

Vamos gas-filled mode: upgrade and future perspectives

Tasca 12, GSI, 14 Septembre 2012

Sulignano Barbara Cea Saclay, France

Irfu MOTIVATIONS for Heavy elements studies at VAMOS (Vacuum mode)

• High performances of VAMOS

- Large angular acceptance Ω ~ 60 msr
- High transmission
- O Unique for asymmetric reactions
- High performances of Exogam for low multiplicity cascades

Prompt γ spectroscopy with VAMOS + EXOGAM

MUSETT: NEW Si window-less
 segmented detectors for RDT measurement

→ Performent set up for prompt spectroscopy of heavy element via decay tagging technique

Experimental results:

2010 : WF test + MUSETT commissioning + new DAQ (NARVAL) test +Exogam

Si Wall : $40 \times 10 \text{ cm}^2$

Irfu

Si detector:

- ➢ Window-less Si detectors; Number of strips : 128 x +128 y strips FRONT END ELECTRONICS:
- ASIC electronics : ATHED (based on MUST2)
- ► COFEE board on which 4 ASICs are installed \rightarrow I2C slow control BACK END ELECTRONICS:
- > MUVI VXI \rightarrow readout & slow-control (GANIL)

DAQ: 3 independent DAQs and data streams + NARVAL-based data flow

$^{22}Ne(^{197}Au,xn)^{213,214,215}Ac$

Recoil decay tagging

Prompt spectroscopy

Conclusion : WF rejection disappointing $\sim 10^7$, Transmission for asymmetric $\sim 40\%$ \rightarrow Successful MUSETT commissioning

C.Schimtt et NIM (2010)

VAMOS From vacuum to gas

- C foil before the target for vacuum/gas separation
- He gas-filling ~1mbar
- beam stopper (Ta plate)

2009 VAMOS GFS test:

- ♦ ⁴⁰Ca (196MeV) + ¹⁵⁰Sm → ¹⁹⁰Pb^{*} (σ_{ER} ~ 50mb)
- Ers identified via α-decay in Si wall and/or prompt γ- rays in EXOGAM

Results in the gas-filled mode

✓ Selection of the ERs

✓ Identification

✓ First measurement of Bρ @ a gas-filled magnet

✓ Velocity at the target available (crucial for high velocity and $\vartheta \neq 0^\circ$)

GFRS Workshop, Jyvaskyla, May 2012

Ch.Schmitt for VAMOS

Performances (1)

✓ Beam Rejection

Optimal conditions : Bpo=1.65Tm and p ~ 1mbar (with present simple set-up)

Beam rejection factor > 10¹⁰ No direct beam on the detectors for 1.2.10^{10 40}Ca per sec sent in VAMOS

GFRS Workshop, Jyvaskyla, May 2012

Ch.Schmitt for VAMOS

Performances (2)

Transmission (from ion-optical calculations validated by the experiment)

Ch.Schmitt for VAMOS

Irfu Cf isotopes : a first physics case

• Spectroscopy of ²⁴⁰⁻²⁴⁴Cf

- 2 qp excitations : K isomers
- Rotational band on top of K-isomer
- Overview of 2qp K isomers around the magic deformed gap N=152, Z=100
- Probe single-particle configuration
- Yrast band : paring correlations
- Cf nuclei still poorly known

• Theoretical background : HFB-Gogny with time-reversal breaking; Bruyères-le-Châtel (J.-D. Delaroche, M. Girod).

• Accepted 7 days experiement Proposal B. Sulignano, P. Greenlees, Ch. T, GANIL PAC november 7th 2011

I=R

K=0

R

Bp distribution ²⁴⁴Cf

Irfu

Irfu Improvements towards physics experiments VAMOS-GFS : beam dump

2009 test

New beam dump

New focal plane chamber for

- Detection (MUSETT)
- Beam dump (movable)
- Shielding (movable)

Irfu Improvements towards physics experiments VAMOS-GFS : pressure difference

• Solution 1 : C window.

2009 test

Has been used at JYFL for years

Dubna-DGFRS uses a C window

Drawbacks :

- Parasitic reactions \rightarrow gamma background
- Beam straggling \rightarrow beam quality

But fine for first experiments and « easy cases »

- Improvements compared to the 2009 test
- Need a new target holder

Solution 2 : Differential pumping (windowless mode)

- RITU@JYFL, TASCA@GSI, GARIS@RIKEN, ...
- No parasitic reactions and gamma background
- No beam straggling
- Need a new target holder

Irfu Improvements towards physics experiments Differential pumping

• Series of collimators (reduce gas flow) + pumps

Example : differential pumping@TASCA (GSI):

- Collimators have to be compatible with the beam envelop
- New target holder needed
- Tight space (Ge detectors)

VAMOS-GFS : a 3 step project

- 1. Beam dump + new C window + new target holder
 - ²⁴²Cf and « easy experiments »

2. Differential pumping systemO In time with AGATA (2014)

- 3. Spiral 2 (phase2) compatibility
 - What to do with the gas ?
 - Beam dump activation (not only a VAMOS-GFS problem, a general Spiral2 problem)

Future plans...Spectrosopy of heavy elements

AGATA @ Vamos Exogam2 @ Vamos

- → Reaction based on Si beam U target i.e. 263 , 264 Sg
- → Reaction based on S beam and U target i.e. 268,267 Hs
- → Reaction based on Ni beam and Pb target i.e. 270 Ds
- → Reaction based on Ti beam and Pb or Bi target i.e. ²⁵⁶Rf/Db
 + Oups (plunger) @ Vamos
- → Lifetimes Measurement (e.g. ²⁵⁴No) (RDDS)

Conclusion

• First experiment accepted : ^{242,244}Cf

• Large physics case : VHE/SHE, reaction dynamics, exotic nuclei and shapes, ...

• A 3 step project

- Beam dump + C window + target holder
- Differential pumping
- Spiral2 high intensity

GRAZIE !