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✓ CP-violation measurement 
✓ Determining  mass orderingν

Next generation experiments

✓ Proton decay searches 
✓ Cosmic neutrino observation
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Erice 09/2017

DUNE, 1300 km HyperK (T2K) 295 km

From:
Diwan et al,
Ann. Rev.
Nucl. Part. Sci 66 
(2016)

Energies have to be known within 100 MeV (DUNE) or 50 MeV (T2K)
Ratios of event rates to about 10%
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Energies have to be known within 100 MeV (DUNE) or 50 MeV (T2K)
Ratios of event rates to about 10%

DUNE T2HK

Systematic errors should be small since statistics will be high.

DUNE aims at uncertainties  
< 1% meaning O(25 MeV) precision of 

energy reconstruction
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Energy reconstruction

p
νl

l−

p
π+

✓ depends on lepton reconstruction 
✓ relies on identi"cation of interaction 

channel (for quasi-elastic works well)

Kinematics
SK/HK

✓ energy conservation 
✓ relies on visible energy 
✓ hadron masses in#uence the energy 

balance

p
νl

l−

p
π+

Calorimetry
DUNE

Nuclear models implemented in Monte Carlo event generators play crucial role.
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Neutrino energy is 
reconstructed in each event
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Why is QE important?

From: P. Lipari et. atl., PRL 74 (1995)
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Motivation

Hergert A Guided Tour of Ab Initio Nuclear Many-Body Theory

Figure 1. Progress in ab initio nuclear structure calculations over the past decade. The blue arrow
indicates nuclei that will become accessible with new advances for open-shell nuclei in the very near
term (see Sec. 2.3).

is poised to be filled in rapidly [28]. Development of the no-core versions of these methods has
continued as well, and made direct calculations for intrinsically deformed nuclei possible [29].

The growing reach of ab initio many-body methods made it possible to confront chiral NN+3N
forces with a wealth of experimental data, revealing shortcomings of those interactions and sparking
new e↵orts toward their improvement. There were other surprises along the way, some good, some
bad. Due to the benchmarking capabilities and further developments in many-body theory, we are
now often able to understand the reasons for the failure of certain calculations (see, e.g., Ref. [27]) —
hindsight is 2020, as they say1.

The present collection of Frontiers in Physics contributions provides us with a timely and welcome
opportunity to attempt a look back at some of the impressive results from the past decade and the
developments that brought us here, as well as a look ahead at the challenges to come as we enter a
new decade.

Let us conclude this section with a brief outline of the main body of this work. In Section 2, I
will discuss the main ingredients of modern nuclear many-body calculations: The input interactions
from chiral EFT, the application of the SRG to process Hamiltonians and operators, and eventually
a variety of many-body methods that are used to solve the Schrödinger equation. I will review key
ideas but keep technical details to a minimum, touching only upon aspects that will become relevant
again later on. Section 3 presents selected applications from the past decade, and discusses both

1 This exhausts my contractually allowed contingent of 2020 vision puns, I swear.

This is a provisional file, not the final typeset article 2

Many-body 
methods

Nucle
ar 

dynamics

+
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➡ Spectral functions 
➡ Optical potentials 
…

10

H. Hergert, Front.in Phys. 8 (2020) 379



Motivation

Hergert A Guided Tour of Ab Initio Nuclear Many-Body Theory

Figure 1. Progress in ab initio nuclear structure calculations over the past decade. The blue arrow
indicates nuclei that will become accessible with new advances for open-shell nuclei in the very near
term (see Sec. 2.3).

is poised to be filled in rapidly [28]. Development of the no-core versions of these methods has
continued as well, and made direct calculations for intrinsically deformed nuclei possible [29].

The growing reach of ab initio many-body methods made it possible to confront chiral NN+3N
forces with a wealth of experimental data, revealing shortcomings of those interactions and sparking
new e↵orts toward their improvement. There were other surprises along the way, some good, some
bad. Due to the benchmarking capabilities and further developments in many-body theory, we are
now often able to understand the reasons for the failure of certain calculations (see, e.g., Ref. [27]) —
hindsight is 2020, as they say1.

The present collection of Frontiers in Physics contributions provides us with a timely and welcome
opportunity to attempt a look back at some of the impressive results from the past decade and the
developments that brought us here, as well as a look ahead at the challenges to come as we enter a
new decade.

Let us conclude this section with a brief outline of the main body of this work. In Section 2, I
will discuss the main ingredients of modern nuclear many-body calculations: The input interactions
from chiral EFT, the application of the SRG to process Hamiltonians and operators, and eventually
a variety of many-body methods that are used to solve the Schrödinger equation. I will review key
ideas but keep technical details to a minimum, touching only upon aspects that will become relevant
again later on. Section 3 presents selected applications from the past decade, and discusses both

1 This exhausts my contractually allowed contingent of 2020 vision puns, I swear.

This is a provisional file, not the final typeset article 2

Many-body 
methods

Nucle
ar 

dynamics

O
bs

er
va

bl
es

➡  Neutrinos challenge ab initio nuclear theory 
➡  Controllable approximations within ab initial nuclear theory

+

➡ Nuclear responses 
➡ Spectral functions 
➡ Optical potentials 
…

10

H. Hergert, Front.in Phys. 8 (2020) 379



Nuclear response

nuclear 
responses

Jμ = (ρ, ⃗j)|Ψ⟩

σ ∝ Lμν Rμν

lepton 
tensor

γ, W±, Z0

 
Rμν(ω, q) = ∑

f
⟨Ψ |J†

μ(q) |Ψf⟩⟨Ψf |Jν(q) |Ψ⟩δ(E0 + ω − Ef )
11



✓ much more precise data 

✓ we can get access to  and  separately (Rosenbluth separation) 

✓ experimental programs of electron scattering in JLab, MAMI, MESA

RL RT

Electrons for neutrinos

dσ
dωdq ν/ν̄

= σ0(υCCRCC + υCLRCL + υLLRLL + υTRT ± υT′ RT′ )
dσ

dωdq e
= σM(υLRL + υTRT)

12



• Momentum transfer 
~hundreds MeV 

• Upper limit for ab 
initio methods  

• Important mechanism 
for T2HK, DUNE 

• Role of final state 
interactions 

• Role of 1-body and 2-
body currents

Quasielastic response

dσ
dωdq e

= σM(υLRL + υTRT)
charge operator  ̂ρ(q) =

Z

∑
j=1

eiqz′ j

13

First step: analyse the longitudinal response 



✓ Coupled cluster (CCSD) 

✓ Chiral potentials: NNLOsat and NNLOGOΔ

Formalism

C. Payne at al. 
Phys.Rev.C 100 (2019) 6, 061304

coherent elastic neutrino scattering on 40Ar

B. Acharya,  S. Bacca 
Phys.Rev.C 101 (2020) 1, 015505

Multipole decomposition for 1- 
and 2-body EW currents

7

the comparison with Refs. [18] and [7] and helps one to
assess of the size of the contributions of the various terms
in the current operator.

In Table I, we show the CC- and NC-induced inclusive
⌫̄/⌫-d cross sections obtained using the EM500 interac-
tion and current operators of various �EFT orders. The
EM500 interactions contain all e↵ects that are suppressed
by factors of up to (Q/⇤b)4 compared to the leading order
�EFT Hamiltonian. With wave functions obtained by
solving the partial wave Lippmann-Schwinger equations
for this interaction, we vary the order of the weak current
operator at (Q/⇤b)�3,�2,�1,0 to study the order-by-order
convergence of the current in the ⌫̄/⌫-d cross sections.
With increasing energy, the 1B Fermi and Gamow-Teller
operators, which contribute at the leading (Q/⇤b)�3 or-
der, underpredict (overpredict) the ⌫-d (⌫̄-d) cross sec-
tions compared to values obtained with operators up to
(Q/⇤b)0 order. The contributions of the 1B convection
and spin-magnetization currents, which enter at order
(Q/⇤b)�2, amount to about 30% in the ✏ ⇡ 100 MeV re-
gion. The pion-exchange 2B contributions to the vector
current and axial charge operators, which formally enter
at order (Q/⇤b)�1, are smaller than the axial 2B cur-
rent contributions at (Q/⇤b)0. While this is contrary to
expectations from �EFT power counting, a similar con-
vergence pattern was also found by Ref. [18]. Overall,
the inclusion of 2B currents increases the cross section
in all of the four reaction channels by about 3-4% at
✏ ⇡ 100 MeV, which is consistent with the results of
Ref. [18].

Agreement is seen between our 1B results and those of
Ref. [7]. The slight di↵erence of about 1% or less is due to
the AV18 [51] wave functions used by Ref. [7], since the
�EFT 1B operators used in this work are the same as the
phenomenological operators employed in that study. We
agree also within approximately 1% with Ref. [18], which
uses the same interactions for the wave functions but also
includes the (Q/⇤b)1 current operators not considered in
this work.

B. Uncertainty estimates

We now estimate, for the first time on this observable,
the uncertainty from the potential by using the NNLOsim

family of 42 interactions calculated up to the third chiral
order [19, 20]. These have been fitted at seven di↵erent
values of the regulator cuto↵ ⇤ in the 450-600 MeV in-
terval to six di↵erent Tlab ranges in the NN scattering
database. The LECs in this family of interactions were
fitted simultaneously to ⇡N and selected NN scattering
data, the energies and charge radii of 2,3H and 3He, the
quadrupole moment of 2H, as well as the �-decay width of
3H. All of these interactions have the correct long-range
properties, and the di↵erences between them provide a
conservative estimate of the uncertainty due to the short-
distance model ambiguity of �EFT.

In Fig. 1 we show, along with the EM500 curves, the

FIG. 1. (Color online) The NC and CC ⌫̄/⌫-d inclusive cross
sections with the EM500 (black, dashed) and NNLOsim (light
band) interactions.

cross sections calculated using the NNLOsim interactions
as bands. The widths of the bands are estimates of the
uncertainties due to the sensitivity to the �EFT cut-
o↵ and variations in the pool of fit data used to con-
strain the LECs, including ĉ1,3,4 and d̂R in the currents.
These widths grow with ✏ and amount to about 3% at
✏ ⇡ 100 MeV for all of the four processes. They are thus
similar in size to the e↵ect of 2B currents. The interac-
tions and currents in the NNLOsim results are of the same
chiral order, i.e., both of them include all corrections that
are suppressed by factors of up to (Q/⇤b)3 compared to
the leading order. Based on the observed convergence
of the cross sections in Table I, and on the results of
Ref. [18] for higher-order current contributions, we antic-
ipate the size of neglected terms in the chiral expansion of
the weak current operator to be 1% at ✏ ⇡ 100 MeV. This
is smaller than the NNLOsim uncertainties, which are—
in principle as well as in practice— similar in size to the
(Q/⇤b)0 current contributions which we have included
in our calculations. We therefore assign a conservative
estimate of 3% to the nuclear structure uncertainties in
the cross section at 100 MeV ⌫̄/⌫ energy. We now turn
to the question of the sensitivity of these results to the
single-nucleon axial form factor. Ref. [52] analyzed the
world data for ⌫d scattering by employing the calcula-
tions of Refs. [7, 53] to obtain hr2Ai = 0.46 ± 0.22 fm2.

ν(ν̄) + d → μ± + X

σ
[1

0−1
4

fm
2 ]

✓ Electroweak currents

3

expressed in terms of nucleons and pions and are con-
sistent with the symmetries and broken chiral symme-
try of QCD. They are expanded in powers of (Q/⇤�)⌫ ,
where Q is the low-momentum scale characterizing nu-
clear physics, and ⇤� ⇠ 1 GeV is the QCD scale. The
coe�cients of the Hamiltonian expansion are low-energy
constants (LECs); they encapsulate the unresolved short-
range physics and are typically calibrated by adjusting
theoretical results to experimental data. The accuracy of
a calculation is controlled by the order ⌫ of the employed
dynamical ingredients and by the accuracy to which one
can solve the many-body problem. In this work we im-
plement Hamiltonians derived at next-to-next-to-leading
order or higher (⌫ = 3 or 4). To probe the systematic un-
certainties, we employ various chiral potentials. In par-
ticular, we use the NNLOsat interaction [37], for which
the LECs entering the two-body and three-body forces
are adjusted to nucleon-nucleon phase shifts and to en-
ergies and charge radii of light nuclei. We also use the
�NNLOGO(450) potential [38], a delta-full �-EFT inter-
action at next-to-next-to-leading order [39], which was
adjusted to light nuclei, and the saturation point and
symmetry energy of nuclear matter. Finally, we employ
selected soft potentials obtained by performing a simi-
larity renormalization group transformation [40] of the
two-body chiral potential by Entem and Machleidt [41],
with leading-order three-nucleon forces from �-EFT ad-
justed to the binding energy of 3H and the charge radius
of 4He [42, 43]. For these interactions we follow the no-
tation of Ref. [43], namely 1.8/2.0, 2.0/2.0, 2.2/2.0 (EM)
and 2.0/2.0 (PWA), where the first (second) number in-
dicates the cuto↵ of the two-body (three-body) force in
fm�1, and EM indicates that the pion-nucleon LECs en-
tering the three-nucleon force are taken from the En-
tem and Machleidt potential [41], while in PWA they are
taken from partial wave analysis data. For electroweak
operators we take the one-body terms, as two-body cur-
rents are expected to be negligible [44, 45], especially so
at the low momenta of CE⌫NS.

Results. – Figure 1 shows our results for the 40Ar
charge form factor Fch as a function of q, and com-
pares them to electron-scattering data from Ottermann
et al. [33]. This comparison validates the theory. Panel
(a) shows results from the NNLOsat interaction for dif-
ferent correlation levels of the coupled-cluster expansion.
We see that increasing the correlations from D to T-1
changes the form factor only slightly, and the results are
su�ciently well converged. This is consistent with re-
sults from previous studies [30, 48], where triples corre-
lations only a↵ected the radii below 1%. Panel (b) shows
calculations of the charge form factor at the T-1 level
for di↵erent interactions. As representative examples
we chose the 2.0/2.0 (EM), 2.0/2.0 (PWA), and 2.2/2.0
(EM) potentials. The form factors exhibit a dependence
on the choice of the Hamiltonian, particularly at larger
momentum transfers. The interaction �NNLOGO(450),
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FIG. 2. Panel (a): 40Ar weak form factor computed with dif-
ferent Hamiltonians. The EM-family interactions are shown
as a band. Panel (b): CE⌫NS as a function of the neutrino en-
ergy, computed with same three di↵erent Hamiltonians. The
inset shows the form factor zoomed into the low-q region rel-
evant to coherent scattering, in linear scale.

derived in a delta-full chiral framework, provides a qual-
itatively similar description of the experimental data as
the NNLOsat, noting that the former interaction repro-
duces the first minimum of |Fch| more precisely. We re-
mind the reader that – within the Helm model [49] –
the first zero of the form factor is proportional to the in-
verse radius of the charge distribution. Among the family
of EM potentials, the 2.2/2.0 (EM) interactions predicts
the first zero at higher q, consistent with a smaller charge
radius. Overall, one should trust the Hamiltonians only
for momentum transfers up to about q = 2.0 fm�1, which
marks the scale of the employed ultraviolet cuto↵s.

Figure 2(a) shows the 40Ar weak form factor FW of
Eq. (2) as a function of the momentum transfer q, cal-
culated in the T-1 scheme. Here, we show the soft inter-
actions with a band that encompasses the three di↵erent
potentials, labeled with (EM)-(PWA). The weak form
factor exhibits a mild dependence on the choice of the
Hamiltonian. The band spanned by the from factors of
the EM interactions exhibits a first dip at a larger q value
than the potentials NNLOsat and the �NNLOGO(450),
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derived in a delta-full chiral framework, provides a qual-
itatively similar description of the experimental data as
the NNLOsat, noting that the former interaction repro-
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mind the reader that – within the Helm model [49] –
the first zero of the form factor is proportional to the in-
verse radius of the charge distribution. Among the family
of EM potentials, the 2.2/2.0 (EM) interactions predicts
the first zero at higher q, consistent with a smaller charge
radius. Overall, one should trust the Hamiltonians only
for momentum transfers up to about q = 2.0 fm�1, which
marks the scale of the employed ultraviolet cuto↵s.

Figure 2(a) shows the 40Ar weak form factor FW of
Eq. (2) as a function of the momentum transfer q, cal-
culated in the T-1 scheme. Here, we show the soft inter-
actions with a band that encompasses the three di↵erent
potentials, labeled with (EM)-(PWA). The weak form
factor exhibits a mild dependence on the choice of the
Hamiltonian. The band spanned by the from factors of
the EM interactions exhibits a first dip at a larger q value
than the potentials NNLOsat and the �NNLOGO(450),
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A. Ekström et al. Phys.Rev.C 91 (2015) 5, 051301 
W. Jiang at al. Phys.Rev.C 102 (2020) 5, 054301



Coulomb sum rule

easier to calculate since we do 
not need |Ψf⟩

m0(q) = ∫ dωRL(ω, q) = ∑
f≠0

|⟨Ψf | ̂ρ |Ψ⟩ |2 = ⟨Ψ | ̂ρ† ̂ρ |Ψ⟩ − |Fel(q) |2

Degrees of freedom: nucleons

15



Coulomb sum rule

 has 3A coordinates  3(A-1) coordinates + |Ψ⟩ → ⃗R = 1
A

A

∑
i

⃗ri

With translationally non-invariant operators 
we may excite spurious states

center of mass problem

easier to calculate since we do 
not need |Ψf⟩

intrinsic

m0(q) = ∫ dωRL(ω, q) = ∑
f≠0

|⟨Ψf | ̂ρ |Ψ⟩ |2 = ⟨Ψ | ̂ρ† ̂ρ |Ψ⟩ − |Fel(q) |2

Degrees of freedom: nucleons

15



Coulomb sum rule

Project out spurious states:      ̂ρ |Ψ⟩ = |Ψphys⟩ + |Ψspur⟩

center of mass wave 
function is a Gaussian

It has been shown that to good approximation the ground state factorizes:

̂ρ |Ψ⟩ = |Ψexc
I ⟩ |ΨCoM⟩ + |ΨI⟩ |Ψexc

CoM⟩

We follow a similar ansatz for the excited states:

G. Hagen, T. Papenbrock, D. Dean 
Phys.Rev.Lett. 103 (2009) 062503

|Ψ⟩ = |ΨI⟩ |ΨCoM⟩
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G. Hagen, T. Papenbrock, D. Dean 
Phys.Rev.Lett. 103 (2009) 062503

|Ψ⟩ = |ΨI⟩ |ΨCoM⟩
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Coulomb sum rule

CoM spurious states dominate for light nuclei

∼ 30 %

J.E.S. B. Acharya, S.Bacca, G. Hagen 
Phys.Rev.C 102 (2020) 064312
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Coulomb sum rule

JES, B. Acharya, S.Bacca, G. Hagen Phys.Rev.C 102 (2020) 064312

m0(q) = ∫ dωRL(ω, q) = ∑
f≠0

|⟨Ψf | ̂ρ |Ψ⟩ |2 = ⟨Ψ | ̂ρ† ̂ρ |Ψ⟩ − |Fel(q) |2

18
PRL 127 (2021) 7, 072501 JES, B. Acharya, S. Bacca, G. Hagen



Nuclear responses
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Longitudinal response

Uncertainty band: inversion procedure

20

∫
 

Rμν(ω, q) = ∑
f

⟨Ψ |J†
μ |Ψf⟩⟨Ψf |Jν |Ψ⟩δ(E0 + ω − Ef )

JES, B. Acharya, S. Bacca, G. Hagen; PRL 127 (2021) 7, 072501

Lorentz Integral Transform + Coupled Cluster



Longitudinal response 40Ca

40Ca

JES, B. Acharya, S. Bacca, G. Hagen; PRL 127 (2021) 7, 072501

First ab-initio results for 
many-body system of  

40 nucleons

40Ca

21

✓ CC singles & doubles 
✓ varying underlying harmonic 

oscillator frequency 
✓ two di%erent chiral Hamiltonians 
✓ inversion procedure

Lorentz Integral Transform + Coupled Cluster



Chiral expansion for 40Ca
(Longitudinal response)

22

✓ Two orders of chiral expansion 
✓ Convergence better for lower q (as expected) 
✓ Higher order brings results closer to the data

B. Acharya, S. Bacca, JES et al. Front. Phys. 1066035(2022)



Transverse response

23

TO  B E  P U B L I S H E D

TSR(q) = 2m2

Zμ2p + Nμ2n

1
q2 (⟨Ψ | ̂j† ̂j Ψ⟩ − |⟨Ψ | ̂j |Ψ⟩ |2 )

j(q) = ∑
i

1
2m

ϵi{pi, eiqri} − i
2m

μiq × σieiqri

TSR(q → ∞) = 1 kinetic energyTSR(q → 0) ∝



➡ This allows to predict electron-
nucleus cross-section 

➡ Currently only 1-body current

Transverse response

24

TO  B E  P U B L I S H E D

TO  B E  P U B L I S H E D

2-body currents important for 4He  
 more correlations needed? 
 2-b currents strength depends 

on nucleus?

→
→



• Sum-rules 

• Flux folding 

• Histogram 

• …

R(ω)

ω

Φ = ∫ f(ω)R(ω)dω

Φ ≈ Φ̃ = ∫ f(ω′ )∫ K(ω′ , ω)R(ω)dωdω′ 

|Φ − Φ̃ | < ϵestimated error 

expansion in Chebyshev 
polynomials

K(ω, σ) = ∑
k

ck(σ)Tk(ω)

ChEK method
Chebyshev Expansion of integral Kernel

25

A. Roggero Phys.Rev.A 102 (2020) 2, 022409 
JES, A. Roggero Phys.Rev.E 105 (2022) 055310 
 



Chebyshev Expansion of integral Kernel

V E RY   

P R E L I M I N A RY

➡ No assumption about the shape of the response 
➡ Rigorous error estimation 
➡ Convenient when the response has a complicated structure

26

ChEK method

4He photoabsorption

8
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FIG. 5. (Color online) Comparison of the 4He dipole cross sec-
tion calculated with LIT-CCSD and experimental data from
Arkatov et al. [60], Nilsson et al. [61] and Raut et al. [62].
The grey and blue bands di↵er simply by a shift of the the-
oretical threshold (grey) to the experimental one (dark/blue)
(see text).

as

�
E1
� (!) = 4⇡2

↵!S(!) , (47)

with ↵ being the fine structure constant. Arkatov et
al. [60] measured the photodisintegration cross section
spanning a quite large energy range. More recent data
by Nilsson et al. [61] and Raut et al. [62] cover a nar-
rower range (see Ref. [49] for an update on all the mea-
surements and calculations). In Figure 5, the grey curve
represents the calculation where the theoretical threshold
is used in the inversion. One notices that this is not as the
experimental one, because the used Hamiltonian misses
the contribution of the three-body force to the binding
energies of 4He and3H. Thus, as typically done in the
literature, to take this trivial binding e↵ect into account
we shift the theoretical (grey) curve to the experimental
threshold (note that the consistent theoretical threshold
is still used in the inversion procedure). It is evident that
the theory describes the experimental data qualitatively,
so it is interesting to address heavier nuclei.

V. APPLICATION TO 16O

The 4He benchmark suggests that the LIT-CCSD
method can be employed for the computation of the
dipole response, and that theoretical uncertainties with
respect to the model space and the inversion of the LIT
are well controlled. Thus, we turn our attention to a
stable medium-mass nucleus, such as 16O.

First, we investigate the convergence of the LIT as a
function of the model space size. In Figure 6, we present

the LITs for � = 20 MeV (panel (a)) and � = 10 MeV
(panel (b)) with Nmax ranging from 8 up to 18. The
convergence is rather good and it is better for the larger
value of �. As indicated above, the smaller the width
�, the more di�cult is to converge in a LIT calculation.
For � = 10 a small di↵erence of about about 2% between
Nmax = 16 and Nmax = 18 is found.
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FIG. 6. (Color online) Convergence of L(!0,�) in 16O at
� = 20 MeV (a) and � = 10 (b) for di↵erent values of Nmax

and an HO frequency of ~⌦ = 26 MeV.

Before inverting the transform, it is first interesting to
investigate the ~⌦-dependence of our results and com-
pare the theory with the integral transform of data. In
Figure 7, LITs from our LIT-CCSD calculations with the
largest model space size of Nmax = 18 and two di↵er-
ent HO frequencies of ~⌦ = 20 and 26 MeV are shown.
As one can notice, there is a residual ~⌦ dependence of
roughly 4%, which is small and can be considered as the
error bar of the numerical calculation. Overall, the the-
oretical error associated of our LIT for � = 10 MeV in
the LIT-CCSD scheme amounts to 5%.
The photodisintegration data measured by Ahrens et

al. [63] cover a broad energy range. Therefore it is possi-
ble to apply the LIT (Eq. (3)) on the response function
extracted from the data by Eq. (47). This allows us to
compare the experimental and theoretical results, as done
in Figure 7 (the area between the grey lines represents the
data error band). Our theoretical predictions agree with
the experimental LIT within the uncertainties in almost

S. Bacca, N. Barnea, G. Hagen, G. Orlandini; Phys.Rev.C 90 (2014) 6



Low/high energies

Ĥ |ψA⟩ = E |ψA⟩
Many-body problem

27



Low/high energies

Ĥ |ψA⟩ = E |ψA⟩

Electroweak responses

νμ

⟨ψf | ̂j |ψA⟩

Many-body problem
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Low/high energies

Ĥ |ψA⟩ = E |ψA⟩

Electroweak responses

MULTINUCLEON  
KNOCKOUT (2P2H)

νμ

⟨ψf | ̂j |ψA⟩

Many-body problem

27



Low/high energies

Ĥ |ψA⟩ = E |ψA⟩

Electroweak responses

MULTINUCLEON  
KNOCKOUT (2P2H)

νμ

⟨ψf | ̂j |ψA⟩

Many-body problem Probability density of finding nucleon 
 in ground state nucleus(E, p)

27

Spectral  
function

Impulse Approximation



Spectral functions

q

growing q momentum transfer  final state interactions play minor role→

σ ∝ |ℳ |2 S(E, p)

JES, S. Bacca, G. Hagen, T. Papenbrock Phys.Rev.C 106 (2022) 3, 034310

Factorized interaction vertex 
(relativistic, pion 

production…)

Spectral function - 
nuclear information

Coupled Cluster + ChEK method

28



Final state interactions

29

JES et al, in preparation (2022)

TO  B E  P U B L I S H E D

16O

How to account for the FSI? Optical potential for the outgoing nucleon

TO  B E  P U B L I S H E D

16O



• Comparison 
with T2K long 
baseline  
oscillation 
experiment 

•  events 

• Spectral function 
implemented 
into NuWro 
Monte Carlo 
generator

ν

CC0π

Spectral function for neutrinos

JES et al, in preparation (2022)

Da
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νμ +16 O → μ− + X

TO  B E  P U B L I S H E D



• LIT-CC benchmark for electron scattering  ready for neutrino 

• Role of 2-body currents for medium-mass nuclei 

• Explore possible applications of the ChEK method 

• Spectral functions (within Impulse Approximation): 

• Relativistic regime 

• Semi-inclusive processes 

• Further steps: 2-body spectral functions, accounting for FSI

→

Outlook

31
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• Basis functions 

                                  

• Stability of the inversion procedure: 

• Vary the parameters ,  and number of basis functions  
(6-9) 

• Use LITs of various width  (5, 10, 20 MeV)

RL(ω) =
N

∑
i=1

ciωn0e− ω
βi

n0 βi N

Γ

Details on inversion procedure



Lorentz integral transform

L(σ) = ∫ R(ω)
(ω − σ)2 + Γ2 dω = ∫ R(ω)

(ω + σ̃*)(ω + σ̃) dω

L(σ) = ∫ dω∑
f

⟨Ψ0 |ρ† 1
ω + σ̃* |Ψf⟩⟨Ψf |

1
ω + σ̃

ρ |Ψ0⟩δ(ω + E0 − Ef )

L(σ) = ∑
f

⟨Ψ0 |ρ† 1
Ef − E0 + σ̃* |Ψf⟩⟨Ψf |

1
Ef − E0 + σ̃

ρ |Ψ0⟩

L(σ) = ∑
f

⟨Ψ0 |ρ† 1
H − E0 + σ̃* |Ψf⟩⟨Ψf |

1
H − E0 + σ̃

ρ |Ψ0⟩

|Ψ̃⟩⟨Ψ̃ |
We need to solve

(H − E0 + σ̃) |Ψ̃⟩ = ρ |Ψ⟩ Schrodinger-like equation



Lorentz Integral Transform (LIT)

36

 
Sμν(σ, q) = ∫ dωK(ω, σ)Rμν(ω, q) = ⟨Ψ |J†

μ K(ℋ − E0, σ) Jν |Ψ⟩

Lorentzian kernel:  
 KΓ(ω, σ) = 1

π
Γ

Γ2 + (ω − σ)2

continuum spectrum
∫

 
Rμν(ω, q) = ∑

f
⟨Ψ |J†

μ |Ψf⟩⟨Ψf |Jν |Ψ⟩δ(E0 + ω − Ef )

 has to be inverted to get access to Sμν Rμν

Integral  
transform



Lorentz Integral Transform

37

Γ = 20 MeV

Longitudinal isoscalar 
response on 4He  

at q=300 MeV

Integral transform

Inversion



Longitudinal response 40Ca

Sum over multipoles Underlying oscillator frequency

Inversion

38



• Expansion in Chebyshev polynomials 

• Recursive relations of Chebyshev polynomials 

• Gives error estimate of energy integrals of local density of states R(ω)

ChEK method

T0(x) = 1; T−1(x) = T1(x) = x
Tn+1(x) = 2xTn(x) − Tn−1(x)

K(ℋ, σ) =
N

∑
k=0

ck(σ)Tk(ℋ)

 
Sμν(σ, q) = ∫ dωK(ω, σ)Rμν(ω, q) = ⟨Ψ |J†

μ K(ℋ, σ) Jν |Ψ⟩

Q(R, f ) = ∫ dωR(ω)f(ω)



Optical potential

3

dependent on the kinetic energy and the radial position.
Following the same steps as in Ref. [6], averaging over
the proton density, we arrive at the real part of optical
potential ReU(tkin) shown in Fig. 1 with tkin being the
kinetic energy of the outgoing nucleon. The fit of [5] is
reliable only above tkin = 25 MeV (momentum p

′ ≈ 215
MeV). Momenta lower than pF = 220 MeV will be Pauli
blocked. Inclusion of the imaginary part introduced as
a folding of the cross section with a Lorentzian [6], was
reported to overestimate the absorption rate leading to
the non-physical large tails of the Lorentzian distribu-
tion (see Ref. [7]). We will not take it into account in our
current predictions, since the topic requires further in-
vestigations. Therefore within our treatment of the FSI,
the real part of optical potential enters the hadron tensor
changing the energy conservation

W
µ⌫
FSI(q) = � d

3p

(2⇡)3 dE
m

Ep

m

Ep+q
�Sn(p,E)wµ⌫

n (p, q) + Sp(p,E)wµ⌫
p (p, q)�

× ✓(p′ − pF )�(! +E −Ep+q −Ekin
f −ReU) .

(12)

FIG. 1. The real part of optical potential for 16O as a function
of the kinetic energy of the outgoing proton.

III. SPECTRAL FUNCTIONS FROM CHEK
METHOD

Spectral functions (see Eq. (11)) are defined in terms
of the imaginary part of the hole propagator in the many-
body system

ImGh(↵,�,E) =
− ⇡�

 A−1
�0�a†

� � A−1�� A−1�a↵�0���E − (E0 −E )� .
(13)

The spectrum of excited states  A−1 contains bound
and continuum states, making the direct calculation of

ImGh(↵,�,E) challenging. To circumvent this problem
we calculate its integral transform

ImG̃h(↵,�,E)
= � d!ImGh(↵,�,!)K(!,E)
= −⇡�

 A−1
�0�a†

� �K�E ,E −E0��a↵�0�
= −⇡�0�a†

� �K�Ĥ,E −E0��a↵�0� ,
(14)

with the integral kernel K(!,E). If we are interested in
ImGh(↵,�,E), the integral transform has to be inverted.
The inversion procedure requires in general solving an ill-
posed problem. It has been successful for the Lorentz or
Laplace kernel when the responses have a relatively sim-
ple shape with one or two peaks. A variety of techniques
were used to approach this problem (the least square fit,
maximal enthropy, neural networks). The spectral func-
tion, however, has a more complicated structure, making
the inversion practically impossible. Therefore, here we
follow a di↵erent strategy which does not require this
last step. Instead, we reconstruct ImGh(↵,�,E) as a
histogram. Our goal is to estimate each bin (centered at
⌘ having width 2�),

ImGh(↵,�; ⌘,�) ≡ � ⌘+�
⌘−� dEImGh(↵,�,E) , (15)

using the integral transform ImG̃h

ImG̃h(↵,�; ⌘,�) ≡ � ⌘+�
⌘−� dEImG̃h(↵,�,E) . (16)

The uncertainty of this reconstruction depends on the
properties of the kernelK. From our previous studies, we
found that the Gaussian kernel has very convenient prop-
erties, which we characterize using parameters ⌃ (accu-
rateness) and ⇤ (resolution)

sup
!∈[−1,1]�

!+⇤
!−⇤ K(!,E)dE ≥ 1 −⌃ . (17)

Using these definitions we arrive at the histogram which
is constrained from below and above by the integrated
integral transforms,

ImG̃h(� −⇤) −⌃ ≤ ImGh(�) ≤ ImG̃h(� +⇤) +⌃ ,

(18)

where we suppressed the quantum numbers ↵, � and the
bin’s center ⌘. The integral transform in Eq. (14) it-
self can be calculated in various manners, depending on
the kernel. E.g. the Lorentz integral transform can be
conveniently obtained via Lanczos algorithm which gives
access to the set of the lowest eigenvalues. We will use
a di↵erent strategy which can be applied not only to the
Lorentz but also to the Gaussian kernel, namely by ex-
panding the kernel into Chebyshev polynomials

K(!,E) = N�
k=0

ck(E)Tk(!) . (19)
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with the integral kernel K(!,E). If we are interested in
ImGh(↵,�,E), the integral transform has to be inverted.
The inversion procedure requires in general solving an ill-
posed problem. It has been successful for the Lorentz or
Laplace kernel when the responses have a relatively sim-
ple shape with one or two peaks. A variety of techniques
were used to approach this problem (the least square fit,
maximal enthropy, neural networks). The spectral func-
tion, however, has a more complicated structure, making
the inversion practically impossible. Therefore, here we
follow a di↵erent strategy which does not require this
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sup
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!+⇤
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bin’s center ⌘. The integral transform in Eq. (14) it-
self can be calculated in various manners, depending on
the kernel. E.g. the Lorentz integral transform can be
conveniently obtained via Lanczos algorithm which gives
access to the set of the lowest eigenvalues. We will use
a di↵erent strategy which can be applied not only to the
Lorentz but also to the Gaussian kernel, namely by ex-
panding the kernel into Chebyshev polynomials

K(!,E) = N�
k=0

ck(E)Tk(!) . (19)

2

II. QUASI-ELASTIC SCATTERING IN
IMPULSE APPROXIMATION

The di↵erential cross-section for the lepton-nucleus
scattering can be expressed in general as

d�

d!d cos ✓
=  �k��k′�Lµ⌫W

µ⌫
, (1)

where the energy-momentum transfer is given by q =(!,q), the scattering angle ✓ and initial lepton four-
momentum is k = (Ek,k), while the final k′ = (Ek′ ,k′).
The interaction vertex depends on the process

EM = � ↵
q2
�2 , CC,NC = �GF cos ✓C

2⇡
�2 , (2)

with electromagnetic (EM), charge-current (CC) or
neutral-current (NC). The lepton tensor is given by

Lµ⌫ = 2a[kµk′⌫ + k′µk⌫ − gµ⌫(kk′) ± i⌘✏µ⌫↵�k′↵k�] . (3)

with a = 1, ⌘ = 0 for electromagnetic and a = 4, ⌘ = 1 for
electroweak reactions. The hadronic tensor depends on
the reaction mechanism under consideration

W
µ⌫ =�

f

�
4(p0 + q − pf)�0� (Jµ)† � f �� f �J⌫ �0� , (4)

with the electroweak current Jµ, the initial nuclear state�0� and the final state � f . Presently we consider a single-
nucleon production induced by one-body current,

J
µ = �

↵,�

���jµ�↵�a†
�a↵ , (5)

with ↵, � - quantum numbers of single-particle states.
Within the spectral function mechanism which we want
to employ, we can use the fully relativistic currents in the
matrix element

�p + q�jµ�p� = ū(p + q) (V µ +Aµ)u(p) (6)

with Dirac spinors u and the current jµ having a vector-
axial structure. Constructing the most general form of
V

µ and A
µ using the available four-vectors, we have

V
µ = F1�

µ + F2

2m
i�

µ⌫
q⌫ ,

A
µ = FA�

µ
�
5 + FP

m
q
µ
�
5
.

(7)

Form factors depend on the considered process. For the
EM scattering we will use F

n,p
1 , F

n,p
2 parametrized as

in Ref. [4]. The CC vector form-factor is related to the
electromagnetic ones as Fi = F p

i −Fn
i . The axial form fac-

tors – present only in the weak interactions – are related
under PCAC (partially conserved axial current):

FP (Q2) = 2m2

Q2 +m2
⇡

FA(Q2) , (8)

with FA taken as a dipole with MA = 1030 MeV axial
mass.
Under the assumption that the struck nucleon does

not interact with the final nuclear state, we can factorize
the final plane-wave nucleon and the A − 1 nuclear state� f � → ap′ � A−1�. By inserting a complete set of inter-
mediate states, ∫ d3p�(2⇡)3�p��p�apa†

p matrix element can
be approximated by

� f �J⌫ �0� ≈ � d
3p

(2⇡)3 �p′�jµ�p��↵ �p�↵�� A−1�a↵�0� (9)

The hadron tensor factorizes the interaction vertex while
the nuclear e↵ects are encapsulated into the spectral
function S(p,E):

W
µ⌫(q) = � d

3p

(2⇡)3 dE
m

Ep

m

Ep+q
�Sn(p,E)wµ⌫

n (p, q) + Sp(p,E)wµ⌫
p (p, q)�

× �(! +E −Ep+q −Ekin
f ) , (10)

where the spectral function is defined as

S(p,E) = �
↵,�

�p�↵��p���†

�
 A−1
�0�a†

� � A−1�� A−1�a↵�0���E − (E0 −E )� . (11)

and it gives the probability distribution of kicking a nu-
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From the momentum conservation at the single nucleon
vertex p = p̃ = p′ − q. Furthermore, the spin state of
a↵ and a↵′ coincide due to charge conservation and the
assumption that the nuclear ground state has spin zero.
Finally, the last step of the factorization separates the
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The spectral function gives the probability distribution
of removing a nucleon with momentum p from the tar-
get nucleus, leaving the residual (A − 1) system with an
energy E0 − E. For closed-shell nuclei, such as the 4He
considered in this work, the spectral functions of spin-up
and spin-down nucleons coincide. We normalize spectral
functions as
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In the relativistic regimes, the factors m�Ep and m�Ep+q
should be included to account for the implicit covariant
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where one can see that it can be calculated starting from
the spectral function for (n) neutrons and (p) protons.
We performed the factorization of the relativistic cur-

rents and the nuclear ground state governed by non-
relativistic dynamics. This way we can address the
processes occurring at high energy-momentum transfers.
This procedure introduces, however, some model depen-
dence since we do not treat the wavefunction and the
currents on an equal footing. In a consistent description
we can either have the picture of a simple current in-
teracting with a complicated nucleus, or an alternative
picture (and a continuum of approaches between these
two extremes) where the nucleus is simple (e.g., a prod-
uct state), and the current is complicated and consists
of one- and two-body terms. Very recently, authors of
Ref. [36] presented a detailed discussion of this subject.
In particular they analyse how the high-momentum be-
haviour of the wavefunctions depends on the resolution of
employed nuclear Hamiltonian. Their results can be ap-
plied to the momentum distribution of the spectral func-
tions. We leave the analysis of this e↵ect, as well the role
of two-body currents within the factorization scheme, for
the future studies.
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This procedure introduces, however, some model depen-
dence since we do not treat the wavefunction and the
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Green’s function:

Spectral function:
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expressed in terms of nucleons and pions and are con-
sistent with the symmetries and broken chiral symme-
try of QCD. They are expanded in powers of (Q/⇤�)⌫ ,
where Q is the low-momentum scale characterizing nu-
clear physics, and ⇤� ⇠ 1 GeV is the QCD scale. The
coe�cients of the Hamiltonian expansion are low-energy
constants (LECs); they encapsulate the unresolved short-
range physics and are typically calibrated by adjusting
theoretical results to experimental data. The accuracy of
a calculation is controlled by the order ⌫ of the employed
dynamical ingredients and by the accuracy to which one
can solve the many-body problem. In this work we im-
plement Hamiltonians derived at next-to-next-to-leading
order or higher (⌫ = 3 or 4). To probe the systematic un-
certainties, we employ various chiral potentials. In par-
ticular, we use the NNLOsat interaction [37], for which
the LECs entering the two-body and three-body forces
are adjusted to nucleon-nucleon phase shifts and to en-
ergies and charge radii of light nuclei. We also use the
�NNLOGO(450) potential [38], a delta-full �-EFT inter-
action at next-to-next-to-leading order [39], which was
adjusted to light nuclei, and the saturation point and
symmetry energy of nuclear matter. Finally, we employ
selected soft potentials obtained by performing a simi-
larity renormalization group transformation [40] of the
two-body chiral potential by Entem and Machleidt [41],
with leading-order three-nucleon forces from �-EFT ad-
justed to the binding energy of 3H and the charge radius
of 4He [42, 43]. For these interactions we follow the no-
tation of Ref. [43], namely 1.8/2.0, 2.0/2.0, 2.2/2.0 (EM)
and 2.0/2.0 (PWA), where the first (second) number in-
dicates the cuto↵ of the two-body (three-body) force in
fm�1, and EM indicates that the pion-nucleon LECs en-
tering the three-nucleon force are taken from the En-
tem and Machleidt potential [41], while in PWA they are
taken from partial wave analysis data. For electroweak
operators we take the one-body terms, as two-body cur-
rents are expected to be negligible [44, 45], especially so
at the low momenta of CE⌫NS.

Results. – Figure 1 shows our results for the 40Ar
charge form factor Fch as a function of q, and com-
pares them to electron-scattering data from Ottermann
et al. [33]. This comparison validates the theory. Panel
(a) shows results from the NNLOsat interaction for dif-
ferent correlation levels of the coupled-cluster expansion.
We see that increasing the correlations from D to T-1
changes the form factor only slightly, and the results are
su�ciently well converged. This is consistent with re-
sults from previous studies [30, 48], where triples corre-
lations only a↵ected the radii below 1%. Panel (b) shows
calculations of the charge form factor at the T-1 level
for di↵erent interactions. As representative examples
we chose the 2.0/2.0 (EM), 2.0/2.0 (PWA), and 2.2/2.0
(EM) potentials. The form factors exhibit a dependence
on the choice of the Hamiltonian, particularly at larger
momentum transfers. The interaction �NNLOGO(450),
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FIG. 2. Panel (a): 40Ar weak form factor computed with dif-
ferent Hamiltonians. The EM-family interactions are shown
as a band. Panel (b): CE⌫NS as a function of the neutrino en-
ergy, computed with same three di↵erent Hamiltonians. The
inset shows the form factor zoomed into the low-q region rel-
evant to coherent scattering, in linear scale.

derived in a delta-full chiral framework, provides a qual-
itatively similar description of the experimental data as
the NNLOsat, noting that the former interaction repro-
duces the first minimum of |Fch| more precisely. We re-
mind the reader that – within the Helm model [49] –
the first zero of the form factor is proportional to the in-
verse radius of the charge distribution. Among the family
of EM potentials, the 2.2/2.0 (EM) interactions predicts
the first zero at higher q, consistent with a smaller charge
radius. Overall, one should trust the Hamiltonians only
for momentum transfers up to about q = 2.0 fm�1, which
marks the scale of the employed ultraviolet cuto↵s.

Figure 2(a) shows the 40Ar weak form factor FW of
Eq. (2) as a function of the momentum transfer q, cal-
culated in the T-1 scheme. Here, we show the soft inter-
actions with a band that encompasses the three di↵erent
potentials, labeled with (EM)-(PWA). The weak form
factor exhibits a mild dependence on the choice of the
Hamiltonian. The band spanned by the from factors of
the EM interactions exhibits a first dip at a larger q value
than the potentials NNLOsat and the �NNLOGO(450),
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Electroweak currents

J = ∑
i

ji + ∑
i<j

jij + . . .
7

the comparison with Refs. [18] and [7] and helps one to
assess of the size of the contributions of the various terms
in the current operator.

In Table I, we show the CC- and NC-induced inclusive
⌫̄/⌫-d cross sections obtained using the EM500 interac-
tion and current operators of various �EFT orders. The
EM500 interactions contain all e↵ects that are suppressed
by factors of up to (Q/⇤b)4 compared to the leading order
�EFT Hamiltonian. With wave functions obtained by
solving the partial wave Lippmann-Schwinger equations
for this interaction, we vary the order of the weak current
operator at (Q/⇤b)�3,�2,�1,0 to study the order-by-order
convergence of the current in the ⌫̄/⌫-d cross sections.
With increasing energy, the 1B Fermi and Gamow-Teller
operators, which contribute at the leading (Q/⇤b)�3 or-
der, underpredict (overpredict) the ⌫-d (⌫̄-d) cross sec-
tions compared to values obtained with operators up to
(Q/⇤b)0 order. The contributions of the 1B convection
and spin-magnetization currents, which enter at order
(Q/⇤b)�2, amount to about 30% in the ✏ ⇡ 100 MeV re-
gion. The pion-exchange 2B contributions to the vector
current and axial charge operators, which formally enter
at order (Q/⇤b)�1, are smaller than the axial 2B cur-
rent contributions at (Q/⇤b)0. While this is contrary to
expectations from �EFT power counting, a similar con-
vergence pattern was also found by Ref. [18]. Overall,
the inclusion of 2B currents increases the cross section
in all of the four reaction channels by about 3-4% at
✏ ⇡ 100 MeV, which is consistent with the results of
Ref. [18].

Agreement is seen between our 1B results and those of
Ref. [7]. The slight di↵erence of about 1% or less is due to
the AV18 [51] wave functions used by Ref. [7], since the
�EFT 1B operators used in this work are the same as the
phenomenological operators employed in that study. We
agree also within approximately 1% with Ref. [18], which
uses the same interactions for the wave functions but also
includes the (Q/⇤b)1 current operators not considered in
this work.

B. Uncertainty estimates

We now estimate, for the first time on this observable,
the uncertainty from the potential by using the NNLOsim

family of 42 interactions calculated up to the third chiral
order [19, 20]. These have been fitted at seven di↵erent
values of the regulator cuto↵ ⇤ in the 450-600 MeV in-
terval to six di↵erent Tlab ranges in the NN scattering
database. The LECs in this family of interactions were
fitted simultaneously to ⇡N and selected NN scattering
data, the energies and charge radii of 2,3H and 3He, the
quadrupole moment of 2H, as well as the �-decay width of
3H. All of these interactions have the correct long-range
properties, and the di↵erences between them provide a
conservative estimate of the uncertainty due to the short-
distance model ambiguity of �EFT.

In Fig. 1 we show, along with the EM500 curves, the

FIG. 1. (Color online) The NC and CC ⌫̄/⌫-d inclusive cross
sections with the EM500 (black, dashed) and NNLOsim (light
band) interactions.

cross sections calculated using the NNLOsim interactions
as bands. The widths of the bands are estimates of the
uncertainties due to the sensitivity to the �EFT cut-
o↵ and variations in the pool of fit data used to con-
strain the LECs, including ĉ1,3,4 and d̂R in the currents.
These widths grow with ✏ and amount to about 3% at
✏ ⇡ 100 MeV for all of the four processes. They are thus
similar in size to the e↵ect of 2B currents. The interac-
tions and currents in the NNLOsim results are of the same
chiral order, i.e., both of them include all corrections that
are suppressed by factors of up to (Q/⇤b)3 compared to
the leading order. Based on the observed convergence
of the cross sections in Table I, and on the results of
Ref. [18] for higher-order current contributions, we antic-
ipate the size of neglected terms in the chiral expansion of
the weak current operator to be 1% at ✏ ⇡ 100 MeV. This
is smaller than the NNLOsim uncertainties, which are—
in principle as well as in practice— similar in size to the
(Q/⇤b)0 current contributions which we have included
in our calculations. We therefore assign a conservative
estimate of 3% to the nuclear structure uncertainties in
the cross section at 100 MeV ⌫̄/⌫ energy. We now turn
to the question of the sensitivity of these results to the
single-nucleon axial form factor. Ref. [52] analyzed the
world data for ⌫d scattering by employing the calcula-
tions of Refs. [7, 53] to obtain hr2Ai = 0.46 ± 0.22 fm2.
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