

Energy density functionals with local chiral interactions

Lars Zurek

January 19, 2023

Bundesministerium für Bildung und Forschung

Energy density functionals

- Successful reproduction of experimental results
 - Even-even binding energy rms deviation for UNEDF2: 1.95 MeV •
 - Charge radius differences in Ca with Fayans EDFs ٠

Reinhard, Nazarewicz, PRC 95 (2017)

Energy density functionals

- Successful reproduction of experimental results
 - Even-even binding energy rms deviation for UNEDF2: 1.95 MeV
 - Charge radius differences in Ca with Fayans EDFs
- Phenomenological construction
 - Extrapolation outside fitting region uncontrolled

Energy density functionals

- Successful reproduction of experimental results
 - Even-even binding energy rms deviation for UNEDF2: 1.95 MeV
 - Charge radius differences in Ca with Fayans EDFs
- Phenomenological construction
 - Extrapolation outside fitting region uncontrolled
- Have standard EDFs reached their accuracy limit? McDonnell et al., PRL 114 (2015)

Ab initio calculations with chiral EFT

- At present reproduction of experimental results with larger deviations
- Computationally more expensive

Ab initio calculations with chiral EFT

- At present reproduction of experimental results with larger deviations
- Computationally more expensive
- Systematically improvable
 - Uncertainty estimates "built-in"

\rightarrow (How) can EDFs profit from the ab initio approach?

Salvioni et al., JPG **47** (2020) Furnstahl, EPJA **56** (2020) Marino et al., PRC **104** (2021) Duguet et al., 2209.03424 (2022)

Semi-phenomenological hybrid EDFs

• Enhance EDFs with chiral EFT

Semi-phenomenological hybrid EDFs

Navarro Pérez et al., PRC 97 (2018)

 $E_{\rm H} \propto \sum_{t=0,1} \int d\mathbf{x}_1 d\mathbf{x}_2 V_C(|\mathbf{x}_1 - \mathbf{x}_2|) \rho_t(\mathbf{x}_1) \rho_t(\mathbf{x}_2)$ $\begin{array}{l} \text{Density-matrix expansion} \\ \text{Zurek et al., PRC 103 (2021)} \\ E_{\rm F} = \sum_{t=0,1} \int d\mathbf{R} \left[g_t^{\rho\rho} (\rho_0(\mathbf{R})) \rho_t^2(\mathbf{R}) \\ + g_t^{\rho\tau} (\rho_0(\mathbf{R})) \rho_t(\mathbf{R}) \tau_t(\mathbf{R}) + \dots \right] \end{array} \qquad E_{\rm Sk} = \sum_{t=0,1} \int d\mathbf{R} \left[\left(C_t^{\rho\rho} + C_{tD}^{\rho\rho} \rho_0^{\gamma}(\mathbf{R}) \right) \rho_t^2(\mathbf{R}) \\ + C_t^{\rho\tau} \rho_t(\mathbf{R}) \tau_t(\mathbf{R}) + \dots \right] \end{array}$

Hartree	Fock	Skyrme	Pairing
(parameter-free)		(14 free parameters)	

Semi-phenomenological hybrid EDFs

- Skyrme + HF long-range pions
 - At different chiral orders up to N²LO, with and without Δ s and 3N forces
 - → Fit Skyrme parameters

- Strategy employed in Navarro Pérez et al., PRC 97 (2018)
 - Chiral systematics not understood
- Here: Revisit and improve all parts of EDF construction to allow for cleaner comparison of different functionals

Optimization of Skyrme parameters

• Minimize
$$\chi^2(\mathbf{C}) \propto \sum_{i=1}^{n_d} \left(\frac{p_i(\mathbf{C}) - d_i}{w_i} \right)^2$$

- EDF predictions p_i from parameters ${f C}$
- Experimental data d_i (binding energies, charge radii, odd-even mass staggerings, fission isomer energies)
- Weights w_i (measuring importance / expected error)

- Previously: assumptions for weights as in UNEDF2 Kortelainen et al., PRC 89 (2014)
- Now: weights from Bayesian posterior estimate for UNEDF1 Schunck et al., JPG 47 (2020)

Results: parametrizations

• Functionals at different chiral orders can be grouped into two classes

Class		LO & NLO	Beyond NLO
Example functional	No chiral	LO	NLOΔ
χ^2 at minimum	122.4	144.9	86.2
Incompressibility (MeV)	260	260	241

 Terms beyond NLO move global minima "closer" towards region allowed by parameter bounds Results: global comparison to experiment

• Root-mean square deviations to experiment for even-even nuclei with Z>7:

Results: infinite nuclear matter

Results: isotope chains

- Main effect beyond NLO
- 3N forces have basically no effect

Which terms are driving the improvements?

Add only certain terms to Skyrme functional and optimize parameters

• LO Fock has strong density dependence

Summary

- Skyrme EDF improved by adding parameter-free pion exchanges
 - Main improvement beyond NLO
 - Binding energy rms deviation decreased by 30%
 - LO Fock and N²LO Hartree seem responsible for improvement
 - \rightarrow Add to your functional!

Summary & outlook

- Skyrme EDF improved by adding parameter-free pion exchanges
 - Main improvement beyond NLO
 - Binding energy rms deviation decreased by 30%
 - LO Fock and N²LO Hartree seem responsible for improvement
 - \rightarrow Add to your functional!
- Why do 3N forces seem to do nothing?

Constrain isovector parts of EDFs by fitting to ab initio pseudodata (neutron drops)

Thanks for your attention

and to my collaborators Scott Bogner, Dick Furnstahl, Rodrigo Navarro Pérez, Nicolas Schunck, and Achim Schwenk