structure
- to benchmark nuclear models
- to obtain anchor points to fix alpha-decay chains

Motivation

Up to now the masses of ²⁵²⁻²⁵⁵No^[1] and ²⁵⁵⁻²⁵⁶Lr^[2] were directly measured at the Penning-trap mass spectrometer SHIPTRAP

²⁵⁶Lr: reaction cross section = 60nb

→ Mass determination with 50 ions took 4 days

Measurement of superheavy elements envisaged

(next ²⁵⁷Rf = 15nb) [1] M. Block et al., Nature 463 (2010) 785 [2] E. Minaya Ramirez et al., Science 337 (2012) 1207

Christian Droese

TASCA Workshop 14.9.12

Reaction products from SHIP

Overall efficiency approximately $\approx 2\%$

7T Solenoid with Tandem-Penning Trap

Bottleneck : gas stopping cell (stopping+extraction efficiency $\approx 10\%$)^[1] (stopping efficiency $\approx 40\%$)

Setup of a second generation gas stopping cell with a higher efficiency

[1] J. B. Neumayr et al., Nucl. Instr. And Meth. B 244 (2006) 489

Advantages compared to 1st generation gas cell:

- -Larger stopping volume
- -Coaxial injection of reaction products
- -Higher cleanliness
- -Larger gas density at a smaller absolute pressure

Efficiency Boost from 10% to 35%^[1]

[1] S. Eliseev et al., Nucl. Instr. Meth. B 266 (2008) 4475

Inner chamber: - copper plated with a 2mm layer

- cooled with 20K single-stage cryo cooler (100W at 77K)
- fixed with 12 stainless steel rods of 1.6mm thickness to outer chamber
- wrapped in multilayer insulation foil

- 76 ring electrodes
- Diameter: from 266mm down to 5mm
- Total capacity of 2.6nF
- 1mm distance between electrodes (0.5mm at last 20 segments)

RF with 180° phase shift between neighboring electrodes superimposed with DC gradient

Tested in UHV and 50mbar He at 300K and 45K:

TASCA Workshop 14.9.12

- 8 ring segments with a DC gradient of >10V/cm
- Diameter of 260mm
- Extraction Time ≈ ms

- beam diameter behind SHIP of 60mm
- electrical insulated
 - -> increase homogenity of DC potential
- currently 3µm Ti foil + gold sealing
- 90% energy loss of reaction products

CF160

²²³Ra ion source

Turbopump

crosspiece

Foil Si-detector

Test chamber

determine initial acitivity
 via determination of number of
 ²²³Ra decays

CryoCell

- Same foil-/detector-arrangement installed (same DAQ electronics)
- Extraction RFQ installed
- placed ²²³Ra source inside the inner chamber
- determine number of ²¹⁹Rn decays

Offline efficiency determination

Efficiency determination

- count number of ²²³Ra decays and take the ratio between the spherical angle and detector surface into account
- take half-life of the ²²³Ra into account (11.43days)
- count number of ²¹⁹Rn decays behind CryoCell and take the ratio between foil surface and detector suface detector surface into account

Christian Droese

- Cryogenic gas stopping cell will lead the way to mass measurements of SHE
- All major parts tested separately -> working
- first extraction tests successfully performed preliminary efficiency = 75%
- further offline tests with ²²³Ra will be performed
- Final efficiency needs to be determined in an online experiment

 Ready for beamtime!!!

Thank you for your attention

M. Block, K. Blaum, C. Droese, M. Dworschak, S. Eliseev, F. Herfurth, M. Laatiaoui, E. Minaya Ramirez, P. Thirolf

