Nuclear ab initio studies for neutrino oscillations

Joanna Sobczyk

Hirschegg, 17 January 2023

Neutrino Physics

Neutrino Physics

Neutrino Physics

Neutrino Physics

Neutrino Physics

Neutrino oscillations

Next generation experiments

\checkmark CP-violation measurement
\checkmark Proton decay searches
\checkmark Determining ν mass ordering \checkmark Cosmic neutrino observation

Aims \& challenges

Aims \& challenges

From: Diwan et al,Ann. Rev.Nucl. Part. Sci 66 (2016)

DUNE

T2HK

Aims \& challenges

Aims \& challenges

Systematic errors should be small since statistics will be high.

Energy reconstruction

\checkmark depends on lepton reconstruction
\checkmark relies on identification of interaction channel (for quasi-elastic works well)

\checkmark energy conservation
\checkmark relies on visible energy
\checkmark hadron masses influence the energy balance

Nuclear models implemented in Monte Carlo event generators play crucial role.

Motivation

Motivation

Motivation

Why is QE important?

Motivation

Motivation

- Nuclear responses
- Spectral functions
- Optical potentials

Motivation

- Nuclear responses
- Spectral functions
- Optical potentials

\Rightarrow Neutrinos challenge ab initio nuclear theory
\Rightarrow Controllable approximations within ab initial nuclear theory

Nuclear response

$$
\sigma \propto L^{\mu \nu} R_{\mu \nu}
$$

$$
\begin{array}{lc}
\text { lepton } & \text { nuclear } \\
\text { tensor } & \text { responses }
\end{array}
$$

$$
R_{\mu \nu}(\omega, q)=\sum_{f}\langle\Psi| J_{\mu}^{\dagger}(q)\left|\Psi_{f}\right\rangle\left\langle\Psi_{f}\right| J_{\nu}(q)|\Psi\rangle \delta\left(E_{0}+\omega-E_{f}\right)
$$

Electrons for neutrinos

$$
\begin{aligned}
& \left.\frac{d \sigma}{d \omega d q}\right|_{\nu / \bar{\nu}}=\sigma_{0}\left(v_{C C} R_{C C}+v_{C L} R_{C L}+v_{L L} R_{L L}+v_{T} R_{T} \pm v_{T^{\prime}} R_{T^{\prime}}\right) \\
& \left.\frac{d \sigma}{d \omega d q}\right|_{e}=\sigma_{M}\left(v_{L} R_{L}+v_{T} R_{T}\right)
\end{aligned}
$$

\checkmark much more precise data
\checkmark we can get access to R_{L} and R_{T} separately (Rosenbluth separation)
\checkmark experimental programs of electron scattering in JLab, MAMI, MESA

Quasielastic response

- Momentum transfer ~hundreds MeV
- Upper limit for ab initio methods
- Important mechanism for T2HK, DUNE
- Role of final state interactions
- Role of 1-body and 2body currents

First step: analyse the longitudinal response

$$
\left.\frac{d \sigma}{d \omega d q}\right|_{e}=\sigma_{M}\left(v_{L} R_{L}+v_{T} R_{T}\right)
$$

$\underset{{ }_{13}}{\text { charge operator } \hat{\rho}(q)}=\sum_{j=1}^{Z} e^{i q z_{j}^{\prime}}$

Formalism

\checkmark Coupled cluster (CCSD)

coherent elastic neutrino scattering on $4^{\circ} \mathrm{Ar}$

C. Payne at al.

Phys.Rev.C 100 (2019) 6, 061304

\checkmark Electroweak currents

Multipole decomposition for 1 and 2-body EW currents

B. Acharya, S. Bacca

Phys.Rev.C 101 (2020) 1, 015505

\checkmark Chiral potentials: $\mathrm{NNLO}_{\text {sat }}$ and $\Delta \mathrm{NNLO}_{\mathrm{GO}}$

A. Ekström et al. Phys.Rev.C 91 (2015) 5, 051301
W. Jiang at al. Phys.Rev.C 102 (2020) 5, 054301

Coulomb sum rule

$$
\left.m_{0}(q)=\int d \omega R_{L}(\omega, q)=\sum_{f \neq 0}\left|\left\langle\Psi_{f}\right| \hat{\rho}\right| \Psi\right\rangle\left.\right|^{2}=\langle\Psi| \hat{\rho}^{\dagger} \hat{\rho}|\Psi\rangle-\left|F_{e l}(q)\right|^{2}
$$

easier to calculate since we do

$$
\text { not need }\left|\Psi_{f}\right\rangle
$$

Coulomb sum rule

$$
\begin{array}{r}
\left.m_{0}(q)=\int d \omega R_{L}(\omega, q)=\sum_{f \neq 0}\left|\left\langle\Psi_{f}\right| \hat{\rho}\right| \Psi\right\rangle\left.\right|^{2}=\langle\Psi| \hat{\rho}^{\dagger} \hat{\rho}|\Psi\rangle-\left|F_{e l}(q)\right|^{2} \\
\text { easier to calculate since we do } \\
\text { not need }\left|\Psi_{f}\right\rangle
\end{array}
$$

center of mass problem

$|\Psi\rangle$ has 3A coordinates \rightarrow 3(A-1) coordinates $+\vec{R}=\frac{1}{A} \sum_{i}^{A} \vec{r}_{i}$
With translationally non-invariant operators we may excite spurious states

Coulomb sum rule

Project out spurious states: $\quad \hat{\rho}|\Psi\rangle=\left|\Psi_{\text {phys }}\right\rangle+\left|\Psi_{\text {spur }}\right\rangle$

It has been shown that to good approximation the ground state factorizes:

$$
|\Psi\rangle=\left|\Psi_{I}\right\rangle\left|\Psi_{C O M}\right\rangle
$$

center of mass wave
function is a Gaussian
G. Hagen, T. Papenbrock, D. Dean Phys.Rev.Lett. 103 (2009) 062503

We follow a similar ansatz for the excited states:

$$
\hat{\rho}|\Psi\rangle=\left|\Psi_{I}^{\operatorname{exc}}\right\rangle\left|\Psi_{C o M}\right\rangle+\left|\Psi_{I}\right\rangle\left|\Psi_{C o M}^{e x c}\right\rangle
$$

Coulomb sum rule

Project out spurious states: $\quad \hat{\rho}|\Psi\rangle=\left|\Psi_{\text {phys }}\right\rangle+\left|\Psi_{\text {spur }}\right\rangle$

It has been shown that to good approximation the ground state factorizes:

$$
|\Psi\rangle=\left|\Psi_{I}\right\rangle\left|\Psi_{C o M}\right\rangle
$$

center of mass wave
function is a Gaussian
G. Hagen, T. Papenbrock, D. Dean Phys.Rev.Lett. 103 (2009) 062503

We follow a similar ansatz for the excited states:

$$
\hat{\rho}|\Psi\rangle=\left|\Psi_{I}^{e x c}\right\rangle\left|\Psi_{C o M}\right\rangle+\left|\Psi_{I}\right\rangle \underbrace{\text { exc }}_{\text {spurious }}\rangle
$$

Coulomb sum rule

CoM spurious states dominate for light nuclei

Coulomb sum rule

$$
\left.m_{0}(q)=\int d \omega R_{L}(\omega, q)=\sum_{f \neq 0}\left|\left\langle\Psi_{f}\right| \hat{\rho}\right| \Psi\right\rangle\left.\right|^{2}=\langle\Psi| \hat{\rho}^{\dagger} \hat{\rho}|\Psi\rangle-\left|F_{e l}(q)\right|^{2}
$$

Nuclear responses

Longitudinal response

Lorentz Integral Transform + Coupled Cluster

Uncertainty band: inversion procedure

$$
R_{\mu \nu}(\omega, q)=\sum_{f}\langle\Psi| J_{\mu}^{\dagger}\left|\Psi_{f}\right\rangle\left\langle\Psi_{f}\right| J_{\nu}|\Psi\rangle \delta\left(E_{0}+\omega-E_{f}\right)
$$

Longitudinal response ${ }^{40} \mathbf{C a}$ Lorentz Integral Transform + Coupled Cluster

\checkmark CC singles \& doubles
\checkmark varying underlying harmonic oscillator frequency
\checkmark two different chiral Hamiltonians
\checkmark inversion procedure

JES, B. Acharya, S. Bacca, G. Hagen; PRL 127 (2021) 7, 072501

First ab-initio results for many-body system of 40 nucleons

Chiral expansion for ${ }^{\mathbf{4 0} \mathbf{C a}}$ (Longitudinal response)

B. Acharya, S. Bacca, JES et al. Front. Phys. 1066035(2022)
\checkmark Two orders of chiral expansion
\checkmark Convergence better for lower q (as expected)
\checkmark Higher order brings results closer to the data

Transverse response

$$
\left.\operatorname{TSR}(q)=\left.\frac{2 m^{2}}{Z \mu_{p}^{2}+N \mu_{n}^{2}} \frac{1}{q^{2}}(\langle\Psi \mid \hat{j} \dagger \hat{j} \Psi\rangle-|\langle\Psi| \hat{j}| \Psi\rangle\right|^{2}\right)
$$

$$
\mathbf{j}(\mathbf{q})=\sum_{i} \frac{1}{2 m} \varepsilon_{i}\left\{\mathbf{p}_{i}, e^{i \mathbf{q r}_{i}}\right\}-\frac{i}{2 m} \mu_{i} \mathbf{q} \times \sigma_{i} e^{i \boldsymbol{q} \mathbf{q}_{\mathbf{i}}}
$$

Transverse response

\Rightarrow This allows to predict electronnucleus cross-section
\Rightarrow Currently only 1-body current

ChEK method

Chebyshev Expansion of integral Kernel

$$
\Phi=\int f(\omega) R(\omega) d \omega
$$

- Sum-rules
- Flux folding

- Histogram
- ...

$$
\begin{gathered}
\text { expansion in Chebyshev } \\
\text { polynomials }
\end{gathered} K(\omega, \sigma)=\sum_{k} c_{k}(\sigma) T_{k}(\omega)
$$

estimated error

$$
|\Phi-\tilde{\Phi}|<\epsilon
$$

ChEK method

Chebyshev Expansion of integral Kernel

S. Bacca, N. Barnea, G. Hagen, G. Orlandini; Phys.Rev.C 90 (2014) 6
\Rightarrow No assumption about the shape of the response

- Rigorous error estimation
- Convenient when the response has a complicated structure

Low/high energies

Low/high energies

$$
\hat{H}\left|\psi_{A}\right\rangle=E\left|\psi_{A}\right\rangle
$$

Many-body problem

Electroweak responses

Low/high energies

$$
\hat{H}\left|\psi_{A}\right\rangle=E\left|\psi_{A}\right\rangle
$$

Many-body problem

$$
\left\langle\psi_{f}\right| \hat{j}\left|\psi_{A}\right\rangle
$$

Electroweak responses

Low/high energies

Many-body problem

$\left\langle\psi_{f}\right| \hat{j}\left|\psi_{A}\right\rangle$
Electroweak responses

Probability density of finding nucleon
(E, \mathbf{p}) in ground state nucleus

Spectral functions
 Coupled Cluster + ChEK method

Spectral function nuclear information
growing \mathbf{q} momentum transfer \rightarrow final state interactions play minor role

28 JES, S. Bacca, G. Hagen, T. Papenbrock Phys.Rev.C 106 (2022) 3, 034310

Final state interactions

JES et al, in preparation (2022)

How to account for the FSI? Optical potential for the outgoing nucleon

Spectral function for neutrinos

$$
\nu_{\mu}+{ }^{16} \mathrm{O} \rightarrow \mu^{-}+X
$$

- Comparison with T2K long baseline ν oscillation experiment
- $\mathrm{CC} 0 \pi$ events
- Spectral function implemented into NuWro Monte Carlo generator

JES et al, in preparation (2022)

Outlook

- LIT-CC benchmark for electron scattering \rightarrow ready for neutrino
- Role of 2-body currents for medium-mass nuclei
- Explore possible applications of the ChEK method
- Spectral functions (within Impulse Approximation):
- Relativistic regime
- Semi-inclusive processes
- Further steps: 2-body spectral functions, accounting for FSI

Thank you for attention

BACKUP

Details on inversion procedure

- Basis functions

$$
R_{L}(\omega)=\sum_{i=1}^{N} c_{i} \omega^{n_{0}} e^{-\frac{\omega}{\beta_{i}}}
$$

- Stability of the inversion procedure:
- Vary the parameters n_{0}, β_{i} and number of basis functions N (6-9)
- Use LITs of various width $\Gamma(5,10,20 \mathrm{MeV})$

Lorentz integral transform

$$
\begin{gathered}
L(\sigma)=\int \frac{R(\omega)}{(\omega-\sigma)^{2}+\Gamma^{2}} d \omega=\int \frac{R(\omega)}{\left(\omega+\tilde{\sigma}^{*}\right)(\omega+\tilde{\sigma})} d \omega \\
L(\sigma)=\int d \omega \sum_{f}\left\langle\Psi_{0}\right| \rho^{\dagger} \frac{1}{\omega+\tilde{\sigma}^{*}}\left|\Psi_{f}\right\rangle\left\langle\Psi_{f}\right| \frac{1}{\omega+\tilde{\sigma}} \rho\left|\Psi_{0}\right\rangle \delta\left(\omega+E_{0}-E_{f}\right) \\
L(\sigma)=\sum_{f}\left\langle\Psi_{0}\right| \rho^{\dagger} \frac{1}{E_{f}-E_{0}+\tilde{\sigma}^{*}}\left|\Psi_{f}\right\rangle\left\langle\Psi_{f}\right| \frac{1}{E_{f}-E_{0}+\tilde{\sigma}} \rho\left|\Psi_{0}\right\rangle \\
L(\sigma)=\sum_{f}\left\langle\Psi_{0}\right| \rho^{\dagger} \frac{1}{H-E_{0}+\tilde{\sigma}^{*}}\left|\Psi_{f}\right\rangle\left\langle\Psi_{f}\right| \frac{1}{H-E_{0}+\tilde{\sigma}} \rho\left|\Psi_{0}\right\rangle \\
\langle\tilde{\Psi}|
\end{gathered}
$$

We need to solve

$$
\left(H-E_{0}+\tilde{\sigma}\right)|\tilde{\Psi}\rangle=\rho|\Psi\rangle \quad \text { Schrodinger-like equation }
$$

Lorentz Integral Transform (LIT)

$$
R_{\mu \nu}(\omega, q)=\sum_{f}\langle\Psi| J_{\mu}^{\dagger}\left|\Psi_{f}\right\rangle\left\langle\Psi_{f}\right| J_{\nu}|\Psi\rangle \delta\left(E_{0}+\omega-E_{f}\right)
$$

Integral
transform

$$
S_{\mu \nu}(\sigma, q)=\int d \omega K(\omega, \sigma) R_{\mu \nu}(\omega, q)=\langle\Psi| J_{\mu}^{\dagger} K\left(\mathscr{H}-E_{0}, \sigma\right) J_{\nu}|\Psi\rangle
$$

> Lorentzian kernel:
> $K_{\Gamma}(\omega, \sigma)=\frac{1}{\pi} \frac{\Gamma}{\Gamma^{2}+(\omega-\sigma)^{2}}$
$S_{\mu \nu}$ has to be inverted to get access to $R_{\mu \nu}$

Lorentz Integral Transform

Longitudinal isoscalar response on 4 He at $\mathrm{q}=300 \mathrm{MeV}$

Longitudinal response ${ }^{40} \mathrm{Ca}$

Sum over multipoles

Underlying oscillator frequency

ChEK method

$$
S_{\mu \nu}(\sigma, q)=\int d \omega K(\omega, \sigma) R_{\mu \nu}(\omega, q)=\langle\Psi| J_{\mu}^{\dagger} K(\mathscr{H}, \sigma) J_{\nu}|\Psi\rangle
$$

- Expansion in Chebyshev polynomials

$$
K(\mathscr{H}, \sigma)=\sum_{k=0}^{N} c_{k}(\sigma) T_{k}(\mathscr{H})
$$

- Recursive relations of Chebyshev polynomials

$$
\begin{aligned}
& T_{0}(x)=1 ; \quad T_{-1}(x)=T_{1}(x)=x \\
& T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)
\end{aligned}
$$

- Gives error estimate of energy integrals of local density of states $R(\omega)$

$$
Q(R, f)=\int d \omega R(\omega) f(\omega)
$$

Optical potential

$$
\begin{aligned}
W_{\mathrm{FSI}}^{\mu \nu}(q) & =\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} d E \frac{m}{E_{p}} \frac{m}{E_{p+q}} \\
& {\left[S^{n}(\mathbf{p}, E) w_{n}^{\mu \nu}(p, q)+S^{p}(\mathbf{p}, E) w_{p}^{\mu \nu}(p, q)\right] } \\
& \times \theta\left(\mathbf{p}^{\prime}-p_{F}\right) \delta\left(\omega+E-E_{p+q}-E_{f}^{k i n}-\operatorname{ReU}\right)
\end{aligned}
$$

$$
w^{\mu \nu}(p, q)=\langle p+q| j^{\mu}|p\rangle^{\dagger}\langle p+q| j^{\nu}|p\rangle
$$

Spectral function

Green's function:

$$
G_{h}(\alpha, \beta, E)=\langle 0| a_{\beta}^{\dagger} \frac{1}{E-\left(E_{0}-\hat{H}\right)-i \epsilon} a_{\alpha}|0\rangle
$$

$$
\operatorname{Im} G_{h}(\alpha, \beta, E)=-\pi \mathcal{F}_{\Psi_{A-1}}\langle 0| a_{\beta}^{\dagger}\left|\Psi_{A-1}\right\rangle\left\langle\Psi_{A-1}\right| a_{\alpha}|0\rangle \delta\left(E-\left(E_{0}-E_{\Psi}\right)\right)
$$

Spectral function:

$$
S(\mathbf{p}, E)=-\frac{1}{\pi} \sum_{\alpha, \beta}\langle\mathbf{p} \mid \alpha\rangle\langle\mathbf{p} \mid \beta\rangle^{\dagger} \operatorname{Im} G_{h}(\alpha, \beta, E)
$$

Analysis of spurious states

Analysis of spurious states

$\langle\Psi| \hat{\rho}^{\hat{A}}$ $\sum_{f_{I}}\left|f_{I}\right\rangle\left|\Psi_{C o M}^{0}\right\rangle\left\langle\Psi_{C o M}^{0}\right|\left\langle f_{I}\right|+\sum_{f_{C o M}}\left|\Psi_{I}^{0}\right\rangle\left|f_{C o M}\right\rangle\left\langle f_{C o M}\right|\left\langle\Psi_{I}^{0}\right| \hat{\rho}|\Psi\rangle$
$\begin{gathered}\text { excitation of intrinsic wave } \\ \text { function (physical } \\ \text { spectrum) }\end{gathered}$
$\begin{gathered}\text { excitation of CoM wave } \\ \text { function (spurious) }\end{gathered}$

Analysis of spurious states

With our ansatz about $\left|\Psi_{C o M}\right\rangle$ (Gaussian) we get analytical function for spurious states

We get numerically spurious states (nonphysical excitations with energy close to o)

Analysis of spurious states

With our ansatz about $\left|\Psi_{C o M}\right\rangle$ (Gaussian) we get analytical function for spurious states

We get numerically spurious states (nonphysical excitations with energy close to o)

Nuclear Hamiltonian and currents

Coupled cluster method

Reference state (Hartree-Fock): $\quad|\Psi\rangle$

Include correlations through e^{T} operator

$$
e^{-T} \mathscr{H} e^{T}|\Psi\rangle \equiv \overline{\mathscr{H}}|\Psi\rangle=E|\Psi\rangle
$$

Expansion: $T=\sum t_{a}^{i} a_{a}^{\dagger} a_{i}+\sum t_{a b}^{i j} a_{a}^{\dagger} a_{b}^{\dagger} a_{i} a_{j}+\ldots$

\leftarrow coefficients obtained through coupled cluster equations

Coupled cluster method

\checkmark Controlled approximation through truncation in T
\checkmark Polynomial scaling with A (predictions for ${ }^{100} \mathrm{Sn},{ }^{208 \mathrm{~Pb}}$)
\checkmark Size extensive
\checkmark Works most efficiently for doubly magic nuclei

Electroweak currents

Multipole decomposition for 1and 2-body EW currents

