Nuclear ab initio studies for neutrino oscillations

Joanna Sobczyk

Hirschegg, 17 January 2023

Precision Physics, Fundamental Interactions and Structure of Matter

Alexander von Humboldt Stiftung/Foundation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 101026014

Neutrino oscillations

Next generation experiments

- ✓ CP-violation measurement
- ✓ Proton decay searches
- ✓ **Determining** ν mass ordering ✓ Cosmic neutrino observation

From: Diwan et al, Ann. Rev.Nucl. Part. Sci 66 (2016)

From: Diwan et al, Ann. Rev.Nucl. Part. Sci 66 (2016)

Position of the oscillation peak depends on energy reconstruction

DUNE aims at uncertainties < 1% meaning O(25 MeV) precision of energy reconstruction

Position of the oscillation peak depends on energy reconstruction

DUNE aims at uncertainties < 1% meaning O(25 MeV) precision of energy reconstruction

Systematic errors should be small since statistics will be high.

Energy reconstruction

- \checkmark depends on lepton reconstruction
- ✓ relies on identification of interaction channel (for quasi-elastic works well)

- \checkmark energy conservation
- ✓ relies on visible energy
- ✓ hadron masses influence the energy balance

Nuclear models implemented in Monte Carlo event generators play crucial role.

Why is QE important?

Neutrinos challenge ab initio nuclear theory

• Controllable approximations within ab initial nuclear theory

Nuclear response

Electrons for neutrinos

$$\frac{d\sigma}{d\omega dq}\Big|_{\nu/\bar{\nu}} = \sigma_0 \Big(v_{CC} R_{CC} + v_{CL} R_{CL} + v_{LL} R_{LL} + v_T R_T \pm v_{T'} R_{T'} \Big)$$

$$\frac{d\sigma}{d\omega dq}\Big|_e = \sigma_M \Big(v_L R_L + v_T R_T \Big)$$

 \checkmark much more precise data

✓ we can get access to R_L and R_T separately (Rosenbluth separation)

 \checkmark experimental programs of electron scattering in JLab, MAMI, MESA

Quasielastic response

- Momentum transfer
 ~hundreds MeV
- Upper limit for ab initio methods
- Important mechanism for T2HK, DUNE
- Role of final state interactions
- Role of 1-body and 2body currents

First step: analyse the longitudinal response

$$\frac{d\sigma}{d\omega dq}\Big|_{e} = \sigma_{M}\left(\upsilon_{L}R_{L} + \upsilon_{T}R_{T}\right)$$

charge operator $\hat{\rho}(q) = \sum_{j=1}^{n} e^{iqz'_{j}}$

Formalism

✓ Coupled cluster (CCSD)

coherent elastic neutrino scattering on 4ºAr

C. Payne at al. *Phys.Rev.C* 100 (2019) 6, 061304

✓ Electroweak currents

Multipole decomposition for 1and 2-body EW currents

B. Acharya, S. Bacca *Phys.Rev.C* 101 (2020) 1, 015505

\checkmark Chiral potentials: NNLO_{sat} and $\Delta NNLO_{GO}$

A. Ekström et al. *Phys.Rev.C* 91 (2015) 5, 051301 W. Jiang at al. *Phys.Rev.C* 102 (2020) 5, 054301

$$m_0(q) = \int d\omega R_L(\omega, q) = \sum_{f \neq 0} |\langle \Psi_f | \hat{\rho} | \Psi \rangle|^2 = \langle \Psi | \hat{\rho}^{\dagger} \hat{\rho} | \Psi \rangle - |F_{el}(q)|^2$$

easier to calculate since we do not need $|\Psi_f\rangle$

$$m_{0}(q) = \int d\omega R_{L}(\omega, q) = \sum_{f \neq 0} |\langle \Psi_{f} | \hat{\rho} | \Psi \rangle|^{2} = \langle \Psi | \hat{\rho}^{\dagger} | \hat{\rho} | \Psi \rangle - |F_{el}(q)|^{2}$$
easier to calculate since we do
not need $|\Psi_{f}\rangle$
Center of mass problem
$$|\Psi\rangle \text{ has 3A coordinates} \rightarrow 3(A-1) \text{ coordinates} + \vec{R} = \frac{1}{A} \sum_{i}^{A} \vec{r}_{i}$$
Degrees of freedom: nucleons
With translationally non-invariant operators
we may excite spurious states

Project out spurious states: $\hat{\rho} | \Psi \rangle = | \Psi_{phys} \rangle + | \Psi_{spur} \rangle$

It has been shown that to good approximation the ground state factorizes:

$$|\Psi\rangle = |\Psi_I\rangle |\Psi_{CoM}\rangle$$

center of mass wave function is a Gaussian

G. Hagen, T. Papenbrock, D. Dean *Phys.Rev.Lett.* 103 (2009) 062503

We follow a similar ansatz for the excited states:

 $\hat{\rho} | \Psi \rangle = | \Psi_{I}^{exc} \rangle | \Psi_{CoM} \rangle + | \Psi_{I} \rangle | \Psi_{CoM}^{exc} \rangle$

Project out spurious states: $\hat{\rho} | \Psi \rangle = | \Psi_{phys} \rangle + | \Psi_{spur} \rangle$

It has been shown that to good approximation the ground state factorizes:

$$|\Psi\rangle = |\Psi_I\rangle |\Psi_{CoM}\rangle$$

center of mass wave function is a Gaussian

G. Hagen, T. Papenbrock, D. Dean *Phys.Rev.Lett.* 103 (2009) 062503

spurious

We follow a similar ansatz for the excited states:

$$\hat{\rho} |\Psi\rangle = |\Psi_{I}^{exc}\rangle |\Psi_{CoM}\rangle + |\Psi_{I}\rangle \stackrel{exc}{\sum}_{oM}\rangle$$

J.E.S. B. Acharya, S.Bacca, G. Hagen *Phys.Rev.C* 102 (2020) 064312

CoM spurious states dominate for light nuclei

$$m_0(q) = \int d\omega R_L(\omega, q) = \sum_{f \neq 0} |\langle \Psi_f | \hat{\rho} | \Psi \rangle|^2 = \langle \Psi | \hat{\rho}^{\dagger} \hat{\rho} | \Psi \rangle - |F_{el}(q)|^2$$

JES, B. Acharya, S.Bacca, G. Hagen Phys.Rev.C 102 (2020) 064312

PRL 127 (2021) 7, 072501 JES, B. Acharya, S. Bacca, G. Hagen

Nuclear responses

Longitudinal response

Lorentz Integral Transform + Coupled Cluster

Longitudinal response ⁴⁰Ca

Lorentz Integral Transform + Coupled Cluster

JES, B. Acharya, S. Bacca, G. Hagen; PRL 127 (2021) 7, 072501

- \checkmark CC singles & doubles
- ✓ varying underlying harmonic oscillator frequency
- ✓ two different chiral Hamiltonians
- ✓ inversion procedure

First ab-initio results for many-body system of 40 nucleons

Chiral expansion for 40Ca (Longitudinal response)

B. Acharya, S. Bacca, JES et al. Front. Phys. 1066035(2022)

- \checkmark Two orders of chiral expansion
- ✓ Convergence better for lower q (as expected)
- \checkmark Higher order brings results closer to the data

Transverse response

$$\mathrm{TSR}(q) = \frac{2m^2}{Z\mu_p^2 + N\mu_n^2} \frac{1}{q^2} \left(\langle \Psi | \hat{j}^{\dagger} \hat{j} \Psi \rangle - | \langle \Psi | \hat{j} | \Psi \rangle |^2 \right)$$

 $\text{TSR}(q \rightarrow 0) \propto \text{kinetic energy}$

 $\text{TSR}(q \to \infty) = 1$

$$\mathbf{j}(\mathbf{q}) = \sum_{i} \frac{1}{2m} \epsilon_{i} \{\mathbf{p}_{i}, e^{i\mathbf{q}\mathbf{r}_{i}}\} - \frac{i}{2m} \mu_{i} \mathbf{q} \times \sigma_{i} e^{i\mathbf{q}\mathbf{r}_{i}}$$

Transverse response

- This allows to predict electronnucleus cross-section
- Currently only 1-body current

2-body currents important for 4He
→ more correlations needed?
→ 2-b currents strength depends on nucleus?

ChEK method

Chebyshev Expansion of integral Kernel

$$\Phi = \int f(\omega) R(\omega) d\omega$$

- Sum-rules
- Flux folding
- Histogram

•••

$$R(\omega) = \int f(\omega') \int K(\omega', \omega) R(\omega) d\omega d\omega'$$

expansion in Chebyshev polynomials

$$K(\omega,\sigma) = \sum_{k} c_{k}(\sigma) T_{k}(\omega)$$

estimated error

 $|\Phi - \tilde{\Phi}| < \epsilon$

A. Roggero Phys.Rev.A 102 (2020) 2, 022409 JES, A. Roggero Phys.Rev.E 105 (2022) 055310

ChEK method

Chebyshev Expansion of integral Kernel

- ➡ No assumption about the shape of the response
- ➡ Rigorous error estimation
- Convenient when the response has a complicated structure

 $\hat{H} | \psi_A \rangle = E | \psi_A \rangle$

Many-body problem

27

$$\hat{H} | \psi_A \rangle = E | \psi_A \rangle$$

Many-body problem

$$\hat{H} | \psi_A \rangle = E | \psi_A \rangle$$

Many-body problem

Electroweak responses

Spectral functions

Coupled Cluster + ChEK method

growing **q** momentum transfer \rightarrow final state interactions play minor role

28

JES, S. Bacca, G. Hagen, T. Papenbrock Phys.Rev.C 106 (2022) 3, 034310

Final state interactions

JES et al, in preparation (2022)

How to account for the FSI? Optical potential for the outgoing nucleon

Spectral function for neutrinos

- Comparison with T2K long baseline v oscillation experiment
- CC 0π events
- Spectral function implemented into NuWro Monte Carlo generator

$$\nu_{\mu} + {}^{16}\mathrm{O} \to \mu^- + X$$

Outlook

- LIT-CC benchmark for electron scattering \rightarrow ready for neutrino
- Role of 2-body currents for medium-mass nuclei
- Explore possible applications of the ChEK method
- Spectral functions (within Impulse Approximation):
 - Relativistic regime
 - Semi-inclusive processes
 - Further steps: 2-body spectral functions, accounting for FSI

Thank you for attention

BACKUP

Details on inversion procedure

• Basis functions

$$R_L(\omega) = \sum_{i=1}^N c_i \omega^{n_0} e^{-\frac{\omega}{\beta_i}}$$

- Stability of the inversion procedure:
 - Vary the parameters n₀, β_i and number of basis functions N (6-9)
 - Use LITs of various width Γ (5, 10, 20 MeV)

Lorentz integral transform

$$L(\sigma) = \int \frac{R(\omega)}{(\omega - \sigma)^2 + \Gamma^2} d\omega = \int \frac{R(\omega)}{(\omega + \tilde{\sigma}^*)(\omega + \tilde{\sigma})} d\omega$$

$$L(\sigma) = \int d\omega \sum_{f} \langle \Psi_{0} | \rho^{\dagger} \frac{1}{\omega + \tilde{\sigma}^{*}} | \Psi_{f} \rangle \langle \Psi_{f} | \frac{1}{\omega + \tilde{\sigma}} \rho | \Psi_{0} \rangle \delta(\omega + E_{0} - E_{f})$$

$$L(\sigma) = \sum_{f} \langle \Psi_{0} | \rho^{\dagger} \frac{1}{E_{f} - E_{0} + \tilde{\sigma}^{*}} | \Psi_{f} \rangle \langle \Psi_{f} | \frac{1}{E_{f} - E_{0} + \tilde{\sigma}} \rho | \Psi_{0} \rangle$$

$$L(\sigma) = \sum_{f} \langle \Psi_{0} | \rho^{\dagger} \frac{1}{H - E_{0} + \tilde{\sigma}^{*}} | \Psi_{f} \rangle \langle \Psi_{f} | \frac{1}{H - E_{0} + \tilde{\sigma}} \rho | \Psi_{0} \rangle$$
$$\left\langle \widetilde{\Psi} \right| \qquad \qquad \left| \widetilde{\Psi} \right\rangle$$

We need to solve

$$(H - E_0 + \tilde{\sigma}) \,|\, \tilde{\Psi} \rangle = \rho \,|\, \Psi \rangle \qquad \text{Schroding}$$

Schrodinger-like equation

Lorentz Integral Transform (LIT)

$$R_{\mu\nu}(\omega, q) = \int_{\mathcal{F}} \langle \Psi | J_{\mu}^{\dagger} | \Psi_{f} \rangle \langle \Psi_{f} | J_{\nu} | \Psi \rangle \delta(E_{0} + \omega - E_{f})$$

Continuum spectrum
Integral
transform

$$S_{\mu\nu}(\sigma, q) = \int d\omega K(\omega, \sigma) R_{\mu\nu}(\omega, q) = \langle \Psi | J_{\mu}^{\dagger} K(\mathcal{H} - E_{0}, \sigma) J_{\nu} | \Psi$$

Lorentzian kernel: $K_{\Gamma}(\omega, \sigma) = \frac{1}{\pi} \frac{\Gamma}{\Gamma^2 + (\omega - \sigma)^2}$

 $S_{\mu\nu}$ has to be inverted to get access to $R_{\mu\nu}$

Lorentz Integral Transform

Longitudinal response ⁴⁰Ca

ChEK method

$$S_{\mu\nu}(\sigma,q) = \int d\omega K(\omega,\sigma) R_{\mu\nu}(\omega,q) = \langle \Psi | J_{\mu}^{\dagger} K(\mathcal{H},\sigma) J_{\nu} | \Psi \rangle$$

• Expansion in Chebyshev polynomials

$$K(\mathcal{H},\sigma) = \sum_{k=0}^{N} c_k(\sigma) T_k(\mathcal{H})$$

• Recursive relations of Chebyshev polynomials

$$T_0(x) = 1; \quad T_{-1}(x) = T_1(x) = x$$
$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

• Gives error estimate of energy integrals of local density of states $R(\omega)$

$$Q(R,f) = \int d\omega R(\omega) f(\omega)$$

Optical potential

$$W_{\text{FSI}}^{\mu\nu}(q) = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} dE \frac{m}{E_p} \frac{m}{E_{p+q}}$$
$$\begin{bmatrix} S^n(\mathbf{p}, E) w_n^{\mu\nu}(p, q) + S^p(\mathbf{p}, E) w_p^{\mu\nu}(p, q) \end{bmatrix}$$
$$\times \theta(\mathbf{p}' - p_F) \delta(\omega + E - E_{p+q} - E_f^{kin} - \text{ReU})$$

$$w^{\mu\nu}(p,q) = \langle p+q|j^{\mu}|p\rangle^{\dagger} \langle p+q|j^{\nu}|p\rangle$$

Spectral function

Green's function:

$$G_h(\alpha,\beta,E) = \langle 0|a_{\beta}^{\dagger} \frac{1}{E - (E_0 - \hat{H}) - i\epsilon} a_{\alpha}|0\rangle$$

$$\operatorname{Im} G_{h}(\alpha,\beta,E) = -\pi \oint_{\Psi_{A-1}} \langle 0|a_{\beta}^{\dagger}|\Psi_{A-1}\rangle \langle \Psi_{A-1}|a_{\alpha}|0\rangle \delta (E - (E_{0} - E_{\Psi}))$$

Spectral function:

$$S(\mathbf{p}, E) = -\frac{1}{\pi} \sum_{\alpha, \beta} \langle \mathbf{p} | \alpha \rangle \langle \mathbf{p} | \beta \rangle^{\dagger} \mathrm{Im} G_{h}(\alpha, \beta, E)$$

Analysis of spurious states

Analysis of spurious states

$$\begin{array}{c} \left\langle \Psi \mid \hat{\rho}^{\dagger} \right\rangle & \sum_{f_{I}} \mid f_{I} \rangle \mid \Psi_{CoM}^{0} \rangle \langle \Psi_{CoM}^{0} \mid \langle f_{I} \mid + \sum_{f_{CoM}} \mid \Psi_{I}^{0} \rangle \mid f_{CoM} \rangle \langle f_{CoM} \mid \langle \Psi_{I}^{0} \mid \hat{\rho} \mid \Psi \rangle \\ & \text{excitation of intrinsic wave} \\ & \text{function (physical} \\ & \text{spectrum)} \end{array}$$

With our ansatz about $|\Psi_{CoM}\rangle$ (Gaussian) we get analytical function for spurious states We get numerically spurious states (nonphysical excitations with energy close to 0)

Analysis of spurious states

Nuclear Hamiltonian and currents

*Nucleon-structure diagrams and relativistic corrections not shown

Author: Bijaya Acharya

Coupled cluster method

Reference state (Hartree-Fock): $|\Psi\rangle$

Include correlations through e^T operator

similarity transformed Hamiltonian (non-Hermitian)

$$e^{-T}\mathscr{H}e^{T}|\Psi\rangle \equiv \bar{\mathscr{H}}|\Psi\rangle = E|\Psi\rangle$$

Expansion:
$$T = \sum t_a^i a_a^{\dagger} a_i + \sum t_{ab}^{ij} a_a^{\dagger} a_b^{\dagger} a_i a_j + \dots$$

singles doubles

←coefficients obtained through coupled cluster equations

Coupled cluster method

- ✓ Controlled approximation through truncation in *T*
- ✓ Polynomial scaling with A (predictions for ¹⁰⁰Sn, ²⁰⁸Pb)
- ✓ Size extensive
- ✓ Works most efficiently for doubly magic nuclei

Electroweak currents

known to give significant contribution for neutrinonucleus scattering

Current decomposition into multipoles needed for various *ab initio* methods: CC, No Core Shell Model, In-Medium Similarity Renormalization Group

Multipole decomposition for 1and 2-body EW currents

> B. Acharya, S. Bacca *Phys.Rev.C* 101 (2020) 1, 015505