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NCSMC applications to capture reactions and β-delayed proton emission

§ NCSMC extended to describe exotic 11Be 𝛽p emission 

§ Radiative capture of deuterons on 4He – reaction responsible for the 6Li in BBN

§ Radiative capture of protons on 7Be - solar pp chain reaction, solar 8B neutrinos

§ Evaluation with reduced theoretical uncertainties

§ NCSMC calculations of 8Be structure and 7Li+p scattering and capture (in progress)

§ X17 anomaly

Ab initio prediction for the radiative capture of protons on 7Be
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The �-decay of 8B, formed by the radiative capture of a proton on 7Be, is the source of the
majority of solar neutrinos measured on earth. Due to the the strong Coulomb repulsion of the
reactants, there has not yet been an experiment able to measure this 7Be(p, �)8B reaction rate at
astrophysically relevant energies. Therefore it is necessary to use theory to extrapolate measurements
to lower energies, resulting in a low-energy astrophysical S-factor uncertainty dominated by theory
components. We have performed a set of first-principle calculations of the 7Be(p, �)8B reaction in an
e↵ort to provide an independent prediction of the low-energy S-factor with quantified uncertainties.
We find that nuclear interactions derived from chiral e↵ective field theory quantitatively reproduce
the 8B spectrum, as well as the 7Be(p, �)8B radiative capture cross section. By truncating the
chiral expansion at various orders, we extract an estimate for the uncertainty stemming from the
missing physics in the nuclear interaction. Further analysis demonstrates underlying features in
the predicted S-factor, and allows us to combine theoretical calculations and experimental data to
produce an evaluated prediction. We expect the calculations and uncertainty quantification process
described here to set the standard for future first-principle calculations of light-ion astrophysical
reactions.

Astrophysical reactions powering low-mass stars such
as our sun have been at the center of theoretical and
experimental attention ever since nuclear reactions were
proposed as a mechanism for nucleosynthesis and energy
generation in stellar interiors [1, 2]. As a result, solar
fusion reactions are amongst the most precisely mea-
sured and thoroughly evaluated nuclear reactions; see
for example Refs. [3, 4] and references therein. Occur-
ring at the tail end of the proton-proton chain, the ra-
diative capture of a proton by a 7Be nucleus produc-
ing an 8B nucleus (or 7Be(p, �)8B reaction) is key in
determining the solar neutrino flux measured in terres-
trial observatories [5, 6]. Given its importance, it has
been measured multiple times over the years with vari-
ous techniques [7–15]. However, due to Coulomb repul-
sion between the proton and the 7Be nucleus, a direct
measurement at the astrophysically relevant energies is
still missing, and theory calculations [16, 17] are used
to extrapolate. As a result, the uncertainty in the cur-
rently recommended [4] value of the zero-energy S-factor,
S17(0) = 20.8± 0.7(expt)± 1.4(theory) eV·barn, is dom-
inated by theoretical contributions.

First-principle (or ab initio) theoretical approaches
provide an independent prediction of nuclear reaction
observables, with the interaction between nucleons being
their sole input. Consequently, the bulk of the theoretical
uncertainty of ab initio calculations will come from the
nuclear interaction employed. In this Letter we present
first-principle calculations of the 7Be+p system, includ-
ing the 7Be(p, �)8B reaction, using nucleon-nucleon (NN)
and three-nucleon (3N) interactions derived from chiral
e↵ective field theory (�EFT), with the goal of extracting
universal features of the system, and removing (in part)

the uncertainty that stems from the choice of a specific
interaction parametrization.
The no-core shell model with continuum (NCSMC),

first introduced in [18, 19], is a first-principle technique
that has been successful in delivering predictive calcula-
tions of nuclear properties of light nuclei by combining
bound and dynamic descriptions of an A-nucleon system
(see Ref. [20] for an in depth review of results). In the
NCSMC, the A-body Schrödinger equation for a total
angular momentum J and parity ⇡ is solved for both
bound and scattering boundary conditions by means of
a variational ansatz that takes the form

| J⇡

i =
X

�

c�|�AJ⇡i+
X

⌫

Z
r2dr

�J⇡

⌫ (r)

r
Â⌫ |�J⇡

⌫r i. (1)

Here, the states |�AJ⇡i are obtained from the no-core
shell model (NCSM) [21], and represent the �-th bound-
like solution to theA-body Schrödinger equation. The so-
called reaction channel basis states A⌫ |�J⇡

⌫r i correspond
to totally antisymmetric binary-cluster states where the
interacting nuclei (in this case 7Be and p) are a distance
r apart. The collective index ⌫ corresponds to all asymp-
totic quantum numbers (internal states, spins, and pari-
ties of the fragments, relative angular momentum `, and
spin s). The unknown discrete parameters c� and am-
plitudes �J⇡

⌫ (r) are then determined via the microscopic
R-matrix method [22].
In the NCSMC, the nucleon is treated as the funda-

mental degree of freedom, with all A nucleons considered
”active”. Therefore, the same NN+3N interaction deter-
mines both the intrinsic wave functions obtained in the
NCSM, as well as the reaction dynamics between the two
fragments. The use of �EFT-derived interactions is thus
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NCSM(C) applications to tests of fundamental symmetries

§ Ab initio calculations of nuclear electric dipole moments (EDMs) and anapole moments 
in light nuclei

§ Ab initio calculations of 6He β-decay electron spectrum including nuclear structure and recoil 
corrections

§ Ongoing calculations of nuclear structure corrections 𝛿C and 𝛿NS for the extraction of the Vud matrix 
element from the superallowed Fermi transitions (current focus on 10C→10B)

PHYSICAL REVIEW A 102, 052828 (2020)
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Measurements of nuclear spin-dependent parity-violating (NSD-PV) effects provide an excellent opportunity
to test nuclear models and to search for physics beyond the Standard Model. Molecules possess closely
spaced states with opposite parity which may be easily tuned to degeneracy to greatly enhance the observed
parity-violating effects. A high-sensitivity measurement of NSD-PV effects using light triatomic molecules is in
preparation [E. B. Norrgard et al., Commun. Phys. 2, 77 (2019)]. Importantly, by comparing these measurements
in light nuclei with prior and ongoing measurements in heavier systems, the contribution to NSD-PV from
Z0-boson exchange between the electrons and the nuclei may be separated from the contribution of the nuclear
anapole moment. Furthermore, light triatomic molecules offer the possibility to search for new particles, such
as the postulated Z ′ boson. In this work, we detail a sensitive measurement scheme and present high-accuracy
molecular and nuclear calculations needed for interpretation of NSD-PV experiments on triatomic molecules
composed of light elements, Be, Mg, N, and C. The ab initio nuclear structure calculations, performed within
the no-core shell model provide a reliable prediction of the magnitude of different contributions to the NSD-PV
effects in the four nuclei. These results differ significantly from the predictions of the standard single-particle
model and highlight the importance of including many-body effects in such calculations. In order to extract
the NSD-PV contributions from measurements, a parity-violating interaction parameter WPV, which depends
on the molecular structure, needs to be known with a high accuracy. We have calculated these parameters
for the triatomic molecules of interest using the relativistic coupled-cluster approach. In order to facilitate
the interpretation of future experiments we provide uncertainties on the calculated parameters. A scheme for
measurement using laser-cooled polyatomic molecules in a molecular fountain is presented, along with an
estimate of the expected sensitivity of such an experiment. This experimental scheme, combined with the
presented state-of-the-art calculations, opens exciting prospects for a measurement of the anapole moment and
the PV effects due to the electron-nucleon interactions with unprecedented accuracy and for a new path towards
detection of signatures of physics beyond the Standard Model.

DOI: 10.1103/PhysRevA.102.052828

I. INTRODUCTION

Measurements and calculations of parity-violating effects
in atoms and molecules are important both for the verifica-
tion of the Standard Model (SM) and for the investigation
of phenomena that cannot be explained within this model,
such as the nature of dark matter and matter-antimatter asym-
metry. One of the candidates for the dark-matter particles is
a low-mass Z ′ boson [1–3]. The best limits on the parity-
violating interaction of this Z ′ boson with electrons, protons,
and neutrons were obtained from the data on atomic par-
ity violation [4]; in particular, information on its interaction
with nucleons was extracted from the measurements of the

*a.borschevsky@rug.nl

nuclear anapole moment of the 133Cs nucleus in Ref. [5].
The possibility to study the nuclear anapole moments in
additional systems, and thus to set further constraints on
this interaction, provides a major motivation for the current
work.

The notion of the anapole moment was introduced by
Zel’dovich in 1958 [6]. The nuclear anapole moment was
originally considered in Ref. [7] and calculated in Ref. [8]
for a number of heavy atoms. This work also proposed pos-
sible schemes to observe nuclear anapole-moment effects in
atomic and molecular experiments. Studies of the nuclear
anapole-moment effects can provide information about parity-
violating nuclear forces [7,8] and may be considered as a
test of nuclear theory and low-energy quantum chromody-
namics. The nuclear anapole moment rapidly increases with
the nucleon number A (as A2/3) and dominates the nuclear

2469-9926/2020/102(5)/052828(14) 052828-1 ©2020 American Physical Society

Calculations performed within the no-core shell model 
(NCSM); 𝛿C within NCSM with continuum (NCSMC)
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NCSMC applications to uncertainty quantifications in n-4He scattering

§ Study how the 3N LECs contribute to the overall uncertainty budget of many-body calculations 
of neutron - 4He elastic scattering

§ Constructed a Gaussian process model that acts as a statistical emulator for the theory 
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Chiral Effective 
Field Theory

(parameters fitted 
to NN data)

First principles or ab initio nuclear theory

Quantum Chromodynamics
(QCD)

Many-nucleon 
Schroedinger

equation

HΨ(A) = EΨ(A)



7Ab Initio Calculations of Structure, Scattering, Reactions 
Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

A− a( )
a( )

r

S. Baroni, P. Navratil, and S. Quaglioni, 
PRL 110, 022505 (2013); PRC 87, 034326 (2013).

Ψ (A) = cλ
λ

∑ ,λ + dr γ v (
r )∫ Âν

ν

∑ ,ν(A)
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Static solutions for aggregate system,
describe all nucleons close together
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N = 1

Static solutions for aggregate system,
describe all nucleons close together

Continuous microscopic cluster states,
describe long-range projectile-target
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No-Core Shell Model with Continuum (NCSMC)

A− a( )
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S. Baroni, P. Navratil, and S. Quaglioni, 
PRL 110, 022505 (2013); PRC 87, 034326 (2013).
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N = 0
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N = 1

Static solutions for aggregate system,
describe all nucleons close together

Continuous microscopic cluster states,
describe long-range projectile-target

Unknowns
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Coupled NCSMC equations
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… to be simultaneously determined  
by solving the coupled NCSMC equations 
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Abstract
The description of nuclei starting from the constituent nucleons and the realistic interactions
among them has been a long-standing goal in nuclear physics. In addition to the complex nature
of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces
the quantum-mechanical many-nucleon problem governed by an interplay between bound and
continuum states. In recent years, significant progress has been made in ab initio nuclear
structure and reaction calculations based on input from QCD-employing Hamiltonians
constructed within chiral effective field theory. After a brief overview of the field, we focus on
ab initio many-body approaches—built upon the no-core shell model—that are capable of
simultaneously describing both bound and scattering nuclear states, and present results for
resonances in light nuclei, reactions important for astrophysics and fusion research. In particular,
we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon
scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of
9Be. Further, we discuss applications to the 7Be gp, B8( ) radiative capture. Finally, we highlight
our efforts to describe transfer reactions including the 3H d, n 4( ) He fusion.

Keywords: ab initio methods, many-body nuclear reaction theory, nuclear reactions involving
few-nucleon systems, three-nucleon forces, radiative capture

(Some figures may appear in colour only in the online journal)

1. Introduction

Understanding the structure and the dynamics of nuclei as
many-body systems of protons and neutrons interacting
through the strong (as well as electromagnetic and weak)
forces is one of the central goals of nuclear physics. One of
the major reasons why this goal has yet to be accomplished
lies in the complex nature of the strong nuclear force, emer-
ging form the underlying theory of quantum chromodynamics
(QCD). At the low energies relevant to the structure and
dynamics of nuclei, QCD is non-perturbative and very diffi-
cult to solve. The relevant degrees of freedom for nuclei are

nucleons, i.e., protons and neutrons, that are not fundamental
particles but rather complex objects made of quarks, anti-
quarks and gluons. Consequently, the strong interactions
among nucleons is only an ‘effective’ interaction emerging
non-perturbatively from QCD. Our knowledge of the
nucleon–nucleon (NN) interactions is limited at present to
models. The most advanced and most fundamental of these
models rely on a low-energy effective field theory (EFT) of
the QCD, chiral EFT [1]. This theory is built on the sym-
metries of QCD, most notably the approximate chiral sym-
metry. However, it is not renormalizable and has an infinite
number of terms. Chiral EFT involves unknown parameters,

| Royal Swedish Academy of Sciences Physica Scripta

Phys. Scr. 91 (2016) 053002 (38pp) doi:10.1088/0031-8949/91/5/053002

0031-8949/16/053002+38$33.00 © 2016 The Royal Swedish Academy of Sciences Printed in the UK1
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§ Quite reasonable description of binding energies across the nuclear charts becomes feasible
§ The Hamiltonian fully determined in A=2 and A=3,4 systems

§ Nucleon–nucleon scattering, deuteron properties, 3H and 4He binding energy, 3H half life
§ Light nuclei – NCSM
§ Medium mass nuclei – Self-Consistent Green’s Function method 
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FIG. 21. Ratio of expectation values of three- (V3N) and
two-body (V2N) operators in the NNLOsat and NN+3N(lnl)
Hamiltonians. For the latter, the two-body part of the
centre-of-mass kinetic energy has been subtracted. For the
NN+3N(lnl) interaction, V3N contains original (i.e. SRG-
unevolved) three-body forces while induced three-body op-
erators have been included in V2N. Calculations are per-
formed at the ADC(2) level. Results are shown for N =
Z = {2, 8, 16, 20, 24, 40} nuclei (full symbols), plus 48S and
78Ni (empty symbols).

applied only to specific cases [18, 54], but never tested
in a systematic way. In the present work its main
ground-state properties as well as some selected excita-
tion spectra have been studied extensively in light and
medium-mass nuclei. Results in light systems are very
encouraging, with NCSM calculations in overall good
agreement with experiment even for spectra that are
known to be particularly sensitive to nuclear forces. To-
tal energies are well reproduced across the whole light
sector of the nuclear chart. In medium-mass nuclei,
present calculations focused on three representative iso-
topic chains. Total binding energies are found to be in
remarkable agreement with experimental values all the
way up to nickel isotopes once ADC(3) correlations are
included, thus correcting for the overbinding generated
with NN+3N(400). ADC(2) calculations of di↵erential
quantities, where ADC(3) contributions essentially can-
cel out, are also very satisfactory and are able to cap-
ture main trends and magic gaps in two-neutron sepa-
ration energies along all three chains. As evidenced in
Fig. 20, although largely improving on NN+3N(400),
rms charge radii obtained with the NN+3N(lnl) inter-
action still underestimate experiment and do not reach
the quality of NNLOsat. On the other hand this interac-
tion yields an excellent spectroscopy, also where NNLOsat

strives to give even a qualitatively correct account of
experimental data. One-nucleon addition and removal
spectra in neutron-rich calcium are well reproduced. Im-
pressively, the evolution of the energy di↵erences between
the ground and first excited states along potassium iso-
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FIG. 22. Binding energy per particle for a set of doubly
closed-shell nuclei computed with three di↵erent NN + 3N
interactions and compared to available experimental data.
NNLOsat andNN+3N(lnl) values come from the present work
and refer to ADC(3) calculations. 1.8/2.0 (EM) results were
obtained via full-space IM-SRG(2) calculations and originally
published in Ref. [30].

topes follows closely the experimental measurements.
Further insight can be gained by gauging the impor-

tance of 3N operators in the two interactions. In Fig. 21
the ratio of 3N over 2N contributions to the total en-
ergy is displayed for a selection of nuclei as a function of
mass number A for NNLOsat and NN+3N(lnl). In the
former, 3N operators are much more relevant, reaching
almost 20% of the 2N contribution in heavier systems.
On the contrary, the ratio stays rather low, around 5%,
for NN+3N(lnl). This has first of all practical conse-
quences, as in the majority of many-body calculations
the treatment of 3N operators is usually not exact, fol-
lowing either a normal-ordered two-body approximation
(see e.g. [27]) or some generalisation of it [70]. Hence a
strong 3N component is in general not desirable. On top
of that, one might worry about the hierarchy of many-
body forces from the standpoint of EFT, and possible
need to include subleading 3N or 4N operators that could
have a sizeable e↵ect.
Finally, let us compare NN+3N(lnl) and NNLOsat to

an interaction that has been extensively employed in nu-
clear structure studies in the last few years. Usually la-
belled as 1.8/2.0 (EM) and first introduced in Ref. [32], it
has proven to yield an accurate reproduction of ground-
state energies (as well as low-energy excitation spectra)
over a wide range of nuclei [30, 54, 112, 113]. Further-
more, it leads to a satisfactory description of infinite nu-
clear matter properties [11, 32, 114]. In Fig. 22 bind-
ing energies per particle obtained within in-medium simi-
larity renormalisation group (IM-SRG) calculations with
the 1.8/2.0 (EM) interaction [30] are compared, for a
set of closed-shell systems, to the ones computed at the
ADC(3) level withNN+3N(lnl) and NNLOsat. The three
sets of calculations achieve an overall excellent reproduc-
tion of experimental data. While NNLOsat results supe-
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FIG. 3. The same as in Fig. 1 for 11B and 12,13C. Basis sizes Nmax=2�8 are displayed. The importance-truncated NCSM [52, 53]
was used in the Nmax=8 space for carbon isotopes.

p-shell nuclei were performed. In the NCSM, nuclei are
considered to be systems of A nonrelativistic point-like
nucleons interacting via realistic two- and three-body in-
teractions. Each nucleon is an active degree of freedom
and the translational invariance of observables, the an-
gular momentum, and the parity of the nucleus are con-
served. The many-body wave function is expanded over
a basis of antisymmetric A-nucleon harmonic oscillator
(HO) states. The basis contains up to Nmax HO exci-
tations above the lowest possible Pauli configuration, so
that the the motion of the center of mass is fully de-
coupled and its kinetic energy can be subtracted exactly.
The basis is characterised by an additional parameter ⌦,
the frequency of the HO well, and may depend on either
Jacobi relative [56] or single-particle coordinates [57].
The convergence of the HO expansion can be greatly ac-
celerated by applying an SRG transformation on the 2N
and 3N interactions [58–62]. Except for A=3, 4 nuclei,
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FIG. 4. Ground-state energies of s-shell and selected p-
shell nuclei calculated with theNN+3N(lnl) Hamiltonian (red
lines) compared to experiment (blue lines). The error bars
indicate uncertainties of the NCSM extrapolation. SRG evo-
lution with �=2 fm�1 and HO frequency of ~⌦=20 MeV were
used.

here and in the following of the paper an SRG evolution
is applied to the NN+3N(400) and NN+3N(lnl) inter-
actions down to a scale of �=2 fm�1. On the contrary,
calculations with NNLOsat are performed with the bare
Hamiltonian.

In Figs. 1, 2 and 3 the excitation energy spectra of se-
lected Li, Be, B, and C isotopes are displayed. A correct
ordering of low-lying levels is found for all the consid-
ered lithium and beryllium isotopes, namely 6,7,9Li and
8,9Be. The 2+0 and 1+2 0 states in 6Li as well as some
of the excited states in 7Li and 8,9Be are broad reso-
nances. Here a more realistic description of 6Li and 9Be
would require a better treatment of continuum e↵ects,
see Refs. [63] and [64], respectively, in this regard. Let
us note that all excited states of 6Li are unbound with
respect to the emission of an ↵ particle and that 7Li has
only one excited state below the ↵-separation threshold.
Similarly, 8Be is never bound and even its ground state
in unstable against decay into two ↵. The lowest states
in 10B are known to be very sensitive to the details of
nuclear forces, and the 3N interaction in particular [65].
Here a good description is achieved by NN+3N(lnl), with
only the 1+2 0 state resulting incorrectly placed. The cor-
rect level ordering is also found in 11B, with the spectrum
being overall too compressed as compared to the experi-
mental one. Finally, worth-noting is the correct ordering
of T=1 states in 12C, also known to be sensitive to the 3N
interaction. On the other hand, the alpha-cluster dom-
inated 0+0 Hoyle state in 12C cannot be reproduced in
the limited NCSM basis employed here [66]. In general,
NN+3N(lnl) yields spectra that are in good agreement
with experiment. Some underestimation of level-splitting
in 9Li, 11B, and 13C emerges, and could be associated
with a weaker spin-orbit interaction strength. This is
comparable to what has been found with earlier param-
eterisations of chiral 3N forces (see, e.g. [65]).

Ground-state energies of 3H, 3,4He, and selected p-shell
nuclei from 6He to 16O are shown in Fig. 4. The calcu-
lated values (red lines) obtained with theNN+3N(lnl) in-
teraction are compared to experiment (blue lines). Theo-

1.8/2.0 (EM) results: J. Simonis, S. R. Stroberg, K. Hebeler, 
J. D. Holt, and A. Schwenk, Phys. Rev. C 96, 014303 (2017). 

NN N3LO (Entem-Machleidt 2003)
3N N2LO w local/non-local regulator

PHYSICAL REVIEW C 101, 014318 (2020)

Novel chiral Hamiltonian and observables in light and medium-mass nuclei
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Background: Recent advances in nuclear structure theory have led to the availability of several complementary
ab initio many-body techniques applicable to light and medium-mass nuclei as well as nuclear matter. After
successful benchmarks of different approaches, the focus is moving to the development of improved models
of nuclear Hamiltonians, currently representing the largest source of uncertainty in ab initio calculations of
nuclear systems. In particular, none of the existing two- plus three-body interactions is capable of satisfactorily
reproducing all the observables of interest in medium-mass nuclei.
Purpose: A novel parametrization of a Hamiltonian based on chiral effective field theory is introduced.
Specifically, three-nucleon operators at next-to-next-to-leading order are combined with an existing (and
successful) two-body interaction containing terms up to next-to-next-to-next-to-leading order. The resulting
potential is labeled NN+ 3N(lnl). The objective of the present work is to investigate the performance of this
new Hamiltonian across light and medium-mass nuclei.
Methods: Binding energies, nuclear radii, and excitation spectra are computed using state-of-the-art no-core
shell model and self-consistent Green’s function approaches. Calculations with NN+ 3N(lnl) are compared to
two other representative Hamiltonians currently in use, namely NNLOsat and the older NN+ 3N (400).
Results: Overall, the performance of the novel NN+ 3N(lnl) interaction is very encouraging. In light nuclei, total
energies are generally in good agreement with experimental data. Known spectra are also well reproduced with
a few notable exceptions. The good description of ground-state energies carries on to heavier nuclei, all the way
from oxygen to nickel isotopes. Except for those involving excitation processes across the N = 20 gap, which is
overestimated by the new interaction, spectra are of very good quality, in general superior to those obtained with
NNLOsat. Although largely improving on NN+ 3N (400) results, charge radii calculated with NN+ 3N(lnl) still
underestimate experimental values, as opposed to the ones computed with NNLOsat that successfully reproduce
available data on nickel.
Conclusions: The new two- plus three-nucleon Hamiltonian introduced in the present work represents a
promising alternative to existing nuclear interactions. In particular, it has the favorable features of (i) being
adjusted solely on A = 2, 3, 4 systems, thus complying with the ab initio strategy, (ii) yielding an excellent
reproduction of experimental energies all the way from light to medium-heavy nuclei, and (iii) behaving well
under similarity renormalization group transformations, with negligible four-nucleon forces being induced, thus
allowing large-scale calculations up to medium-heavy systems. The problem of the underestimation of nuclear
radii persists and will necessitate novel developments.

DOI: 10.1103/PhysRevC.101.014318

I. INTRODUCTION

In the past decade, advances in many-body approaches and
internucleon interactions have enabled significant progress in
ab initio calculations of nuclear systems. At present, sev-
eral complementary methods to solve the (time-independent)
many-body Schrödinger equation are available, tailored to

*vittorio.soma@cea.fr
†navratil@triumf.ca
‡francesco.raimondi@cea.fr
§c.barbieri@surrey.ac.uk
‖thomas.duguet@cea.fr

either light systems [1,2], medium-mass nuclei [3–8], or
extended nuclear matter [9–11]. New developments, which
promise to extend (most of) these methods to higher accuracy
and/or heavy nuclei, are being currently proposed [12,13].

Over the past few years, benchmark calculations have
allowed assessment of the systematic errors associated with
both the use of a necessarily finite-dimensional Hilbert space
and the truncation of the many-body expansion at play in each
of the formalisms of interest. In state-of-the-art implemen-
tations, these errors add up to at most 5%, much less than
the uncertainty attributable to the input nuclear Hamiltonian
[14–18]. As a result, ab initio calculations have also acquired
the role of diagnostic tools as the focus of the community

2469-9985/2020/101(1)/014318(19) 014318-1 ©2020 American Physical Society
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§ Quite reasonable description of binding energies across the nuclear charts becomes feasible
§ The Hamiltonian fully determined in A=2 and A=3,4 systems

§ Nucleon–nucleon scattering, deuteron properties, 3H and 4He binding energy, 3H half life
§ Light nuclei – NCSM
§ Heavy nuclei – HF-MBPT(3) 
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FIG. 3. The same as in Fig. 1 for 11B and 12,13C. Basis sizes Nmax=2�8 are displayed. The importance-truncated NCSM [52, 53]
was used in the Nmax=8 space for carbon isotopes.

p-shell nuclei were performed. In the NCSM, nuclei are
considered to be systems of A nonrelativistic point-like
nucleons interacting via realistic two- and three-body in-
teractions. Each nucleon is an active degree of freedom
and the translational invariance of observables, the an-
gular momentum, and the parity of the nucleus are con-
served. The many-body wave function is expanded over
a basis of antisymmetric A-nucleon harmonic oscillator
(HO) states. The basis contains up to Nmax HO exci-
tations above the lowest possible Pauli configuration, so
that the the motion of the center of mass is fully de-
coupled and its kinetic energy can be subtracted exactly.
The basis is characterised by an additional parameter ⌦,
the frequency of the HO well, and may depend on either
Jacobi relative [56] or single-particle coordinates [57].
The convergence of the HO expansion can be greatly ac-
celerated by applying an SRG transformation on the 2N
and 3N interactions [58–62]. Except for A=3, 4 nuclei,
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FIG. 4. Ground-state energies of s-shell and selected p-
shell nuclei calculated with theNN+3N(lnl) Hamiltonian (red
lines) compared to experiment (blue lines). The error bars
indicate uncertainties of the NCSM extrapolation. SRG evo-
lution with �=2 fm�1 and HO frequency of ~⌦=20 MeV were
used.

here and in the following of the paper an SRG evolution
is applied to the NN+3N(400) and NN+3N(lnl) inter-
actions down to a scale of �=2 fm�1. On the contrary,
calculations with NNLOsat are performed with the bare
Hamiltonian.

In Figs. 1, 2 and 3 the excitation energy spectra of se-
lected Li, Be, B, and C isotopes are displayed. A correct
ordering of low-lying levels is found for all the consid-
ered lithium and beryllium isotopes, namely 6,7,9Li and
8,9Be. The 2+0 and 1+2 0 states in 6Li as well as some
of the excited states in 7Li and 8,9Be are broad reso-
nances. Here a more realistic description of 6Li and 9Be
would require a better treatment of continuum e↵ects,
see Refs. [63] and [64], respectively, in this regard. Let
us note that all excited states of 6Li are unbound with
respect to the emission of an ↵ particle and that 7Li has
only one excited state below the ↵-separation threshold.
Similarly, 8Be is never bound and even its ground state
in unstable against decay into two ↵. The lowest states
in 10B are known to be very sensitive to the details of
nuclear forces, and the 3N interaction in particular [65].
Here a good description is achieved by NN+3N(lnl), with
only the 1+2 0 state resulting incorrectly placed. The cor-
rect level ordering is also found in 11B, with the spectrum
being overall too compressed as compared to the experi-
mental one. Finally, worth-noting is the correct ordering
of T=1 states in 12C, also known to be sensitive to the 3N
interaction. On the other hand, the alpha-cluster dom-
inated 0+0 Hoyle state in 12C cannot be reproduced in
the limited NCSM basis employed here [66]. In general,
NN+3N(lnl) yields spectra that are in good agreement
with experiment. Some underestimation of level-splitting
in 9Li, 11B, and 13C emerges, and could be associated
with a weaker spin-orbit interaction strength. This is
comparable to what has been found with earlier param-
eterisations of chiral 3N forces (see, e.g. [65]).

Ground-state energies of 3H, 3,4He, and selected p-shell
nuclei from 6He to 16O are shown in Fig. 4. The calcu-
lated values (red lines) obtained with theNN+3N(lnl) in-
teraction are compared to experiment (blue lines). Theo-

NN N3LO (Entem-Machleidt 2003)
3N N2LO w local/non-local regulator
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Background: Recent advances in nuclear structure theory have led to the availability of several complementary
ab initio many-body techniques applicable to light and medium-mass nuclei as well as nuclear matter. After
successful benchmarks of different approaches, the focus is moving to the development of improved models
of nuclear Hamiltonians, currently representing the largest source of uncertainty in ab initio calculations of
nuclear systems. In particular, none of the existing two- plus three-body interactions is capable of satisfactorily
reproducing all the observables of interest in medium-mass nuclei.
Purpose: A novel parametrization of a Hamiltonian based on chiral effective field theory is introduced.
Specifically, three-nucleon operators at next-to-next-to-leading order are combined with an existing (and
successful) two-body interaction containing terms up to next-to-next-to-next-to-leading order. The resulting
potential is labeled NN+ 3N(lnl). The objective of the present work is to investigate the performance of this
new Hamiltonian across light and medium-mass nuclei.
Methods: Binding energies, nuclear radii, and excitation spectra are computed using state-of-the-art no-core
shell model and self-consistent Green’s function approaches. Calculations with NN+ 3N(lnl) are compared to
two other representative Hamiltonians currently in use, namely NNLOsat and the older NN+ 3N (400).
Results: Overall, the performance of the novel NN+ 3N(lnl) interaction is very encouraging. In light nuclei, total
energies are generally in good agreement with experimental data. Known spectra are also well reproduced with
a few notable exceptions. The good description of ground-state energies carries on to heavier nuclei, all the way
from oxygen to nickel isotopes. Except for those involving excitation processes across the N = 20 gap, which is
overestimated by the new interaction, spectra are of very good quality, in general superior to those obtained with
NNLOsat. Although largely improving on NN+ 3N (400) results, charge radii calculated with NN+ 3N(lnl) still
underestimate experimental values, as opposed to the ones computed with NNLOsat that successfully reproduce
available data on nickel.
Conclusions: The new two- plus three-nucleon Hamiltonian introduced in the present work represents a
promising alternative to existing nuclear interactions. In particular, it has the favorable features of (i) being
adjusted solely on A = 2, 3, 4 systems, thus complying with the ab initio strategy, (ii) yielding an excellent
reproduction of experimental energies all the way from light to medium-heavy nuclei, and (iii) behaving well
under similarity renormalization group transformations, with negligible four-nucleon forces being induced, thus
allowing large-scale calculations up to medium-heavy systems. The problem of the underestimation of nuclear
radii persists and will necessitate novel developments.

DOI: 10.1103/PhysRevC.101.014318

I. INTRODUCTION

In the past decade, advances in many-body approaches and
internucleon interactions have enabled significant progress in
ab initio calculations of nuclear systems. At present, sev-
eral complementary methods to solve the (time-independent)
many-body Schrödinger equation are available, tailored to
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‖thomas.duguet@cea.fr

either light systems [1,2], medium-mass nuclei [3–8], or
extended nuclear matter [9–11]. New developments, which
promise to extend (most of) these methods to higher accuracy
and/or heavy nuclei, are being currently proposed [12,13].

Over the past few years, benchmark calculations have
allowed assessment of the systematic errors associated with
both the use of a necessarily finite-dimensional Hilbert space
and the truncation of the many-body expansion at play in each
of the formalisms of interest. In state-of-the-art implemen-
tations, these errors add up to at most 5%, much less than
the uncertainty attributable to the input nuclear Hamiltonian
[14–18]. As a result, ab initio calculations have also acquired
the role of diagnostic tools as the focus of the community

2469-9985/2020/101(1)/014318(19) 014318-1 ©2020 American Physical Society
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Input for NCSMC calculations: Nuclear forces from chiral Effective Field Theory
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β-delayed proton emission in 11Be 
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NCSMC extended to describe exotic 11Be 𝛽p emission,
supports large branching ratio due to narrow ½+ resonance

11Be → (10Be+p) + 𝛽!+ 𝜈̅" GT transition p+10Be Scattering Phase Shifts



17

NCSMC extended to describe exotic 11Be 𝛽p emission,
supports large branching ratio due to narrow ½+ resonance

11Be → (10Be+p) + 𝛽!+ 𝜈̅" GT transition p+10Be Scattering Phase Shifts

bp = (1.3 ± 0.5) × 10−6
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NCSMC extended to describe exotic 11Be 𝛽p emission,
supports large branching ratio due to narrow ½+ resonance

11Be → (10Be+p) + 𝛽!+ 𝜈̅" GT transition p+10Be Scattering Phase Shifts

Now observed!bp = (1.3 ± 0.5) × 10−6
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§ Reaction 4He(d,γ)6Li responsible for 6Li production in BBN
§ Three orders of magnitude discrepancy between BBN predictions and observations

§ Problem with astronomical observations?
§ Problem with our understanding of the reaction rate?
§ New physics?
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Unified Description of 6Li Structure and Deuterium-4He Dynamics
with Chiral Two- and Three-Nucleon Forces
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We provide a unified ab initio description of the 6Li ground state and elastic scattering of deuterium (d)
on 4He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence
of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying
spectrum of 6Li. The calculation reproduces the empirical binding energy of 6Li, yielding an asymptotic
D- to S-state ratio of the 6Li wave function in the dþ α configuration of −0.027, in agreement with a
determination from 6Li-4He elastic scattering, but overestimates the excitation energy of the 3þ state by
350 keV. The bulk of the computed differential cross section is in good agreement with data. These results
endorse the application of the present approach to the evaluation of the 2Hðα; γÞ6Li radiative capture,
responsible for the big-bang nucleosynthesis of 6Li.

DOI: 10.1103/PhysRevLett.114.212502 PACS numbers: 21.60.De, 24.10.Cn, 25.45.-z, 27.20.+n

Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest
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§ NCSMC calculations with chiral NN+3N interaction

B Impact of the 3N force on observables
The impact of the chiral 3Nloc and SRG-induced 3N forces on the 6Li low-lying spectrum obtained with
the NCSMC at Nmax = 11 is illustrated in Fig. 1. The zero of energy is taken for the NCSMC calculations
as the predicted 4He-d threshold. Compared to the NN-only calculations (blue spectrum), including
3N force significantly improves the 3+-2+ splitting and the position of the 3+ resonance, which now
has the correct energy and width. Even though the 3Nloc force slightly ameliorates the over-binding of
6Li, it is still over-predicted by 310 keV. This can be partly explained by the non-convergence of the
4He-d threshold and 6Li NCSM ground-state (see E(10) in Table 1). Nevertheless, even at convergence,
i.e., Nmax æ Œ, the 6Li ground state is expected to stay over-bound by approximately 150 keV, due to
the choice of Hamiltonian. As mentioned in the Letter, we correct for this over-binding by adjusting
the NCSM eigenenergy of the 6Li NCSM 1+ ground state in such a way that the NCSMC calculation
reproduces the experimental binding energy (NN+3Nloc-pheno in Fig. 1).

Our predicted spectrum di�ers from Fig. 4 in Ref. [8], mainly because of a di�erence of convention for
the NCSMC calculation, we use di�erent model spaces for the 6Li NCSM states and the relative motion.
The choice adopted in this work is more consistent as we allow the same number of quanta of excitation
in the description of 4He, d, 6Li and the 4He-d relative motion.
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Figure 1: Low-lying spectrum of 6Li obtained with the NCSMC at Nmax = 11 using the
SRG-evolved N3LO NN potential [1] (NN-only) with ⁄ = 2 fm≠1, the NN+3Nloc [2,3] without
(NN+3Nloc) and with the phenomenological energy adjustment (NN+3Nloc-pheno) compared to
experiments [9]. The zero energy is taken as the predicted (resp. experimental) 4He-d threshold
for NCSMC (resp. Exp.).

Fig. 2 shows that the NCSMC predictions obtained without (dashed red lines, NN+3Nloc) and with
the phenomenological adjustment (solid red line, NN+3Nloc-pheno) also agree well with experimental data
for the elastic-scattering 4He(d, d) 4He [9,10]. In particular, the NCSMC calculations reproduce perfectly
the 3+ resonance peak at 1.065 MeV. As expected, adjusting the ground-state energy of 6Li modifies the
non-resonant part mainly at low energy and the decsription of the 2+ resonance peak at 4.26 MeV.
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i.e., Nmax æ Œ, the 6Li ground state is expected to stay over-bound by approximately 150 keV, due to
the choice of Hamiltonian. As mentioned in the Letter, we correct for this over-binding by adjusting
the NCSM eigenenergy of the 6Li NCSM 1+ ground state in such a way that the NCSMC calculation
reproduces the experimental binding energy (NN+3Nloc-pheno in Fig. 1).

Our predicted spectrum di�ers from Fig. 4 in Ref. [8], mainly because of a di�erence of convention for
the NCSMC calculation, we use di�erent model spaces for the 6Li NCSM states and the relative motion.
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for NCSMC (resp. Exp.).

Fig. 2 shows that the NCSMC predictions obtained without (dashed red lines, NN+3Nloc) and with
the phenomenological adjustment (solid red line, NN+3Nloc-pheno) also agree well with experimental data
for the elastic-scattering 4He(d, d) 4He [9,10]. In particular, the NCSMC calculations reproduce perfectly
the 3+ resonance peak at 1.065 MeV. As expected, adjusting the ground-state energy of 6Li modifies the
non-resonant part mainly at low energy and the decsription of the 2+ resonance peak at 4.26 MeV.
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§ NCSMC calculations with chiral NN+3N interaction
§ Capture S-factor

Dominated by E2
M1 significant at low energy
E1 negligible – isospin supressed (T=0 → T=0)

sistently, allowing us to estimate accurately the contri-
bution of each electromagnetic transition.

Approach. For capture reactions below the Coulomb
barrier, the typical observable is the astrophysical S-
factor, which is directly deduced from the cross section �

S(E) = E �(E) exp[2⇡⌘], (1)

where ⌘ is the Sommerfeld parameter. At low energies,
the wavelength of the emitted photon is much larger than
the size of the nuclei, and the cross section can be safely
approximated by

�(E) =
64⇡4
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, (2)

where f and i denote the final bound-state and initial
scattering wavefunction, 1 and 2 correspond to the pro-
jectile (d) and target (4He) nuclei, v is the initial rel-
ative 4He-d velocity, � is the multipolarity of the elec-
tric (� =E) and magnetic (� =M) transition operator
and the notation Ĵf stands for

p
2Jf + 1. The quantum

numbers J , l, s, ⇡, and T are respectively the total and
orbital angular momenta, spin, parity and isospin. The
matrix element in Eq. (2) is evaluated for E1, E2 and M1
operators, which read

ME� = e
AX

j=1

1 + ⌧jz
2

[rj �R(A)
cm ]� (3)

MM1 =
µN

~c

r
3

4⇡

AX

j=1

(gljLj + gsjSj) (4)

where e is the electric charge, µN is the nuclear mag-
neton, R(A)

cm is the center-of-mass coordinate of the A-
nucleon system, gsj , ⌧jz, Sj and Lj are respectively the
gyromagnetic factor, the isospin, spin and orbital angular
momentum (defined with respect to the center-of-mass)
operator of the jth nucleon and glj = 1 for proton and 0
for neutron.

Electric operators (3) depend on the radial coordinate
and are therefore strongly sensitive to the asymptotics
of the ground-state wavefunction, namely its binding en-
ergy and its asymptotic normalization constants (ANCs).
In the case of 4He(d, �) 6Li, E1 transitions are strongly
suppressed because the isoscalar part cancels for nuclei
with the same ratio of number of neutrons to protons,
and the capture is therefore mainly dominated by the E2
component. Nevertheless, two-body models, which do
not treat the isospin explicitly [10, 12–15], evaluate the
isovector part of the E1 operator by adopting the exper-
imental masses of the 4He and d nuclei and predict them
to dominate below 100 keV. Recently, the validity of these

prescriptions has been questioned since they cannot re-
produce the physical energy slope of the S-factor [18].
Moreover, M1 transitions are usually assumed to be neg-
ligible, based on the fact that the operator (4) can be
seen as the sum of a spin Sj and total angular momen-
tum Jj contributions, with the second term canceling
exactly due to the orthogonality of the initial and final
wavefunctions, which are both eigenstates of the under-
lying microscopic Hamiltonian [18, 19, 21]. In this study,
we use an ab initio method which treats scattering and
bound states within the same formalism, allowing us to
evaluate the transition matrix elements with the opera-
tors (3) and (4), without further assumptions.
The no-core shell model with continuum method (NC-

SMC, see Ref. [22] for a recent review) is a tool of choice
as it describes accurately both the static properties of
light nuclei and their dynamics [23–28]. The NCSMC 6-
body wavefunction is given in terms of 6Li no-core shell
model (NCSM) wavefunctions |A�J⇡T i and continuous
4He-d cluster states A⌫

���J⇡T
⌫r

↵
, built from the 4He and

d NCSM states
��� J⇡T

E
=

X
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cJ
⇡T
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+
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⌫

Z +1

0
dr r2

�J⇡T
⌫ (r)

r
Â⌫

���J⇡T
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↵
(5)

As this basis is overcomplete, the NCSMC equations
are orthogonalized following the method described in
Ref. [22]. The E1, E2 and M1 matrix elements are evalu-
ated by applying the operators (3) and (4) to the NCSMC
initial and final wavefunctions, their derivations will be
reported in another contribution.
For all calculations presented in this Letter, we use

a basis of many-body harmonic oscillator (HO) wave-
functions with frequency ~! = 20 MeV and include up
to Nmax = 11 quanta above the lowest energy config-
uration of the 6-body system (see the convergence pat-
tern in the Supplemental Material). As seen in previ-
ous works [23, 29, 30], the breakup of the deuteron and
the swelling of the 4He nucleus significantly a↵ect the
ground-state properties and the 4He-d scattering at low
energies. Similar to Ref. [23], these excitations are ac-
counted for e�ciently by including in our description a
discretization of the deuteron continuum and 10 positive-
and 5 negative-parity low lying states of 6Li.
The interaction between the nucleons is simulated

by a state-of-the-art chiral-EFT NN force [31] and 3N
forces [32–34], which provide an accurate description of
both bound and scattering physics (see Supplemental
Material). These interactions are softened using the sim-
ilarity renormalization group (SRG) transformation in
three-body space with a momentum resolution scale of
� = 2 fm�1 [35]. For this value of �, the SRG trans-
formation has a negligible impact on the electromagnetic
operators (see Supplemental Material). We include the

2

3N force matrix elements up to a total number of single-
particle quanta for the three-body basis of E3max = 14,
and up to Nrel = 9 in the relative motion. We verified
that our results are not impacted by this truncation by
comparing results obtained with 3N contributions up to
Nrel = 7.

Results. We start by comparing our calculations
for the S-factor to existing experimental data [5–7, 9]
(Fig. 1). Overall, when only the SRG-evolved NN po-
tential is considered (dotted black line), our calculation
reproduces well the magnitude of the data but overesti-
mates the position of the peak corresponding to the 6Li
3+ resonance and underestimates the energy of the 6Li
2+ resonance. At low energies, it agrees with the LUNA
measurements (red circles) [9] and is incompatible with
the ones inferred from breakup data (blue squares) [7],
which as discussed before, have been shown to be in-
accurate [8]. When the full Hamiltonian is considered,
i.e., considering both NN and 3N forces (both chiral and
SRG-induced), the 6Li low-energy levels are overall well
reproduced, but we find a ground-state overbound by
⇠ 250 keV (see Supplemental Material). The impact of
3N forces on the S-factor is visible mainly in the posi-
tion of the 3+ and 2+ resonance peaks, which are now
in excellent agreement with the direct measurements of
Mohr et al. (green down-triangles) [5] and Robertson et
al. (black up-triangles) [6]. Additionally, it causes a small
changes in the magnitude and the slope of the S-factor at
low energy, mainly due to the modification in the bind-
ing energy of the 6Li ground-state and its ANCs in the
S (C0) and D (C2) waves (Table I) [36, 37].
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FIG. 1. Predicted S-factor for the 4He(d, �) 6Li compared
with data taken from Refs. [9] (red circles), [7] (blue square),
[5] (green down-triangles) and [6] (black up-triangles). Calcu-
lations are obtained using the SRG-evolved N3LO NN poten-
tial [31] (NN-only) with � = 2 fm�1, the NN+3Nloc [32, 34]
without (NN+3Nloc) and with the phenomenological energy
adjustment (NN+3Nloc-pheno).

Because the ground-state properties influence greatly

NN-only NCSMC NCSMC-pheno Exp. or Eval.
Eg.s. [MeV] -1.848 -1.778 -1.474 -1.4743
C0 [fm�1/2] 2.95 2.89 2.62 2.26(7)
C2 [fm�1/2] -0.0369 -0.0642 -0.0554 -0.077(18)

C2/C0 -0.013 -0.022 -0.021 -0.025(6)(10)
µ [µN ] 0.85 0.84 0.84 0.8220473(6)

TABLE I. Ground-state properties of 6Li (binding energy
Eg.s., ANCs C0, C2 and magnetic moment µ) obtained us-
ing the SRG-evolved N3LO NN potential (NN-only) with
� = 2 fm�1, the NN+3Nloc without (NCSMC) and with the
phenomenological energy adjustment (NCSMC-pheno). The
last column lists the experimental Eg.s. and µ [38], and ANCs
inferred from a phase shift analysis [39]. The first uncertainty
is purely statistical and the second is an estimate of the sys-
tematic error.

the capture at low energy [36, 37], we improve our eval-
uation by correcting the overbinding of the 6Li ground-
state. As in Refs. [24–26, 40], we shift the energy of
the NCSM 1+ ground state and 2+ resonance for the
full NCSMC to reproduce the experimental energies. As
expected, this correction (solid red line) impacts mainly
the low-energy part of the S-factor and the energy close
to the 2+ resonance. The predicted ANCs C0 and C2
are now closer to the values inferred from the low-energy
6Li-4He phase shifts in Ref. [39] (last column of Table I).
In particular, the ratio C0/C2, relevant for other reac-
tion observables such as transfer cross sections, is in ex-
cellent agreement with the previously extracted value of
Ref. [39].

The relative importance of the electromagnetic E2, E1
and M1 transitions varies with energy (Fig. 2). Simi-
larly to previous predictions [10–19], we find that the
E2 transitions dominate the non-resonant and resonant
capture. Di↵erent from those studies, we obtain larger
E2 strengths stemming from the larger value of the pre-
dicted S-wave ANC C0 (second line of Table I). More-
over, our prediction for the M1 component contradicts
the common assumption that M1 transitions are negligi-
ble over the whole energy range. Interestingly, the kink
in the M1 contribution and its enhancement at low ener-
gies are caused by interferences between the M1 matrix
elements of 6Li and d NCSM 1+ ground states. This
M1 shape can therefore not be seen in models which
do not treat consistently both short-range and scatter-
ing physics. The good agreement between our predicted
magnetic moment and the experimental one corroborates
our evaluation (last line in Table I). Finally, our calcu-
lations show that the E1 transitions have a negligible
influence on the S-factor, contrary to what it is usually
predicted. Because the isoscalar part of the E1 opera-
tor cancels, only E1 transitions from Ti = 0 scattering
states to the Tf = 1 component of the 6Li ground state
contribute at low energy [18]. In our calculations, the
Tf = 1 strength of the 6Li ground-state is mainly deter-

3

mined by the Tf = 1 component of the NCSM 1+ state
while binary cluster channels do not contribute. In all
model spaces, the Tf = 1 component of the NCSM 1+

state stays small, i.e. T  0.0003, and therefore always
leads to negligible E1 transitions.
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FIG. 2. E2, E1 and M1 components to the predicted S-factor
for the 4He(d, �) 6Li obtained with the full NN+3Nloc and
with the phenomenological energy adjustment. The data fol-
lows the same legend as in Fig. 1.

Conclusions. In this Letter, we carried out the first ab
initio predictions for the radiative capture 4He(d, �) 6Li
at BBN energies starting from chiral EFT NN and 3N
forces. By treating bound and scattering states within
the same formalism, the electromagnetic operators are
obtained using no further approximations. Contrary to
previous studies, our results indicate that the M1 tran-
sitions become increasingly important at low energies,
while the E1 component stays negligible over the whole
energy range. The validity of our evaluation is demon-
strated by the excellent agreement with available S-factor
data, both those at low-energy measured by the LUNA
collaboration and those in the vicinity of the 3+ reso-
nance, and with the experimental magnetic dipole mo-
ment. An interesting prospect would be to obtain abun-
dances of Lithium isotopes from BBN simulations using
our evaluation of the S-factor. The next important step,
which is currently computationally out of reach, would
be to quantify the theoretical uncertainty associated with
our prediction.

Acknowledgments. C. Hebborn would like to thank
D. Baye, D. Phillips and J. Dohet-Eraly for useful dis-
cussions. The work of C. H. is supported by the U.S. De-
partment of Energy, O�ce of Science, O�ce of Nuclear
Physics, under the FRIB Theory Alliance award no. DE-
SC0013617 and under Work Proposal no. SCW0498 and
under Contract no. DE-AC52-07NA27344. This work
was also supported by the NSERC Grants No. SAPIN-
2016-00033, SAPPJ-2019-00039, and PGSD3-535536-
2019. TRIUMF receives federal funding via a contri-

bution agreement with the National Research Council of
Canada. Computing support for this work came from the
Lawrence Livermore National Laboratory (LLNL) Insti-
tutional Computing Grand Challenge program.

⇤ hebborn@frib.msu.edu
[1] M. Pospelov and J. Pradler, Annual Review of

Nuclear and Particle Science 60, 539 (2010),
https://doi.org/10.1146/annurev.nucl.012809.104521,
URL https://doi.org/10.1146/annurev.nucl.
012809.104521.

[2] M. Asplund, D. L. Lambert, P. E. Nissen, F. Primas, and
V. V. Smith, The Astrophysical Journal 644, 229 (2006),
URL https://doi.org/10.1086/503538.

[3] B. D. Fields, Annual Review of Nuclear and Particle
Science 61, 47 (2011), https://doi.org/10.1146/annurev-
nucl-102010-130445, URL https://doi.org/10.1146/
annurev-nucl-102010-130445.

[4] R. H. Cyburt, B. D. Fields, K. A. Olive, and T.-H. Yeh,
Rev. Mod. Phys. 88, 015004 (2016), URL https://link.
aps.org/doi/10.1103/RevModPhys.88.015004.

[5] P. Mohr, V. Kölle, S. Wilmes, U. Atzrott, G. Staudt,
J. W. Hammer, H. Krauss, and H. Oberhummer, Phys.
Rev. C 50, 1543 (1994), URL https://link.aps.org/
doi/10.1103/PhysRevC.50.1543.

[6] R. G. H. Robertson, P. Dyer, R. A. Warner, R. C.
Melin, T. J. Bowles, A. B. McDonald, G. C. Ball,
W. G. Davies, and E. D. Earle, Phys. Rev. Lett.
47, 1867 (1981), URL https://link.aps.org/doi/10.
1103/PhysRevLett.47.1867.

[7] J. Kiener, H. J. Gils, H. Rebel, S. Zagromski,
G. Gsottschneider, N. Heide, H. Jelitto, J. Wentz, and
G. Baur, Phys. Rev. C 44, 2195 (1991), URL https:
//link.aps.org/doi/10.1103/PhysRevC.44.2195.

[8] F. Hammache, M. Heil, S. Typel, D. Galaviz,
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FIG. 1. 7Be+p eigenphase shifts (solid lines) and 3S1 and
5S2 diagonal phase shifts (dashed lines) obtained from the
NCSMC approach with the N4LO+3N⇤

lnl interaction.

the 7Be+p system but also in gaining a handle on the
uncertainty in our theoretical predictions.

In the past decade there has been significant e↵ort [23–
28] aimed at quantifying theoretical uncertainties lead-
ing to an increased predictive capability for calculations.
In particular, �EFT provides a systematic expansion of
the nuclear interaction in powers of an expansion pa-
rameter Q < 1. The truncation of this expansion at an
order n is expected to give rise to errors that can be
quantified [24–26, 29], by combining consistent calcula-
tions performed at di↵erent truncation orders in �EFT.
In this work we use the NN interactions defined in [30],
denoted by N3LO⇤, and [31], denoted by N2LO, N3LO,
and N4LO. The NN interactions are supplemented by the
3N interaction of [32] with both local (3Nloc) [33, 34] and
local plus non-local (3Nlnl) regulators [28, 35]. Finally, a
3N interaction employing a local plus non-local regulator
but with an added sub-leading contact term enhancing
the strength of the spin-orbit interaction (the E7 term),
as described in [36], was also employed (3N⇤

lnl). A list of
all NN+3N combinations that are employed in this work
can be found in Table I. The interactions described in
Ref. [31] are a consistent set and we expect truncation
errors extracted from their di↵erences to be similar to
errors for other parametrizations.

In all calculations the interaction was softened using
a similarity renormalization group (SRG) transforma-
tion [37], that induces many-body forces included up
to three-body level. The four- and higher-body induced
terms are small at the �SRG=2.0 fm�1 resolution scale
used in present calculations [38]. The NCSM calcula-
tions of the 7Be and 8B nuclei were carried out allowing
for up to nine quanta of excitation (Nmax = 9) for nat-
ural parity states and Nmax = 10 for the negative parity
states of 8B. The relative motion between the two frag-
ments was also computed within the same Nmax = 9(10)

space for positive (negative) parity channels. The har-
monic oscillator parameter ~⌦ was chosen at 20 MeV
which minimizes the ground-state energies of investi-
gated nuclei. The reaction channel basis states are con-
structed by taking into account the first five states of 7Be
(J⇡ = 3/2�, 1/2�, 7/2�, 5/2�, 5/2�). Earlier work [39]
has demonstrated that this choice is su�cient to reach
convergence in channel basis expansion. The NCSM sec-
tor of the NCSMC wave function is spanned by the ten
lowest energy states of 8B for each parity value, with spin
values ranging from J = 0 to J = 4.
As an example of obtained results, we present in Fig. 1

the 7Be+p phase shifts obtained using the N4LO+3N⇤
lnl

chiral interaction. The positive parity eigenphase shifts
show the well-established 1+

1 and 3+
1 resonances as well

as predictions of several other broader resonances. Un-
like previous NCSM/RGM calculations [40], the NCSMC
S-wave phase shifts manifest scattering length signs con-
sistent with those determined in recent measurements
(negative for 5S2, positive for 3S1) [41]. It should be
noted that using this parametrization of the NN+3N in-
teraction the resulting 2+

1 state in 8B here is slightly un-
bound. The very narrow near-threshold 2+ resonance
is not visible in the figure. We find that it is di�cult
to produce a bound 8B ground state, with the excep-
tion of the N3LO+3Nloc interaction which reproduces the
ground state energy at the 30 keV level. Owing to the
parity di↵erence between the ground state of 8B (2+) an
that of 7Be (3/2�), the low-energy cross section of the
7Be(p, �)8B radiative capture proceeds via an E1 tran-
sition [42]. While the bare E1 operator has a one-body
form, a consistent SRG evolution to the same scale as the
interaction, will induce many-body parts. These contri-
butions were found to be of a short-range nature [43],
thus we expect their contribution to be small in a cal-
culation involving a loosely bound system, such as 8B.
Operators of the M1/E2 types contribute at higher ener-
gies and are treated using a closure approximation of the
8B NCSM states and 7Be+p channels [20].

The 7Be(p, �)8B S-factor is sensitive to the spatial ex-
tent of the 8B wave function, that is in turn determined
by the ground state binding energy of 136(1) keV [44].
While it is impossible to exactly reproduce this bind-
ing energy in all NN+3N interaction models used in this
study, especially when considering all sources of uncer-
tainty, it is possible to adjust the NCSMC inputs so that
the overall binding energy reproduces the experimental
value, as done for example in [45]. This phenomenolog-
ical correction, dubbed NCSMC-pheno, is performed by
shifting the NCSM eigenenergies of 7Be so that the exci-
tation energies (and therefore thresholds) match the ex-
perimental ones exactly. This matching ensures that de-
caying states have the correct phase space available, cor-
responding to their energy. Furthermore, the 8B NCSM
eigenenergies in the 2+, 1+, 3+ channels are also mod-
ified to bring the bound and unbound NCSMC states
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The �-decay of 8B, formed by the radiative capture of a proton on 7Be, is the source of the
majority of solar neutrinos measured on earth. Due to the the strong Coulomb repulsion of the
reactants, there has not yet been an experiment able to measure this 7Be(p, �)8B reaction rate at
astrophysically relevant energies. Therefore it is necessary to use theory to extrapolate measurements
to lower energies, resulting in a low-energy astrophysical S-factor uncertainty dominated by theory
components. We have performed a set of first-principle calculations of the 7Be(p, �)8B reaction in an
e↵ort to provide an independent prediction of the low-energy S-factor with quantified uncertainties.
We find that nuclear interactions derived from chiral e↵ective field theory quantitatively reproduce
the 8B spectrum, as well as the 7Be(p, �)8B radiative capture cross section. By truncating the
chiral expansion at various orders, we extract an estimate for the uncertainty stemming from the
missing physics in the nuclear interaction. Further analysis demonstrates underlying features in
the predicted S-factor, and allows us to combine theoretical calculations and experimental data to
produce an evaluated prediction. We expect the calculations and uncertainty quantification process
described here to set the standard for future first-principle calculations of light-ion astrophysical
reactions.

Astrophysical reactions powering low-mass stars such
as our sun have been at the center of theoretical and
experimental attention ever since nuclear reactions were
proposed as a mechanism for nucleosynthesis and energy
generation in stellar interiors [1, 2]. As a result, solar
fusion reactions are amongst the most precisely mea-
sured and thoroughly evaluated nuclear reactions; see
for example Refs. [3, 4] and references therein. Occur-
ring at the tail end of the proton-proton chain, the ra-
diative capture of a proton by a 7Be nucleus produc-
ing an 8B nucleus (or 7Be(p, �)8B reaction) is key in
determining the solar neutrino flux measured in terres-
trial observatories [5, 6]. Given its importance, it has
been measured multiple times over the years with vari-
ous techniques [7–15]. However, due to Coulomb repul-
sion between the proton and the 7Be nucleus, a direct
measurement at the astrophysically relevant energies is
still missing, and theory calculations [16, 17] are used
to extrapolate. As a result, the uncertainty in the cur-
rently recommended [4] value of the zero-energy S-factor,
S17(0) = 20.8± 0.7(expt)± 1.4(theory) eV·barn, is dom-
inated by theoretical contributions.

First-principle (or ab initio) theoretical approaches
provide an independent prediction of nuclear reaction
observables, with the interaction between nucleons being
their sole input. Consequently, the bulk of the theoretical
uncertainty of ab initio calculations will come from the
nuclear interaction employed. In this Letter we present
first-principle calculations of the 7Be+p system, includ-
ing the 7Be(p, �)8B reaction, using nucleon-nucleon (NN)
and three-nucleon (3N) interactions derived from chiral
e↵ective field theory (�EFT), with the goal of extracting
universal features of the system, and removing (in part)

the uncertainty that stems from the choice of a specific
interaction parametrization.
The no-core shell model with continuum (NCSMC),

first introduced in [18, 19], is a first-principle technique
that has been successful in delivering predictive calcula-
tions of nuclear properties of light nuclei by combining
bound and dynamic descriptions of an A-nucleon system
(see Ref. [20] for an in depth review of results). In the
NCSMC, the A-body Schrödinger equation for a total
angular momentum J and parity ⇡ is solved for both
bound and scattering boundary conditions by means of
a variational ansatz that takes the form

| J⇡

i =
X

�

c�|�AJ⇡i+
X

⌫

Z
r2dr

�J⇡

⌫ (r)

r
Â⌫ |�J⇡

⌫r i. (1)

Here, the states |�AJ⇡i are obtained from the no-core
shell model (NCSM) [21], and represent the �-th bound-
like solution to theA-body Schrödinger equation. The so-
called reaction channel basis states A⌫ |�J⇡

⌫r i correspond
to totally antisymmetric binary-cluster states where the
interacting nuclei (in this case 7Be and p) are a distance
r apart. The collective index ⌫ corresponds to all asymp-
totic quantum numbers (internal states, spins, and pari-
ties of the fragments, relative angular momentum `, and
spin s). The unknown discrete parameters c� and am-
plitudes �J⇡

⌫ (r) are then determined via the microscopic
R-matrix method [22].
In the NCSMC, the nucleon is treated as the funda-

mental degree of freedom, with all A nucleons considered
”active”. Therefore, the same NN+3N interaction deter-
mines both the intrinsic wave functions obtained in the
NCSM, as well as the reaction dynamics between the two
fragments. The use of �EFT-derived interactions is thus

arXiv: 2202.11759
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Cp1/2 Cp1/2 a1 a2 S17(0)

N2LO+3Nlnl 0.384 0.691 4.36 -0.49 23.5

N3LO+3Nlnl 0.390 0.678 1.25 -4.66 23.1

N4LO+3Nlnl 0.354 0.669 1.58 -4.38 21.7

N4LO+3N⇤
lnl 0.343 0.621 1.26 -4.95 19.4

N3LO⇤+3Nlnl 0.334 0.663 0.03 -7.16 21.2

N3LO⇤+3Nloc 0.308 0.584 2.54 -3.42 16.8

TABLE I. Values for asymptotic normalization coe�cients
(ANCs) in fm�1/2, scattering lengths in fm, and zero-energy
S-factor S17 in eV·b obtained from the set of interactions used
in this work, after applying a phenomenological correction
(see text) to the 8B bound-state energy.

The calculated astrophysical S factor shown in Fig. 2
was obtained within this NCSMC-pheno approach. We
compare results obtained with N3LO⇤+3Nlnl and the
N4LO+3N⇤

lnl interactions to experimental data. The cal-
culations reproduce well the contributions due to M1/E2
transitions from the 1+ resonance (sharp peak at ⇠
0.6 MeV), and to a lesser extent from the 3+ resonance
(⇠ 2.2 MeV), to the 2+ ground state of 8B. As a re-
sult of the phenomenological corrections, the two res-
onances appear at slightly lower energies than seen in
Fig. 1. The shifts are of the order of a few tens of
keVs (check this), and the position of the 1+ resonance
is about 100 keV lower than the NNDC and TUNL eval-
uation reported value of 0.77 MeV. The calculations us-
ing the N4LO+3N⇤

lnl interaction matches well the direct
measurement data from Junghans [34] starting at the 1+

resonance in the whole displayed range, including the
3+ bump. At low energies, below the 1+ resonance,
the N4LO+3N⇤

lnl results are slightly below the Junghans
data, while the N3LO⇤+3Nlnl match them well. However,
this choice of interaction overestimates the data some-
what at higher energies.

The multiple calculations of the 7Be + p system al-
low for a more systematic look at its inherent properties
without focusing on a specific interaction. Indeed, the
use of various chiral order truncations and di↵ering reg-
ulators gives us a window to the universal properties of
the system, as described by �EFT, since neither the form
of the interaction (due to di↵erent diagrams included at
each order), nor any specific parametrization of the in-
teraction is used.

As has been previously pointed out [35, 36], a linear re-
lation exists between the S-factor at zero energy and the
sum of the squares of the ANCs (C2

p1/2
+C2

p3/2
). We ob-

serve such a relation (see Fig. 3a), with all NCSMC calcu-
lations lying along a line with slope 38.53 ± 1.45 eV·b·fm.
It is worth repeating that the interactions shown here are
fundamentally di↵erent; from the inclusion of di↵erent
�EFT diagrams, to di↵erent parametrizations and 3N-
force regulator forms, they nevertheless still exhibit this
simple pattern. The uncertainty in the points (propa-
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FIG. 2. Astrophysical S factor of the 7Be(p,�)8B radiative
capture obtained from the NCSMC-pheno approach with the
N3LO⇤+3Nlnl (blue line) and the N4LO+3N⇤

lnl (red line) in-
teractions compared to experimental data. The bottom panel
focuses on the low-energy part and shows the evaluation of
S17(0) with its uncertainty [4] (orange box).

gated to the linear regression fit parameters) corresponds
to an estimate of the chiral truncation uncertainty for
each interaction. We note that while the error bars shown
for the theoretical calculations in Fig. 3a are chiral trun-
cation estimates, they should not be treated as uncorre-
lated errors; the linear relation between the ANCs and
the S-factor is inherent in the equations being solved not
the specific interaction. Thus, any change in the interac-
tion that would shift the sum of the ANCs to a di↵erent
value would correspondingly shift the S-factor according
to the linear fit. The tight uncertainty band on the fitted
line implies that if one were able to measure ANCs ac-
curately, the resulting theoretical uncertainty would be
orders of magnitude smaller than the currently recom-
mended value. Nevertheless, ANCs are not observables,
so instead we look to correlations between the S-factor at
zero energy and some higher energy, where experimental

3

Cp1/2 Cp1/2 a1 a2 S17(0)

N2LO+3Nlnl 0.384 0.691 4.36 -0.49 23.5

N3LO+3Nlnl 0.390 0.678 1.25 -4.66 23.1

N4LO+3Nlnl 0.354 0.669 1.58 -4.38 21.7

N4LO+3N⇤
lnl 0.343 0.621 1.26 -4.95 19.4

N3LO⇤+3Nlnl 0.334 0.663 0.03 -7.16 21.2

N3LO⇤+3Nloc 0.308 0.584 2.54 -3.42 16.8

TABLE I. Values for asymptotic normalization coe�cients
(ANCs) in fm�1/2, scattering lengths in fm, and zero-energy
S-factor S17 in eV·b obtained from the set of interactions used
in this work, after applying a phenomenological correction
(see text) to the 8B bound-state energy.

The calculated astrophysical S factor shown in Fig. 2
was obtained within this NCSMC-pheno approach. We
compare results obtained with N3LO⇤+3Nlnl and the
N4LO+3N⇤

lnl interactions to experimental data. The cal-
culations reproduce well the contributions due to M1/E2
transitions from the 1+ resonance (sharp peak at ⇠
0.6 MeV), and to a lesser extent from the 3+ resonance
(⇠ 2.2 MeV), to the 2+ ground state of 8B. As a re-
sult of the phenomenological corrections, the two res-
onances appear at slightly lower energies than seen in
Fig. 1. The shifts are of the order of a few tens of
keVs (check this), and the position of the 1+ resonance
is about 100 keV lower than the NNDC and TUNL eval-
uation reported value of 0.77 MeV. The calculations us-
ing the N4LO+3N⇤

lnl interaction matches well the direct
measurement data from Junghans [34] starting at the 1+

resonance in the whole displayed range, including the
3+ bump. At low energies, below the 1+ resonance,
the N4LO+3N⇤

lnl results are slightly below the Junghans
data, while the N3LO⇤+3Nlnl match them well. However,
this choice of interaction overestimates the data some-
what at higher energies.

The multiple calculations of the 7Be + p system al-
low for a more systematic look at its inherent properties
without focusing on a specific interaction. Indeed, the
use of various chiral order truncations and di↵ering reg-
ulators gives us a window to the universal properties of
the system, as described by �EFT, since neither the form
of the interaction (due to di↵erent diagrams included at
each order), nor any specific parametrization of the in-
teraction is used.

As has been previously pointed out [35, 36], a linear re-
lation exists between the S-factor at zero energy and the
sum of the squares of the ANCs (C2

p1/2
+C2

p3/2
). We ob-

serve such a relation (see Fig. 3a), with all NCSMC calcu-
lations lying along a line with slope 38.53 ± 1.45 eV·b·fm.
It is worth repeating that the interactions shown here are
fundamentally di↵erent; from the inclusion of di↵erent
�EFT diagrams, to di↵erent parametrizations and 3N-
force regulator forms, they nevertheless still exhibit this
simple pattern. The uncertainty in the points (propa-
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FIG. 2. Astrophysical S factor of the 7Be(p,�)8B radiative
capture obtained from the NCSMC-pheno approach with the
N3LO⇤+3Nlnl (blue line) and the N4LO+3N⇤

lnl (red line) in-
teractions compared to experimental data. The bottom panel
focuses on the low-energy part and shows the evaluation of
S17(0) with its uncertainty [4] (orange box).

gated to the linear regression fit parameters) corresponds
to an estimate of the chiral truncation uncertainty for
each interaction. We note that while the error bars shown
for the theoretical calculations in Fig. 3a are chiral trun-
cation estimates, they should not be treated as uncorre-
lated errors; the linear relation between the ANCs and
the S-factor is inherent in the equations being solved not
the specific interaction. Thus, any change in the interac-
tion that would shift the sum of the ANCs to a di↵erent
value would correspondingly shift the S-factor according
to the linear fit. The tight uncertainty band on the fitted
line implies that if one were able to measure ANCs ac-
curately, the resulting theoretical uncertainty would be
orders of magnitude smaller than the currently recom-
mended value. Nevertheless, ANCs are not observables,
so instead we look to correlations between the S-factor at
zero energy and some higher energy, where experimental

3

Cp1/2 Cp3/2 a1 a2 S17(0)

N2LO+3Nlnl 0.384 0.691 4.4(1) -0.5(1) 23.9

N3LO+3Nlnl 0.390 0.678 1.3(1) -4.7(1) 23.5

N4LO+3Nlnl 0.354 0.669 1.6(1) -4.4(1) 22.0

N4LO+3N⇤
lnl 0.343 0.621 1.3(1) -5.0(1) 19.3

N3LO⇤+3Nlnl 0.334 0.663 0.1(1) -7.7(1) 21.1

N3LO⇤+3Nloc 0.308 0.584 2.5(1) -3.6(2) 16.8

Ref. [41] 0.315(9) 0.66(2) 17.34+1.11
�1.33 -3.18+0.55

�0.50

TABLE I. Values for asymptotic normalization coe�cients
(ANCs) in fm�1/2, scattering lengths in fm, and zero-energy
S-factor S17 in eV·b obtained from the set of interactions used
in this work, after applying a phenomenological correction
(see text) to the 8B bound-state as well as the 1+ and 3+

resonance energies.

eigenenergies in the 2+, 1+, 3+ channels are also mod-
ified to bring the bound and unbound NCSMC states
in the experimentally observed positions. The resulting
features of the calculations, scattering lengths, asymp-
totic normalization coe�cients (ANCs), and zero-energy
S-factor, after the shifts are shown in Table I. We con-
sider this approach to be an ab initio guided evaluation
process where experimental data are fed into the theoret-
ical prediction to correct small deficiencies of the nuclear
interaction, and results in greater predictive capability.

The calculated astrophysical S factor shown in Fig. 2
was obtained within this NCSMC-pheno approach. We
compare results obtained with N3LO⇤+3Nlnl and the
N4LO+3N⇤

lnl interactions to experimental data. The cal-
culations reproduce well the contributions due to M1/E2
transitions from the 1+ resonance (sharp peak at ⇠
0.6 MeV), and to a lesser extent from the 3+ resonance
(⇠ 2.2 MeV), to the 2+ ground state of 8B. As a result
of the phenomenological corrections, the two resonances
appear at slightly lower energies than seen in Fig. 1 that
shows results of the original (uncorrected) NCSMC cal-
culation. The shifts are of the order of a few tens of
keVs. The calculation using the N4LO+3N⇤

lnl interaction
matches well the direct measurement from Junghans [46]
starting at the 1+ resonance in the whole displayed range,
including the 3+ bump. At low energies, below the 1+

resonance, the N4LO+3N⇤
lnl results are slightly below the

Junghans data, while the N3LO⇤+3Nlnl reproduces them
well. However, this choice of interaction overestimates
the data somewhat at higher energies. The multiple
calculations of the 7Be + p system allow for a more sys-
tematic look at its inherent properties without focusing
on a specific interaction. Indeed, the use of various chi-
ral order truncations and di↵ering regulators gives us a
window to the universal properties of the system, as de-
scribed by �EFT, since neither the form of the interaction
(due to di↵erent diagrams included at each order), nor
any specific parametrization of the interaction is used.

As has been previously pointed out [47, 48], a linear re-

FIG. 2. Astrophysical S factor of the 7Be(p,�)8B radiative
capture obtained from the NCSMC-pheno approach with the
N3LO⇤+3Nlnl (blue line) and the N4LO+3N⇤

lnl (red line) in-
teractions compared to experimental data. The inset shows
the low-energy part and shows the evaluation of S17(0) with
its uncertainty [4] (orange box).

lation exists between the S-factor at zero energy and the
sum of the squares of the ANCs (C2

p1/2
+C2

p3/2
). We ob-

serve such a relation (see Fig. 3a), with all NCSMC calcu-
lations lying along a line with slope 38.53 ± 1.45 eV·b·fm.
It is worth repeating that the interactions shown here are
fundamentally di↵erent; from the inclusion of di↵erent
�EFT diagrams, to di↵erent parametrizations and 3N-
force regulator forms, they nevertheless still exhibit this
simple pattern. The uncertainty in the points (propa-
gated to the linear regression fit parameters) corresponds
to an estimate of the chiral truncation uncertainty for
each interaction. We note that while the error bars shown
for the theoretical calculations in Fig. 3a are chiral trun-
cation estimates, they should not be treated as uncorre-
lated errors; the linear relation between the ANCs and
the S-factor is inherent in the equations being solved not
the specific interaction. Thus, any change in the interac-
tion that would shift the sum of the ANCs to a di↵erent
value would correspondingly shift the S-factor according
to the linear fit. The tight uncertainty band on the fitted
line implies that if one were able to measure ANCs ac-
curately, the resulting theoretical uncertainty would be
orders of magnitude smaller than the currently recom-
mended value. Nevertheless, ANCs are not observables,
so instead we look to correlations between the S-factor at
zero energy and some higher energy, where experimental
measurements can be performed.

We find a similar connection between the low-energy
S-factor at energies ECM < 0.45 MeV, with the calcula-
tions deviating from a linear behavior only slightly. As
an example in Fig 3b we show the correlation between
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The �-decay of 8B, formed by the radiative capture of a proton on 7Be, is the source of the
majority of solar neutrinos measured on earth. Due to the the strong Coulomb repulsion of the
reactants, there has not yet been an experiment able to measure this 7Be(p, �)8B reaction rate at
astrophysically relevant energies. Therefore it is necessary to use theory to extrapolate measurements
to lower energies, resulting in a low-energy astrophysical S-factor uncertainty dominated by theory
components. We have performed a set of first-principle calculations of the 7Be(p, �)8B reaction in an
e↵ort to provide an independent prediction of the low-energy S-factor with quantified uncertainties.
We find that nuclear interactions derived from chiral e↵ective field theory quantitatively reproduce
the 8B spectrum, as well as the 7Be(p, �)8B radiative capture cross section. By truncating the
chiral expansion at various orders, we extract an estimate for the uncertainty stemming from the
missing physics in the nuclear interaction. Further analysis demonstrates underlying features in
the predicted S-factor, and allows us to combine theoretical calculations and experimental data to
produce an evaluated prediction. We expect the calculations and uncertainty quantification process
described here to set the standard for future first-principle calculations of light-ion astrophysical
reactions.

Astrophysical reactions powering low-mass stars such
as our sun have been at the center of theoretical and
experimental attention ever since nuclear reactions were
proposed as a mechanism for nucleosynthesis and energy
generation in stellar interiors [1, 2]. As a result, solar
fusion reactions are amongst the most precisely mea-
sured and thoroughly evaluated nuclear reactions; see
for example Refs. [3, 4] and references therein. Occur-
ring at the tail end of the proton-proton chain, the ra-
diative capture of a proton by a 7Be nucleus produc-
ing an 8B nucleus (or 7Be(p, �)8B reaction) is key in
determining the solar neutrino flux measured in terres-
trial observatories [5, 6]. Given its importance, it has
been measured multiple times over the years with vari-
ous techniques [7–15]. However, due to Coulomb repul-
sion between the proton and the 7Be nucleus, a direct
measurement at the astrophysically relevant energies is
still missing, and theory calculations [16, 17] are used
to extrapolate. As a result, the uncertainty in the cur-
rently recommended [4] value of the zero-energy S-factor,
S17(0) = 20.8± 0.7(expt)± 1.4(theory) eV·barn, is dom-
inated by theoretical contributions.

First-principle (or ab initio) theoretical approaches
provide an independent prediction of nuclear reaction
observables, with the interaction between nucleons being
their sole input. Consequently, the bulk of the theoretical
uncertainty of ab initio calculations will come from the
nuclear interaction employed. In this Letter we present
first-principle calculations of the 7Be+p system, includ-
ing the 7Be(p, �)8B reaction, using nucleon-nucleon (NN)
and three-nucleon (3N) interactions derived from chiral
e↵ective field theory (�EFT), with the goal of extracting
universal features of the system, and removing (in part)

the uncertainty that stems from the choice of a specific
interaction parametrization.

The no-core shell model with continuum (NCSMC),
first introduced in [18, 19], is a first-principle technique
that has been successful in delivering predictive calcula-
tions of nuclear properties of light nuclei by combining
bound and dynamic descriptions of an A-nucleon system
(see Ref. [20] for an in depth review of results). In the
NCSMC, the A-body Schrödinger equation for a total
angular momentum J and parity ⇡ is solved for both
bound and scattering boundary conditions by means of
a variational ansatz that takes the form

| J⇡

i =
X

�

c�|�AJ⇡i+
X

⌫

Z
r2dr

�J⇡

⌫ (r)

r
Â⌫ |�J⇡

⌫r i. (1)

Here, the states |�AJ⇡i are obtained from the no-core
shell model (NCSM) [21], and represent the �-th bound-
like solution to theA-body Schrödinger equation. The so-
called reaction channel basis states A⌫ |�J⇡

⌫r i correspond
to totally antisymmetric binary-cluster states where the
interacting nuclei (in this case 7Be and p) are a distance
r apart. The collective index ⌫ corresponds to all asymp-
totic quantum numbers (internal states, spins, and pari-
ties of the fragments, relative angular momentum `, and
spin s). The unknown discrete parameters c� and am-
plitudes �J⇡

⌫ (r) are then determined via the microscopic
R-matrix method [22].
In the NCSMC, the nucleon is treated as the funda-

mental degree of freedom, with all A nucleons considered
”active”. Therefore, the same NN+3N interaction deter-
mines both the intrinsic wave functions obtained in the
NCSM, as well as the reaction dynamics between the two
fragments. The use of �EFT-derived interactions is thus
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Cp1/2 Cp1/2 a1 a2 S17(0)

N2LO+3Nlnl 0.384 0.691 4.36 -0.49 23.5

N3LO+3Nlnl 0.390 0.678 1.25 -4.66 23.1

N4LO+3Nlnl 0.354 0.669 1.58 -4.38 21.7

N4LO+3N⇤
lnl 0.343 0.621 1.26 -4.95 19.4

N3LO⇤+3Nlnl 0.334 0.663 0.03 -7.16 21.2

N3LO⇤+3Nloc 0.308 0.584 2.54 -3.42 16.8

TABLE I. Values for asymptotic normalization coe�cients
(ANCs) in fm�1/2, scattering lengths in fm, and zero-energy
S-factor S17 in eV·b obtained from the set of interactions used
in this work, after applying a phenomenological correction
(see text) to the 8B bound-state energy.

The calculated astrophysical S factor shown in Fig. 2
was obtained within this NCSMC-pheno approach. We
compare results obtained with N3LO⇤+3Nlnl and the
N4LO+3N⇤

lnl interactions to experimental data. The cal-
culations reproduce well the contributions due to M1/E2
transitions from the 1+ resonance (sharp peak at ⇠
0.6 MeV), and to a lesser extent from the 3+ resonance
(⇠ 2.2 MeV), to the 2+ ground state of 8B. As a re-
sult of the phenomenological corrections, the two res-
onances appear at slightly lower energies than seen in
Fig. 1. The shifts are of the order of a few tens of
keVs (check this), and the position of the 1+ resonance
is about 100 keV lower than the NNDC and TUNL eval-
uation reported value of 0.77 MeV. The calculations us-
ing the N4LO+3N⇤

lnl interaction matches well the direct
measurement data from Junghans [34] starting at the 1+

resonance in the whole displayed range, including the
3+ bump. At low energies, below the 1+ resonance,
the N4LO+3N⇤

lnl results are slightly below the Junghans
data, while the N3LO⇤+3Nlnl match them well. However,
this choice of interaction overestimates the data some-
what at higher energies.

The multiple calculations of the 7Be + p system al-
low for a more systematic look at its inherent properties
without focusing on a specific interaction. Indeed, the
use of various chiral order truncations and di↵ering reg-
ulators gives us a window to the universal properties of
the system, as described by �EFT, since neither the form
of the interaction (due to di↵erent diagrams included at
each order), nor any specific parametrization of the in-
teraction is used.

As has been previously pointed out [35, 36], a linear re-
lation exists between the S-factor at zero energy and the
sum of the squares of the ANCs (C2

p1/2
+C2

p3/2
). We ob-

serve such a relation (see Fig. 3a), with all NCSMC calcu-
lations lying along a line with slope 38.53 ± 1.45 eV·b·fm.
It is worth repeating that the interactions shown here are
fundamentally di↵erent; from the inclusion of di↵erent
�EFT diagrams, to di↵erent parametrizations and 3N-
force regulator forms, they nevertheless still exhibit this
simple pattern. The uncertainty in the points (propa-
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FIG. 2. Astrophysical S factor of the 7Be(p,�)8B radiative
capture obtained from the NCSMC-pheno approach with the
N3LO⇤+3Nlnl (blue line) and the N4LO+3N⇤

lnl (red line) in-
teractions compared to experimental data. The bottom panel
focuses on the low-energy part and shows the evaluation of
S17(0) with its uncertainty [4] (orange box).

gated to the linear regression fit parameters) corresponds
to an estimate of the chiral truncation uncertainty for
each interaction. We note that while the error bars shown
for the theoretical calculations in Fig. 3a are chiral trun-
cation estimates, they should not be treated as uncorre-
lated errors; the linear relation between the ANCs and
the S-factor is inherent in the equations being solved not
the specific interaction. Thus, any change in the interac-
tion that would shift the sum of the ANCs to a di↵erent
value would correspondingly shift the S-factor according
to the linear fit. The tight uncertainty band on the fitted
line implies that if one were able to measure ANCs ac-
curately, the resulting theoretical uncertainty would be
orders of magnitude smaller than the currently recom-
mended value. Nevertheless, ANCs are not observables,
so instead we look to correlations between the S-factor at
zero energy and some higher energy, where experimental

3

Cp1/2 Cp3/2 a1 a2 S17(0)

N2LO+3Nlnl 0.384 0.691 4.4(1) -0.5(1) 23.9

N3LO+3Nlnl 0.390 0.678 1.3(1) -4.7(1) 23.5

N4LO+3Nlnl 0.354 0.669 1.6(1) -4.4(1) 22.0

N4LO+3N⇤
lnl 0.343 0.621 1.3(1) -5.0(1) 19.3

N3LO⇤+3Nlnl 0.334 0.663 0.1(1) -7.7(1) 21.1

N3LO⇤+3Nloc 0.308 0.584 2.5(1) -3.6(2) 16.8

Ref. [41] 0.315(9) 0.66(2) 17.34+1.11
�1.33 -3.18+0.55

�0.50

TABLE I. Values for asymptotic normalization coe�cients
(ANCs) in fm�1/2, scattering lengths in fm, and zero-energy
S-factor S17 in eV·b obtained from the set of interactions used
in this work, after applying a phenomenological correction
(see text) to the 8B bound-state as well as the 1+ and 3+

resonance energies.

eigenenergies in the 2+, 1+, 3+ channels are also mod-
ified to bring the bound and unbound NCSMC states
in the experimentally observed positions. The resulting
features of the calculations, scattering lengths, asymp-
totic normalization coe�cients (ANCs), and zero-energy
S-factor, after the shifts are shown in Table I. We con-
sider this approach to be an ab initio guided evaluation
process where experimental data are fed into the theoret-
ical prediction to correct small deficiencies of the nuclear
interaction, and results in greater predictive capability.

The calculated astrophysical S factor shown in Fig. 2
was obtained within this NCSMC-pheno approach. We
compare results obtained with N3LO⇤+3Nlnl and the
N4LO+3N⇤

lnl interactions to experimental data. The cal-
culations reproduce well the contributions due to M1/E2
transitions from the 1+ resonance (sharp peak at ⇠
0.6 MeV), and to a lesser extent from the 3+ resonance
(⇠ 2.2 MeV), to the 2+ ground state of 8B. As a result
of the phenomenological corrections, the two resonances
appear at slightly lower energies than seen in Fig. 1 that
shows results of the original (uncorrected) NCSMC cal-
culation. The shifts are of the order of a few tens of
keVs. The calculation using the N4LO+3N⇤

lnl interaction
matches well the direct measurement from Junghans [46]
starting at the 1+ resonance in the whole displayed range,
including the 3+ bump. At low energies, below the 1+

resonance, the N4LO+3N⇤
lnl results are slightly below the

Junghans data, while the N3LO⇤+3Nlnl reproduces them
well. However, this choice of interaction overestimates
the data somewhat at higher energies. The multiple
calculations of the 7Be + p system allow for a more sys-
tematic look at its inherent properties without focusing
on a specific interaction. Indeed, the use of various chi-
ral order truncations and di↵ering regulators gives us a
window to the universal properties of the system, as de-
scribed by �EFT, since neither the form of the interaction
(due to di↵erent diagrams included at each order), nor
any specific parametrization of the interaction is used.

As has been previously pointed out [47, 48], a linear re-

FIG. 2. Astrophysical S factor of the 7Be(p,�)8B radiative
capture obtained from the NCSMC-pheno approach with the
N3LO⇤+3Nlnl (blue line) and the N4LO+3N⇤

lnl (red line) in-
teractions compared to experimental data. The inset shows
the low-energy part and shows the evaluation of S17(0) with
its uncertainty [4] (orange box).

lation exists between the S-factor at zero energy and the
sum of the squares of the ANCs (C2

p1/2
+C2

p3/2
). We ob-

serve such a relation (see Fig. 3a), with all NCSMC calcu-
lations lying along a line with slope 38.53 ± 1.45 eV·b·fm.
It is worth repeating that the interactions shown here are
fundamentally di↵erent; from the inclusion of di↵erent
�EFT diagrams, to di↵erent parametrizations and 3N-
force regulator forms, they nevertheless still exhibit this
simple pattern. The uncertainty in the points (propa-
gated to the linear regression fit parameters) corresponds
to an estimate of the chiral truncation uncertainty for
each interaction. We note that while the error bars shown
for the theoretical calculations in Fig. 3a are chiral trun-
cation estimates, they should not be treated as uncorre-
lated errors; the linear relation between the ANCs and
the S-factor is inherent in the equations being solved not
the specific interaction. Thus, any change in the interac-
tion that would shift the sum of the ANCs to a di↵erent
value would correspondingly shift the S-factor according
to the linear fit. The tight uncertainty band on the fitted
line implies that if one were able to measure ANCs ac-
curately, the resulting theoretical uncertainty would be
orders of magnitude smaller than the currently recom-
mended value. Nevertheless, ANCs are not observables,
so instead we look to correlations between the S-factor at
zero energy and some higher energy, where experimental
measurements can be performed.

We find a similar connection between the low-energy
S-factor at energies ECM < 0.45 MeV, with the calcula-
tions deviating from a linear behavior only slightly. As
an example in Fig 3b we show the correlation between
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The �-decay of 8B, formed by the radiative capture of a proton on 7Be, is the source of the
majority of solar neutrinos measured on earth. Due to the the strong Coulomb repulsion of the
reactants, there has not yet been an experiment able to measure this 7Be(p, �)8B reaction rate at
astrophysically relevant energies. Therefore it is necessary to use theory to extrapolate measurements
to lower energies, resulting in a low-energy astrophysical S-factor uncertainty dominated by theory
components. We have performed a set of first-principle calculations of the 7Be(p, �)8B reaction in an
e↵ort to provide an independent prediction of the low-energy S-factor with quantified uncertainties.
We find that nuclear interactions derived from chiral e↵ective field theory quantitatively reproduce
the 8B spectrum, as well as the 7Be(p, �)8B radiative capture cross section. By truncating the
chiral expansion at various orders, we extract an estimate for the uncertainty stemming from the
missing physics in the nuclear interaction. Further analysis demonstrates underlying features in
the predicted S-factor, and allows us to combine theoretical calculations and experimental data to
produce an evaluated prediction. We expect the calculations and uncertainty quantification process
described here to set the standard for future first-principle calculations of light-ion astrophysical
reactions.

Astrophysical reactions powering low-mass stars such
as our sun have been at the center of theoretical and
experimental attention ever since nuclear reactions were
proposed as a mechanism for nucleosynthesis and energy
generation in stellar interiors [1, 2]. As a result, solar
fusion reactions are amongst the most precisely mea-
sured and thoroughly evaluated nuclear reactions; see
for example Refs. [3, 4] and references therein. Occur-
ring at the tail end of the proton-proton chain, the ra-
diative capture of a proton by a 7Be nucleus produc-
ing an 8B nucleus (or 7Be(p, �)8B reaction) is key in
determining the solar neutrino flux measured in terres-
trial observatories [5, 6]. Given its importance, it has
been measured multiple times over the years with vari-
ous techniques [7–15]. However, due to Coulomb repul-
sion between the proton and the 7Be nucleus, a direct
measurement at the astrophysically relevant energies is
still missing, and theory calculations [16, 17] are used
to extrapolate. As a result, the uncertainty in the cur-
rently recommended [4] value of the zero-energy S-factor,
S17(0) = 20.8± 0.7(expt)± 1.4(theory) eV·barn, is dom-
inated by theoretical contributions.

First-principle (or ab initio) theoretical approaches
provide an independent prediction of nuclear reaction
observables, with the interaction between nucleons being
their sole input. Consequently, the bulk of the theoretical
uncertainty of ab initio calculations will come from the
nuclear interaction employed. In this Letter we present
first-principle calculations of the 7Be+p system, includ-
ing the 7Be(p, �)8B reaction, using nucleon-nucleon (NN)
and three-nucleon (3N) interactions derived from chiral
e↵ective field theory (�EFT), with the goal of extracting
universal features of the system, and removing (in part)

the uncertainty that stems from the choice of a specific
interaction parametrization.
The no-core shell model with continuum (NCSMC),

first introduced in [18, 19], is a first-principle technique
that has been successful in delivering predictive calcula-
tions of nuclear properties of light nuclei by combining
bound and dynamic descriptions of an A-nucleon system
(see Ref. [20] for an in depth review of results). In the
NCSMC, the A-body Schrödinger equation for a total
angular momentum J and parity ⇡ is solved for both
bound and scattering boundary conditions by means of
a variational ansatz that takes the form

| J⇡

i =
X

�

c�|�AJ⇡i+
X

⌫

Z
r2dr

�J⇡

⌫ (r)

r
Â⌫ |�J⇡

⌫r i. (1)

Here, the states |�AJ⇡i are obtained from the no-core
shell model (NCSM) [21], and represent the �-th bound-
like solution to theA-body Schrödinger equation. The so-
called reaction channel basis states A⌫ |�J⇡

⌫r i correspond
to totally antisymmetric binary-cluster states where the
interacting nuclei (in this case 7Be and p) are a distance
r apart. The collective index ⌫ corresponds to all asymp-
totic quantum numbers (internal states, spins, and pari-
ties of the fragments, relative angular momentum `, and
spin s). The unknown discrete parameters c� and am-
plitudes �J⇡

⌫ (r) are then determined via the microscopic
R-matrix method [22].
In the NCSMC, the nucleon is treated as the funda-

mental degree of freedom, with all A nucleons considered
”active”. Therefore, the same NN+3N interaction deter-
mines both the intrinsic wave functions obtained in the
NCSM, as well as the reaction dynamics between the two
fragments. The use of �EFT-derived interactions is thus

arXiv: 2202.11759
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§ NCSMC S-factor results 3

Cp1/2 Cp1/2 a1 a2 S17(0)

N2LO+3Nlnl 0.384 0.691 4.36 -0.49 23.5

N3LO+3Nlnl 0.390 0.678 1.25 -4.66 23.1

N4LO+3Nlnl 0.354 0.669 1.58 -4.38 21.7

N4LO+3N⇤
lnl 0.343 0.621 1.26 -4.95 19.4

N3LO⇤+3Nlnl 0.334 0.663 0.03 -7.16 21.2

N3LO⇤+3Nloc 0.308 0.584 2.54 -3.42 16.8

TABLE I. Values for asymptotic normalization coe�cients
(ANCs) in fm�1/2, scattering lengths in fm, and zero-energy
S-factor S17 in eV·b obtained from the set of interactions used
in this work, after applying a phenomenological correction
(see text) to the 8B bound-state energy.

The calculated astrophysical S factor shown in Fig. 2
was obtained within this NCSMC-pheno approach. We
compare results obtained with N3LO⇤+3Nlnl and the
N4LO+3N⇤

lnl interactions to experimental data. The cal-
culations reproduce well the contributions due to M1/E2
transitions from the 1+ resonance (sharp peak at ⇠
0.6 MeV), and to a lesser extent from the 3+ resonance
(⇠ 2.2 MeV), to the 2+ ground state of 8B. As a re-
sult of the phenomenological corrections, the two res-
onances appear at slightly lower energies than seen in
Fig. 1. The shifts are of the order of a few tens of
keVs (check this), and the position of the 1+ resonance
is about 100 keV lower than the NNDC and TUNL eval-
uation reported value of 0.77 MeV. The calculations us-
ing the N4LO+3N⇤

lnl interaction matches well the direct
measurement data from Junghans [34] starting at the 1+

resonance in the whole displayed range, including the
3+ bump. At low energies, below the 1+ resonance,
the N4LO+3N⇤

lnl results are slightly below the Junghans
data, while the N3LO⇤+3Nlnl match them well. However,
this choice of interaction overestimates the data some-
what at higher energies.

The multiple calculations of the 7Be + p system al-
low for a more systematic look at its inherent properties
without focusing on a specific interaction. Indeed, the
use of various chiral order truncations and di↵ering reg-
ulators gives us a window to the universal properties of
the system, as described by �EFT, since neither the form
of the interaction (due to di↵erent diagrams included at
each order), nor any specific parametrization of the in-
teraction is used.

As has been previously pointed out [35, 36], a linear re-
lation exists between the S-factor at zero energy and the
sum of the squares of the ANCs (C2

p1/2
+C2

p3/2
). We ob-

serve such a relation (see Fig. 3a), with all NCSMC calcu-
lations lying along a line with slope 38.53 ± 1.45 eV·b·fm.
It is worth repeating that the interactions shown here are
fundamentally di↵erent; from the inclusion of di↵erent
�EFT diagrams, to di↵erent parametrizations and 3N-
force regulator forms, they nevertheless still exhibit this
simple pattern. The uncertainty in the points (propa-
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FIG. 2. Astrophysical S factor of the 7Be(p,�)8B radiative
capture obtained from the NCSMC-pheno approach with the
N3LO⇤+3Nlnl (blue line) and the N4LO+3N⇤

lnl (red line) in-
teractions compared to experimental data. The bottom panel
focuses on the low-energy part and shows the evaluation of
S17(0) with its uncertainty [4] (orange box).

gated to the linear regression fit parameters) corresponds
to an estimate of the chiral truncation uncertainty for
each interaction. We note that while the error bars shown
for the theoretical calculations in Fig. 3a are chiral trun-
cation estimates, they should not be treated as uncorre-
lated errors; the linear relation between the ANCs and
the S-factor is inherent in the equations being solved not
the specific interaction. Thus, any change in the interac-
tion that would shift the sum of the ANCs to a di↵erent
value would correspondingly shift the S-factor according
to the linear fit. The tight uncertainty band on the fitted
line implies that if one were able to measure ANCs ac-
curately, the resulting theoretical uncertainty would be
orders of magnitude smaller than the currently recom-
mended value. Nevertheless, ANCs are not observables,
so instead we look to correlations between the S-factor at
zero energy and some higher energy, where experimental

3

Cp1/2 Cp3/2 a1 a2 S17(0)

N2LO+3Nlnl 0.384 0.691 4.4(1) -0.5(1) 23.9

N3LO+3Nlnl 0.390 0.678 1.3(1) -4.7(1) 23.5

N4LO+3Nlnl 0.354 0.669 1.6(1) -4.4(1) 22.0

N4LO+3N⇤
lnl 0.343 0.621 1.3(1) -5.0(1) 19.3

N3LO⇤+3Nlnl 0.334 0.663 0.1(1) -7.7(1) 21.1

N3LO⇤+3Nloc 0.308 0.584 2.5(1) -3.6(2) 16.8

Ref. [41] 0.315(9) 0.66(2) 17.34+1.11
�1.33 -3.18+0.55

�0.50

TABLE I. Values for asymptotic normalization coe�cients
(ANCs) in fm�1/2, scattering lengths in fm, and zero-energy
S-factor S17 in eV·b obtained from the set of interactions used
in this work, after applying a phenomenological correction
(see text) to the 8B bound-state as well as the 1+ and 3+

resonance energies.

eigenenergies in the 2+, 1+, 3+ channels are also mod-
ified to bring the bound and unbound NCSMC states
in the experimentally observed positions. The resulting
features of the calculations, scattering lengths, asymp-
totic normalization coe�cients (ANCs), and zero-energy
S-factor, after the shifts are shown in Table I. We con-
sider this approach to be an ab initio guided evaluation
process where experimental data are fed into the theoret-
ical prediction to correct small deficiencies of the nuclear
interaction, and results in greater predictive capability.

The calculated astrophysical S factor shown in Fig. 2
was obtained within this NCSMC-pheno approach. We
compare results obtained with N3LO⇤+3Nlnl and the
N4LO+3N⇤

lnl interactions to experimental data. The cal-
culations reproduce well the contributions due to M1/E2
transitions from the 1+ resonance (sharp peak at ⇠
0.6 MeV), and to a lesser extent from the 3+ resonance
(⇠ 2.2 MeV), to the 2+ ground state of 8B. As a result
of the phenomenological corrections, the two resonances
appear at slightly lower energies than seen in Fig. 1 that
shows results of the original (uncorrected) NCSMC cal-
culation. The shifts are of the order of a few tens of
keVs. The calculation using the N4LO+3N⇤

lnl interaction
matches well the direct measurement from Junghans [46]
starting at the 1+ resonance in the whole displayed range,
including the 3+ bump. At low energies, below the 1+

resonance, the N4LO+3N⇤
lnl results are slightly below the

Junghans data, while the N3LO⇤+3Nlnl reproduces them
well. However, this choice of interaction overestimates
the data somewhat at higher energies. The multiple
calculations of the 7Be + p system allow for a more sys-
tematic look at its inherent properties without focusing
on a specific interaction. Indeed, the use of various chi-
ral order truncations and di↵ering regulators gives us a
window to the universal properties of the system, as de-
scribed by �EFT, since neither the form of the interaction
(due to di↵erent diagrams included at each order), nor
any specific parametrization of the interaction is used.

As has been previously pointed out [47, 48], a linear re-

FIG. 2. Astrophysical S factor of the 7Be(p,�)8B radiative
capture obtained from the NCSMC-pheno approach with the
N3LO⇤+3Nlnl (blue line) and the N4LO+3N⇤

lnl (red line) in-
teractions compared to experimental data. The inset shows
the low-energy part and shows the evaluation of S17(0) with
its uncertainty [4] (orange box).

lation exists between the S-factor at zero energy and the
sum of the squares of the ANCs (C2

p1/2
+C2

p3/2
). We ob-

serve such a relation (see Fig. 3a), with all NCSMC calcu-
lations lying along a line with slope 38.53 ± 1.45 eV·b·fm.
It is worth repeating that the interactions shown here are
fundamentally di↵erent; from the inclusion of di↵erent
�EFT diagrams, to di↵erent parametrizations and 3N-
force regulator forms, they nevertheless still exhibit this
simple pattern. The uncertainty in the points (propa-
gated to the linear regression fit parameters) corresponds
to an estimate of the chiral truncation uncertainty for
each interaction. We note that while the error bars shown
for the theoretical calculations in Fig. 3a are chiral trun-
cation estimates, they should not be treated as uncorre-
lated errors; the linear relation between the ANCs and
the S-factor is inherent in the equations being solved not
the specific interaction. Thus, any change in the interac-
tion that would shift the sum of the ANCs to a di↵erent
value would correspondingly shift the S-factor according
to the linear fit. The tight uncertainty band on the fitted
line implies that if one were able to measure ANCs ac-
curately, the resulting theoretical uncertainty would be
orders of magnitude smaller than the currently recom-
mended value. Nevertheless, ANCs are not observables,
so instead we look to correlations between the S-factor at
zero energy and some higher energy, where experimental
measurements can be performed.

We find a similar connection between the low-energy
S-factor at energies ECM < 0.45 MeV, with the calcula-
tions deviating from a linear behavior only slightly. As
an example in Fig 3b we show the correlation between

Recommended value S17(0) ~ 19.8(3) eV b
Latest evaluation in Rev. Mod. Phys. 83,195–245 (2011): 
S17(0) = 20.8 ± 0.7(expt) ± 1.4(theory) eV b 
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“An anomaly in the internal pair creation on the M1 transition depopulating the 18.15 MeV
isoscalar 1

+ state on 8
Be was observed. This could be explained by the creation and

subsequent decay of a new boson .. mass 17.01(16) MeV”

Can ab initio nuclear physics help interpret the anomaly?
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In 2016, the ATOMKI collaboration announced [Phys. Rev. Lett. 116, 042501 (2016)] observing an 
unexpected enhancement of the e+-e−pair production signal in one of the 8Be nuclear transitions 
induced by an incident proton beam on a 7Li target. Many beyond-standard-model physics explanations 
have subsequently been proposed. One popular theory is that the anomaly is caused by the creation of 
a protophobic vector boson (X) with a mass around 17 MeV [e.g. Phys. Rev. Lett. 117, 071803 (2016)] in 
the nuclear transition. We study this hypothesis by deriving an isospin relation between photon and X
couplings to nucleons. This allows us to find simple relations between protophobic X-production cross 
sections and those for measured photon production. The net result is that X production is dominated 
by direct transitions induced by E1X and L1X (transverse and longitudinal electric dipoles) and C1X

(charge dipole) without going through any nuclear resonance (i.e. Bremsstrahlung radiation) with a 
smooth energy dependence that occurs for all proton beam energies above threshold. This contradicts 
the experimental observations and invalidates the protophobic vector boson explanation.

 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Ref. [1] observed an anomaly in measuring e+-e−pair produc-
tion in 8Be’s nuclear transition between the 18.15 MeV 1+ reso-
nance and its 0+ ground state. Fig. 1 shows the relevant energy 
levels [2]. The two 1+ resonances are barely above the 7Li + p
threshold. The unexpected enhancement of the signal was ob-
served in the large e+-e−invariant mass region (about 17 MeV) 
and in the large pair-correlation angles (near 140◦) region. The 
large angle enhancement is a simple kinematic signature of the 
decay of a heavy particle into an e+ − e− pair. The anomaly 
has generated many beyond-standard-model physics explanations 
(e.g., [1,3,4]).

Our focus is on the protophobic vector boson explanation (see 
e.g. [3,5,6]). We shall show that taking this hypothesis seriously 
leads to the result that the large angle enhancement of pair-
production would have been seen at all ATOMKI energies above 
threshold.

* Corresponding author.
E-mail addresses: zhang.10038@osu.edu (X. Zhang), miller@phys.washington.edu

(G.A. Miller).

Fig. 1. The 8Be levels [2] that are relevant for the M1 transitions producing photon 
(γ ) and recently proposed vector boson X [3,5,6]. The two 1+ resonance states are 
either mostly isovector (MIV) or mostly isoscalar (MIS). The blue line is the 7Li + p
threshold. Note X and (off-shell) γ can further decay into e+-e− .

The physics of a boson that almost does not interact with pro-
tons provides an interesting contrast with photon-nucleon interac-
tions. We next show that isospin symmetry enables the derivation 
of a useful relation between the matrix elements of the two inter-
actions.

The photon-quark interactions are given by the following elec-
tromagnetic (EM) current in its 2nd quantization form:

https://doi.org/10.1016/j.physletb.2021.136061
0370-2693/ 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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§ Wave function ansatz

§ 3/2-, 1/2-, 7/2-, 5/2-, 5/2- 7Li and 7Be states in cluster basis
§ 15 positive and 15 negative parity states in 8Be composite 

state basis
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��7Be + n, µ
↵

I {3
2
�, 1

2
�, 7

2
�, 5

2
�, 5

2
�} 7

Li and 7
Be

states in cluster basis
I 15 positive and 15 negative parity states

in 8
Be composite state basis

7 / 24

TUNL Nuclear Data Evaluation Project

In collaboration with UBC/TRIUMF PhD student Peter Gysbers



30NCSMC calculations of 8Be structure and 7Li+p scattering and capture

§ Wave function ansatz

§ 3/2-, 1/2-, 7/2-, 5/2-, 5/2- 7Li and 7Be states in cluster basis
§ 15 positive and 15 negative parity states in 8Be composite 

state basis

Input states from NCSM

 
(8)
NCSMC =

X

�

c�
��8Be,�

↵
+

X

⌫

Z
dr�⌫(r)Â⌫
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8Be Structure

Calculated 8
Be bound states w.r.t. 7

Li + p threshold
(Nmax = 8/9)

State Energy [MeV] Excitation Energy [MeV]
NCSMC Expt. NCSMC Expt.

0
+ -16.13 -17.25 0.00 0.00

2
+ -12.72 -14.23 3.41 3.03

4
+ -4.31 -5.91 11.82 11.35

2
+ -0.10 -0.63 16.03 16.63

2
+ +0.31 -0.33 16.44 16.92

Matches experiment well, except the 3rd 2
+ is slightly above

the 7
Li + p threshold.
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induced by an incident proton beam on a 7Li target. Many beyond-standard-model physics explanations 
have subsequently been proposed. One popular theory is that the anomaly is caused by the creation of 
a protophobic vector boson (X) with a mass around 17 MeV [e.g. Phys. Rev. Lett. 117, 071803 (2016)] in 
the nuclear transition. We study this hypothesis by deriving an isospin relation between photon and X
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sections and those for measured photon production. The net result is that X production is dominated 
by direct transitions induced by E1X and L1X (transverse and longitudinal electric dipoles) and C1X

(charge dipole) without going through any nuclear resonance (i.e. Bremsstrahlung radiation) with a 
smooth energy dependence that occurs for all proton beam energies above threshold. This contradicts 
the experimental observations and invalidates the protophobic vector boson explanation.

 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Ref. [1] observed an anomaly in measuring e+-e−pair produc-
tion in 8Be’s nuclear transition between the 18.15 MeV 1+ reso-
nance and its 0+ ground state. Fig. 1 shows the relevant energy 
levels [2]. The two 1+ resonances are barely above the 7Li + p
threshold. The unexpected enhancement of the signal was ob-
served in the large e+-e−invariant mass region (about 17 MeV) 
and in the large pair-correlation angles (near 140◦) region. The 
large angle enhancement is a simple kinematic signature of the 
decay of a heavy particle into an e+ − e− pair. The anomaly 
has generated many beyond-standard-model physics explanations 
(e.g., [1,3,4]).

Our focus is on the protophobic vector boson explanation (see 
e.g. [3,5,6]). We shall show that taking this hypothesis seriously 
leads to the result that the large angle enhancement of pair-
production would have been seen at all ATOMKI energies above 
threshold.

* Corresponding author.
E-mail addresses: zhang.10038@osu.edu (X. Zhang), miller@phys.washington.edu

(G.A. Miller).

Fig. 1. The 8Be levels [2] that are relevant for the M1 transitions producing photon 
(γ ) and recently proposed vector boson X [3,5,6]. The two 1+ resonance states are 
either mostly isovector (MIV) or mostly isoscalar (MIS). The blue line is the 7Li + p
threshold. Note X and (off-shell) γ can further decay into e+-e− .

The physics of a boson that almost does not interact with pro-
tons provides an interesting contrast with photon-nucleon interac-
tions. We next show that isospin symmetry enables the derivation 
of a useful relation between the matrix elements of the two inter-
actions.

The photon-quark interactions are given by the following elec-
tromagnetic (EM) current in its 2nd quantization form:

https://doi.org/10.1016/j.physletb.2021.136061
0370-2693/ 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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In 2016, the ATOMKI collaboration announced [Phys. Rev. Lett. 116, 042501 (2016)] observing an 
unexpected enhancement of the e+-e−pair production signal in one of the 8Be nuclear transitions 
induced by an incident proton beam on a 7Li target. Many beyond-standard-model physics explanations 
have subsequently been proposed. One popular theory is that the anomaly is caused by the creation of 
a protophobic vector boson (X) with a mass around 17 MeV [e.g. Phys. Rev. Lett. 117, 071803 (2016)] in 
the nuclear transition. We study this hypothesis by deriving an isospin relation between photon and X
couplings to nucleons. This allows us to find simple relations between protophobic X-production cross 
sections and those for measured photon production. The net result is that X production is dominated 
by direct transitions induced by E1X and L1X (transverse and longitudinal electric dipoles) and C1X

(charge dipole) without going through any nuclear resonance (i.e. Bremsstrahlung radiation) with a 
smooth energy dependence that occurs for all proton beam energies above threshold. This contradicts 
the experimental observations and invalidates the protophobic vector boson explanation.

 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Ref. [1] observed an anomaly in measuring e+-e−pair produc-
tion in 8Be’s nuclear transition between the 18.15 MeV 1+ reso-
nance and its 0+ ground state. Fig. 1 shows the relevant energy 
levels [2]. The two 1+ resonances are barely above the 7Li + p
threshold. The unexpected enhancement of the signal was ob-
served in the large e+-e−invariant mass region (about 17 MeV) 
and in the large pair-correlation angles (near 140◦) region. The 
large angle enhancement is a simple kinematic signature of the 
decay of a heavy particle into an e+ − e− pair. The anomaly 
has generated many beyond-standard-model physics explanations 
(e.g., [1,3,4]).

Our focus is on the protophobic vector boson explanation (see 
e.g. [3,5,6]). We shall show that taking this hypothesis seriously 
leads to the result that the large angle enhancement of pair-
production would have been seen at all ATOMKI energies above 
threshold.

* Corresponding author.
E-mail addresses: zhang.10038@osu.edu (X. Zhang), miller@phys.washington.edu

(G.A. Miller).

Fig. 1. The 8Be levels [2] that are relevant for the M1 transitions producing photon 
(γ ) and recently proposed vector boson X [3,5,6]. The two 1+ resonance states are 
either mostly isovector (MIV) or mostly isoscalar (MIS). The blue line is the 7Li + p
threshold. Note X and (off-shell) γ can further decay into e+-e− .

The physics of a boson that almost does not interact with pro-
tons provides an interesting contrast with photon-nucleon interac-
tions. We next show that isospin symmetry enables the derivation 
of a useful relation between the matrix elements of the two inter-
actions.

The photon-quark interactions are given by the following elec-
tromagnetic (EM) current in its 2nd quantization form:

https://doi.org/10.1016/j.physletb.2021.136061
0370-2693/ 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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§ Motivated by ATOMKI experiments (Firak, Krasznahorkay et al., EPJ Web of Conferences 232, 04005 (2020)) 
§ No-core shell model with continuum (NCSMC) with wave function ansatz
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Ab initio calculations of 7Li(p,𝛾)8Be radiative capture, 7Li(p,e+e-)8Be pair production & X17 boson 
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sections and those for measured photon production. The net result is that X production is dominated 
by direct transitions induced by E1X and L1X (transverse and longitudinal electric dipoles) and C1X

(charge dipole) without going through any nuclear resonance (i.e. Bremsstrahlung radiation) with a 
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Ref. [1] observed an anomaly in measuring e+-e−pair produc-
tion in 8Be’s nuclear transition between the 18.15 MeV 1+ reso-
nance and its 0+ ground state. Fig. 1 shows the relevant energy 
levels [2]. The two 1+ resonances are barely above the 7Li + p
threshold. The unexpected enhancement of the signal was ob-
served in the large e+-e−invariant mass region (about 17 MeV) 
and in the large pair-correlation angles (near 140◦) region. The 
large angle enhancement is a simple kinematic signature of the 
decay of a heavy particle into an e+ − e− pair. The anomaly 
has generated many beyond-standard-model physics explanations 
(e.g., [1,3,4]).

Our focus is on the protophobic vector boson explanation (see 
e.g. [3,5,6]). We shall show that taking this hypothesis seriously 
leads to the result that the large angle enhancement of pair-
production would have been seen at all ATOMKI energies above 
threshold.
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Fig. 1. The 8Be levels [2] that are relevant for the M1 transitions producing photon 
(γ ) and recently proposed vector boson X [3,5,6]. The two 1+ resonance states are 
either mostly isovector (MIV) or mostly isoscalar (MIS). The blue line is the 7Li + p
threshold. Note X and (off-shell) γ can further decay into e+-e− .

The physics of a boson that almost does not interact with pro-
tons provides an interesting contrast with photon-nucleon interac-
tions. We next show that isospin symmetry enables the derivation 
of a useful relation between the matrix elements of the two inter-
actions.

The photon-quark interactions are given by the following elec-
tromagnetic (EM) current in its 2nd quantization form:
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Ab initio calculations of 7Li(p,𝛾)8Be radiative capture, 7Li(p,e+e-)8Be pair production & X17 boson 

§ Motivated by ATOMKI experiments (Firak, Krasznahorkay et al., EPJ Web of Conferences 232, 04005 (2020)) 
§ No-core shell model with continuum (NCSMC) with wave function ansatzInput states from NCSM
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NCSMC IPCC results consistent with LANL R-matrix phenomenology 
arXiv: 2106.06834; Phys. Rev. C 105, 055502 (2022) 

Internal electron-positron pair conversion correlation

NCSMC calculations lead by P. Gysbers (UBC/TRIUMF PhD student)

Angle between e- and e+

Assuming J=1 → 0+ bound-to-bound like decay rate

NCSMC matched to data at 65o
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§ Motivated by ATOMKI experiments (Firak, Krasznahorkay et al., EPJ Web of Conferences 232, 04005 (2020)) 
§ No-core shell model with continuum (NCSMC) with wave function ansatz
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Ab initio calculations of 7Li(p,𝛾)8Be radiative capture, 7Li(p,e+e-)8Be pair production & X17 boson 
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§ Motivated by ATOMKI experiments (Firak, Krasznahorkay et al., EPJ Web of Conferences 232, 04005 (2020)) 
§ No-core shell model with continuum (NCSMC) with wave function ansatz

NCSMC calculations lead by P. Gysbers (UBC/TRIUMF PhD student)

NCSMC pair production cross section more in line with ATOMKI data

Calculating properly the pair production cross section
with the interference of different multipoles

Internal electron-positron pair conversion correlation

Following formalism by Viviani et al.
Phys. Rev. C 105, 014001 (2022) 
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§ Motivated by ATOMKI experiments (Firak, Krasznahorkay et al., EPJ Web of Conferences 232, 04005 (2020)) 
§ No-core shell model with continuum (NCSMC) with wave function ansatz

NCSMC calculations lead by P. Gysbers (UBC/TRIUMF PhD student)

NCSMC pair production cross section more in line with ATOMKI data

Calculating properly the pair production cross section
with the interference of different multipoles
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Ab initio calculations of 7Li(p,𝛾)8Be radiative capture, 7Li(p,e+e-)8Be pair production & X17 boson 

§ Motivated by ATOMKI experiments (Firak, Krasznahorkay et al., EPJ Web of Conferences 232, 04005 (2020)) 
§ No-core shell model with continuum (NCSMC) with wave function ansatzInput states from NCSM
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Data: Zahnow et al.
Z.Phys.A 351 229-236 (1995) 

Using gX estimates 
from Backens et al. 
arXiv:2110.06055

NCSMC calculations lead by P. Gysbers (UBC/TRIUMF PhD student)

Integrated cross sections
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§ Motivated by ATOMKI experiments (Firak, Krasznahorkay et al., EPJ Web of Conferences 232, 04005 (2020)) 
§ No-core shell model with continuum (NCSMC) with wave function ansatz

Data: Zahnow et al.
Z.Phys.A 351 229-236 (1995) 

Latest developments (arXiv: 2205.07744): 
Anomaly in E1 direct capture – X17 a vector boson

… more 
calculations to do

Using gX estimates 
from Backens et al. 
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Why investigate the EDM and the anapole moment?

§ The EDM is a promising probe for CP violation beyond the standard model as well as 
CP violating QCD 𝜃̅ parameter

§ Nuclear structure can enhance the EDM

§ Nuclear EDMs can be measured in storage rings (CERN feasibility study: 
arXiv:1912.07881)

§ Parity violation in atomic and molecular systems sensitive to a variety of “new physics” 

§ Probes electron-quark electroweak interaction

§ Best limits on the Z’ boson parity violating interaction with electrons and nucleons



42Nuclear spin dependent parity violating effects in light polyatomic molecules 

§ Experiments proposed for 9BeNC, 25MgNC

§ To extract the underlying physics, atomic, molecular, 
and nuclear structure effects must be understood
§ Ab initio calculations

§ Spin dependent PV
§ Z-boson exchange between nucleon axial-

vector and electron-vector currents (b)
§ Electromagnetic interaction of atomic electrons 

with the nuclear anapole moment (c)

3

FIG. 1: Potential nuclear spin-dependent parity violation measurement scheme. (Left) Laser cooled triatomic
molecules are prepared in the first bending mode to access the `-doublet structure, and are launched upward into an
interaction region to form a molecule fountain. Oscillating electric field E drives electric dipole transitions between
states of opposite parity. Magnetic field B tunes to degeneracy a particular pair of opposite-parity states | ±i to
enhance their interaction via the e↵ective parity violating Hamiltonian H

e↵
NSD�PV. Population transfer from the

initial state to the degenerate opposite-parity state is read out by laser spectroscopy after molecules fall back out of
the interaction region. (Right) Stark interference: State transfer (orange) is parity dependent due to the combined
NSD-PV interactions (wavy line) and electric dipole interaction interfering constructively or destructively depending

on the relative orientations of the electron spin, nuclear spin, and molecule axis.

PVDIS/SoLID, a precision NSD-PV measurement in one
of the systems considered here would represent the first
experimental determination of C2u and C2d.

The third contribution, hfs, originates in the nuclear-
spin-independent weak interaction combined with the hy-
perfine interaction [23], and in the single-particle approx-
imation is given by

hfs = �1

3
QW

↵µN

mpr0A
1/3

' 2.5⇥ 10�4
A

2/3
µN , (5)

with µN the magnetic moment of the nucleus and QW

the nuclear weak charge. The hyperfine interaction scales
like A

2/3, similar to the anapole interaction, but due to
the small numerical prefactor is strongly suppressed.

Equations 2 and 3 estimate a and ax respectively in
the single particle (i.e. valence nucleon) limit. This model
ignores nucleon-nucleon interactions (apart from the par-
ity violating e↵ects), and is an especially rough approxi-
mation for nuclei with partially filled shells. In Section III
we use a more sophisticated no-core shell model (NCSM)
[37] to calculate the anapole moments and ax of the 9Be,
13C, 14,15N, and 25Mg nuclei.

We should note another NSD-PV e↵ect produced by
the (tensor-type) interaction between the electrons and
the nuclear weak quadrupole moment. Measurements of
these moments will allow the first determination of the
quadrupole moments of the neutron distribution in nu-

clei and provide a test of the theory of nuclear forces
with applications to nuclei and neutron stars [38–40]. As
with other NSD-PV e↵ects, the e↵ect of the nuclear weak
quadruple moment is expected to be enhanced in certain
systems [41].
Eq. (1) can be rewritten for the 2⌃1/2 and 2⇧1/2 elec-

tronic states [15, 24] as

H
e↵
NSD-PV = WPV

⇣
n̂⇥ Se↵

⌘
· I/I, (6)

where n̂ is the unit vector pointing from the heavier to
the lighter nucleus along the internuclear axis, and Se↵

is the e↵ective spin of the valence electron. In order to
precisely determine the e↵ective coupling constant  from
experiments, the parameter WPV needs to be known with
high accuracy. This parameter depends on the electronic
structure and is specific to the given atom or molecule
and to the electronic state. It is defined by the matrix
element between two di↵erent |⌦i states [42],

WPV ⌘ GFp
2
h+ 1

2 | ⇢(r)↵+ |� 1
2 i (7)

with

↵+ = ↵x + i↵y =

✓
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◆
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✓
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�y 0

◆
, (8)

where �x and �y are the Pauli matrices and ⇢(r) is the
nuclear density distribution function, which is assumed
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FIG. 5 (Color online) Major diagrams contributing to the
parity violation in atoms. N and e

� label nucleons and
atomic electrons. Ae,N and Ve,N denote axial-vector and vec-
tor currents. (a) Z-boson exchange between electron axial-
vector and nucleon vector currents (AnVe); (b) Z-boson ex-
change between nucleon axial-vector and electron vector cur-
rents (VnAe); (c) Electromagnetic interaction of atomic elec-
trons with the nuclear anapole moment (shown as a blob); (d)
Combined e↵ect of the AnVe diagram (a) and hyperfine inter-
action. The vertical line separates nuclear spin-independent
(a) and spin-dependent (b)–(d) diagrams.

experiments described below show how Laporte’s rule is
violated in atoms and molecules.

Microscopically, APV is caused by the weak interaction
mediated by the exchange of a Z boson. Since the range
of this interaction is ⇠ ~/(mZc) ⇡ 2 ⇥ 10�3 fm [mZ ⇡
91GeV/c

2 is the mass of the Z boson], it is essentially
a contact interaction on the scale of atomic distances.
The relevant contact contribution to the SM Hamiltonian
density reads (Marciano, 1995)

HPV =
GFp
2

X
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⇣
C

(1)

q
ē�µ�5e q̄�

µ
q + C

(2)

q
ē�µe q̄�

µ
�5q

⌘
,

(32)
where the Fermi constant

GF ⇡ 1.17⇥ 10�5(~c)3 GeV�2 = 2.22⇥ 10�14 a.u.

determines the overall strength of the weak interaction,
the summation is over quark flavors, q = {u, d, s, ...}, e
and q are field operators for electrons and quarks respec-
tively, �µ are Dirac matrices, and �5 is the Dirac matrix
associated with pseudoscalars.

The coupling of the electron axial-vector currents to
the quark vector currents is parametrized by the con-

stants C
(1)

q ; the constants C
(2)

q describe the coupling of
the electron vector currents to quark axial-vector cur-
rents. These interactions and constants could be fur-
ther combined into couplings to protons and neutrons of
atomic nuclei (Marciano and Sanda, 1978), e.g.,
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reflecting the quark composition of nucleons. Explicitly

in terms of the Weinberg angle ✓W:
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,
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= �1

2
,

C
(2)

p
= �C

(2)

n
= gAC

(1)

p
,

where gA ⇡ 1.26 is the scale factor accounting for the
partially conserved axial vector current and sin2 ✓W =
0.23126(5) (Patrignani et al., 2016). Since sin2 ✓W ⇡ 1/4,

the C
(1)

n contribution dominates HPV except for the 1H
atom.
The main diagrams contributing to PNC processes in

atoms are shown in Fig. 5. The HPV terms discussed
above are illustrated by diagrams (a) and (b). In addi-
tion, there is also a contribution from the nuclear anapole
moment (c) and a combined e↵ect of Z-boson exchange
and hyperfine interaction (d). The e↵ective weak Hamil-
tonian arising from diagram (a) does not depend on the
nuclear spin, while that from the set of diagrams (b)–(d)
does. We will consider the former in Sec. IV.B and the
latter in Sec. IV.C.

B. Nuclear-spin independent e↵ects

1. Overview

The dominant contribution to parity violation in atoms
arises from the electron axial-vector – nucleon-vector
term in HPV, Fig. 5(a). If we treat the nucleon mo-
tion non-relativistically, average over the nucleon distri-
bution, and neglect the di↵erence between proton and
neutron distributions, we reduce the corresponding part
of HPV to an e↵ective weak Hamiltonian in the electron
sector

HW = QW

GFp
8
�5 ⇢ (r) , (33)

where ⇢ (r) is the nuclear density and QW is a nuclear
weak charge. The non-relativistic limit of the operator
�5 ⇢ (r) is

1

2c
[2⇢(r)(� · p)� i(� ·r⇢)] ,

where p is the linear momentum operator and � are elec-
tron Pauli matrices.
The nuclear weak charge QW entering the e↵ective

weak Hamiltonian is

QW ⌘ 2Z C
(1)

p
+ 2N C

(1)

n
,

where Z and N are the numbers of protons and neu-
trons in the nucleus. Electrons predominantly couple
to neutrons and QW ⇡ �N . This is a “tree-level” [or
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Our predictions for the weak coupling constantsf, , h, 011V2 and /r>l have been described 
in previous sections, and will be summarized again in the next section. In order to 
avoid any ambiguity as to conventions involved in the definitions of &‘P.c. and 
S’D.“., we also give the expression of the NN potential which results from the above 
exchanges in the nonrelativistic limit 

l,p.~. _ .hgnNN i +l x +2 
12 2112 ( 2 

_ g, (&oi, . +, + &l ( +1 ; +2 )z + /j,2 (3Tl”T;(6;l,~ * +2) ) 

+ ..+ 
x (4 - &J * p12-Mp2 

I ,.&(r)j + i(l + XA 6 X 62 * [ '12>j2 ,M)] 

- g, (h,O + h,l ( ill i2 )‘) 

where 

.txr) = z 3 

(11% 

(116) A(r) =fw(r) = s. 
The strong coupling constants are assumed to be positive. 

In the comparison with experiment, corrections to the potential due to 27r exchange 
will be neglected. They have been found to be negligible for the Al = 0 and 2 parts 
of the potential where they modify slightly the radial shape of the p exchange potential 
[41]. For the d1= 1 part, they involve new components which correspond to the 
exchange of 27r in a P state, and since this is the quantum number of the pparticle, 
some double counting may occur. Examination of our results shows that the 27~ 
exchange contribution induced by the weak rrNN interaction and the p exchange 
contribution which arises from the same process at the quark level may be comparable 
in sign and magnitude. This result, which is not surprising in a picture where rNN 
and pNN p.n.c. coupling constants have been derived as consistently as possible, 
indicates that the above potential probably takes into account most of the 27r 
exchange contributions. While it is difficult to make a precise statement about the 
contribution of other exchanges involving several mesons, it is reasonable to expect 
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applied to this problem. This allows us to catalog the uncertainties in the amplitudes, and 
to provide reasonable bounds on their values. The connection of OUT results with experiment 
is also discussed. 

I. INTRODUCTION 

Although many properties of the weak interaction are presently under scrutiny 
via studies at the very highest-energy accelerators, there is also a great deal of interest 
in experiments which probe the weak force via low-energy, parity violating nuclear 
processes [I]. Although a substantial experimental as well as theoretical effort has been 
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The reasons for this are simple. On the experimental side, effects, such as detection 
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measurement uncertainties (e.g. survey) to minimize the
di↵erence between simulated and measured wire yields.
This minimization process established the uncertainty
on the geometry factors. The corresponding uncertainty
in the asymmetry was determined by repeating the �2-
minimization of Eqns. 8 for each simulated set of geom-
etry factors. For the PV asymmetry, the result is shown
in Fig. 2(right).

A possible overall rotation of the wire frame stack with
respect to the holding field would also mix the PV and
PC asymmetries. The rotation angle was measured to be
zero, with an uncertainty of 3 mrad, using field probes
and survey equipment. The corresponding uncertainty
in the PV asymmetry is APC ⇥ 3⇥ 10�3 ' 0.1⇥ 10�8, 7
times smaller than our statistical error. A possible false
asymmetry from the RFSR signal coupling to the front-
end detector and DAQ electronics was measured during
weekly beam-o↵ runs. The averaged beam-o↵ or pedestal
asymmetry is Aped = (0.024± 0.2)⇥ 10�8. The 3He tar-
get material produced extremely low background, being
essentially insensitive to gamma background. The sig-
nal background from neutron capture induced �-decay
in the target windows and other chamber materials was
investigated using simulations and signal decay patterns
in the chamber during beam-o↵ periods; none were seen.
Stern-Gerlach steering was evaluated based on the mea-
sured field gradient in the experiment holding field. The
beam polarization and spin-flip e�ciency were measured
in dedicated runs [20]. The final result, including statis-
tical and all systematic error is

APV = (1.58± 0.97 (Stat)± 0.24 (Sys))⇥ 10�8 . (9)

CONCLUSION

This result provides an important benchmark that ex-
tends our knowledge of the spin-isospin structure of the
hadronic weak interaction, because the uncertainty in
APV is an order of magnitude smaller than the current
theoretical reasonable ranges. The NPDGamma collabo-
ration reported a measurement of the isovector pion cou-
pling h1

⇡ = (2.6± 1.2) ⇥ 10�7 [5]. If we insert this value
into Eqn. 1, the contribution to APV is �4.9 ⇥ 10�8,
indicating that there must be considerable cancellation
between the h1

⇡ term and heavy meson terms.
When our result is combined with the NPDGamma

asymmetry [5] a constraint on a linear combination of
heavy-meson couplings is obtained. These constraints
are shown in Fig. 3. A least squares fit to the two asym-
metries gives

h⇢�! ⌘ h1
! + 0.46h1

⇢ � 0.46h0
! � 0.76h0

⇢ � 0.02h2
⇢

= (12.9± 5.7)⇥ 10�7 . (10)

This analysis is possible because both reactions have
been calculated with small model uncertainty, using the

FIG. 3. A least squares fit to the NPDGamma [5] asymmetry
and the n3He asymmetry gives a constraint on a combina-
tion of heavy meson couplings, where h⇢�! ⌘ h1

! + 0.46h1
⇢ �

0.46h0
! � 0.76h0

⇢ � 0.02h2
⇢ = (12.9± 5.7)⇥ 10�7

DDH potential model of the hadronic weak interaction.
In order to improve our knowledge of the spin-isospin
structure of the hadronic weak interaction additional
measurements in few-body systems with small experi-
mental uncertainties are required. Equally important are
calculations of the asymmetries with small model uncer-
tainties.
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Our predictions for the weak coupling constantsf, , h, 011V2 and /r>l have been described 
in previous sections, and will be summarized again in the next section. In order to 
avoid any ambiguity as to conventions involved in the definitions of &‘P.c. and 
S’D.“., we also give the expression of the NN potential which results from the above 
exchanges in the nonrelativistic limit 
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The strong coupling constants are assumed to be positive. 
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will be neglected. They have been found to be negligible for the Al = 0 and 2 parts 
of the potential where they modify slightly the radial shape of the p exchange potential 
[41]. For the d1= 1 part, they involve new components which correspond to the 
exchange of 27r in a P state, and since this is the quantum number of the pparticle, 
some double counting may occur. Examination of our results shows that the 27~ 
exchange contribution induced by the weak rrNN interaction and the p exchange 
contribution which arises from the same process at the quark level may be comparable 
in sign and magnitude. This result, which is not surprising in a picture where rNN 
and pNN p.n.c. coupling constants have been derived as consistently as possible, 
indicates that the above potential probably takes into account most of the 27r 
exchange contributions. While it is difficult to make a precise statement about the 
contribution of other exchanges involving several mesons, it is reasonable to expect 
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We report the first observation of the parity-violating gamma-ray asymmetry Anp
γ in neutron-proton

capture using polarized cold neutrons incident on a liquid parahydrogen target at the Spallation Neutron
Source at Oak Ridge National Laboratory. Anp

γ isolates the ΔI ¼ 1, 3S1 → 3P1 component of the weak
nucleon-nucleon interaction, which is dominated by pion exchange and can be directly related to a single
coupling constant in either the DDHmeson exchange model or pionless effective field theory. We measured
Anp
γ ¼ ½−3.0# 1.4ðstatÞ # 0.2ðsystÞ& × 10−8, which implies a DDH weak πNN coupling of h1π ¼

½2.6 # 1.2ðstatÞ # 0.2ðsystÞ& × 10−7 and a pionless EFT constant of C3S1→3P1=C0 ¼ ½−7.4# 3.5ðstatÞ #
0.5ðsystÞ& × 10−11 MeV−1. We describe the experiment, data analysis, systematic uncertainties, and
implications of the result.
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measurement uncertainties (e.g. survey) to minimize the
di↵erence between simulated and measured wire yields.
This minimization process established the uncertainty
on the geometry factors. The corresponding uncertainty
in the asymmetry was determined by repeating the �2-
minimization of Eqns. 8 for each simulated set of geom-
etry factors. For the PV asymmetry, the result is shown
in Fig. 2(right).

A possible overall rotation of the wire frame stack with
respect to the holding field would also mix the PV and
PC asymmetries. The rotation angle was measured to be
zero, with an uncertainty of 3 mrad, using field probes
and survey equipment. The corresponding uncertainty
in the PV asymmetry is APC ⇥ 3⇥ 10�3 ' 0.1⇥ 10�8, 7
times smaller than our statistical error. A possible false
asymmetry from the RFSR signal coupling to the front-
end detector and DAQ electronics was measured during
weekly beam-o↵ runs. The averaged beam-o↵ or pedestal
asymmetry is Aped = (0.024± 0.2)⇥ 10�8. The 3He tar-
get material produced extremely low background, being
essentially insensitive to gamma background. The sig-
nal background from neutron capture induced �-decay
in the target windows and other chamber materials was
investigated using simulations and signal decay patterns
in the chamber during beam-o↵ periods; none were seen.
Stern-Gerlach steering was evaluated based on the mea-
sured field gradient in the experiment holding field. The
beam polarization and spin-flip e�ciency were measured
in dedicated runs [20]. The final result, including statis-
tical and all systematic error is

APV = (1.58± 0.97 (Stat)± 0.24 (Sys))⇥ 10�8 . (9)

CONCLUSION

This result provides an important benchmark that ex-
tends our knowledge of the spin-isospin structure of the
hadronic weak interaction, because the uncertainty in
APV is an order of magnitude smaller than the current
theoretical reasonable ranges. The NPDGamma collabo-
ration reported a measurement of the isovector pion cou-
pling h1

⇡ = (2.6± 1.2) ⇥ 10�7 [5]. If we insert this value
into Eqn. 1, the contribution to APV is �4.9 ⇥ 10�8,
indicating that there must be considerable cancellation
between the h1

⇡ term and heavy meson terms.
When our result is combined with the NPDGamma

asymmetry [5] a constraint on a linear combination of
heavy-meson couplings is obtained. These constraints
are shown in Fig. 3. A least squares fit to the two asym-
metries gives

h⇢�! ⌘ h1
! + 0.46h1

⇢ � 0.46h0
! � 0.76h0

⇢ � 0.02h2
⇢

= (12.9± 5.7)⇥ 10�7 . (10)

This analysis is possible because both reactions have
been calculated with small model uncertainty, using the

FIG. 3. A least squares fit to the NPDGamma [5] asymmetry
and the n3He asymmetry gives a constraint on a combina-
tion of heavy meson couplings, where h⇢�! ⌘ h1

! + 0.46h1
⇢ �

0.46h0
! � 0.76h0

⇢ � 0.02h2
⇢ = (12.9± 5.7)⇥ 10�7

DDH potential model of the hadronic weak interaction.
In order to improve our knowledge of the spin-isospin
structure of the hadronic weak interaction additional
measurements in few-body systems with small experi-
mental uncertainties are required. Equally important are
calculations of the asymmetries with small model uncer-
tainties.
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to have a Gaussian shape. WPV can not be measured
and has to be provided from sophisticated molecular cal-
culations.

We use the relativistic coupled cluster approach to de-
termine theWPV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e↵ects
are available.

III. NO-CORE SHELL MODEL NUCLEAR
CALCULATIONS

In the NCSM, nuclei are considered to be systems of A
nonrelativistic point-like nucleons interacting via realis-
tic two- and three-body interactions. Each nucleon is an
active degree of freedom and the translational invariance
of observables, the angular momentum, and the parity
of the nucleus are conserved. The many-body wave func-
tion is expanded over a basis of antisymmetric A-nucleon
harmonic oscillator (HO) states. The basis contains up
to Nmax HO excitations above the lowest possible Pauli
configuration and depends on an additional parameter ⌦,
the frequency of the HO well.

The only input for the present NCSM calculations
was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
order of chiral perturbation expansion (N3LO) [45] and
chiral three-nucleon (3N) interaction at the N2LO or-
der denoted NN N3LO + 3N(lnl). For a more e�cient
convergence, the Hamiltonian was renormalized by the
Similarity-Renormalization-Group (SRG) unitary trans-
formation [46, 47] with the evolution parameter �SRG=2
fm�1. For 9Be, the largest basis space we were able
to reach was Nmax=9, while for the other p-shell nu-
clei we calculated up to Nmax=7 using the importance
truncation [48, 49] for Nmax=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to
Nmax=3 were performed using importance truncation for
Nmax=3. The m-scheme dimensions of the largest basis
spaces were of the order of 108. The HO frequency of
~⌦=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even Nmax spaces while the unnatural
parity eigenstates in the odd Nmax spaces. The parity
non-conserving (PNC) NN interaction admixes the un-

natural parity states in the ground state,

| gs Ii = | gs I
⇡i+

X

j

| j I
�⇡i (9)

⇥ 1

Egs � Ej
h j I

�⇡|V PNC
NN | gs I

⇡i ,

which then gives rise to the anapole moment. We used
the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the f⇡ ⌘ h

1
⇡=2.6⇥ 10�7 taken

from Ref. [51]. In NCSM, when the | gs I
⇡i is calculated

in Nmax space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in Nmax+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function
| gs Ii is obtained by solving the Schrödinger equation
with an inhomogeneous term

(Egs �H)| gs Ii = V
PNC
NN | gs I

⇡i . (10)

To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator

âs =
⇡e

m

AX

i=1

µi(ri ⇥ �i) , (11)

which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), m is the nucleon mass and
µi is the nucleon magnetic moment in units of nuclear
magneton, i.e., µi=µp(1/2+tz,i) + µn(1/2�tz,i).
The relationship between A and as is given by

A =

p
2e

GF
as, (12)

with

as = h gs I Iz=I|â(1)s,0| gs I Iz=Ii. (13)

Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [56] and find for the
dimensionless coupling constant A

A = �i4⇡
e
2

GF

~
mc

(II10|II)p
2I + 1

(14)

⇥
X

j

h gs I
⇡||

p
4⇡/3

AX

i=1

µiri[Y1(r̂i)�i]
(1)|| j I

�⇡i

⇥ 1

Egs � Ej
h j I

�⇡|V PNC
NN | gs I

⇡i .

Here, (II10|II)=I/

p
I(I + 1).

We have also performed NCSM calculations for the
matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax' �
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We report the first precision measurement of the parity-violating asymmetry in the direction of proton
momentum with respect to the neutron spin, in the reaction 3Heðn; pÞ3H, using the capture of polarized cold
neutrons in an unpolarized active 3He target. The asymmetry is a result of the weak interaction between
nucleons, which remains one of the least well-understood aspects of electroweak theory. The measurement
provides an important benchmark for modern effective field theory and potential model calculations.
Measurements like this are necessary to determine the spin-isospin structure of the hadronic weak
interaction. Our asymmetry result is APV ¼ ½1.55% 0.97ðstatÞ % 0.24ðsysÞ& × 10−8, which has the smallest
uncertainty of any hadronic parity-violating asymmetry measurement so far.

DOI: 10.1103/PhysRevLett.125.131803

Introduction.—The electroweak component of the
standard model (SM) describes the weak couplings of
W and Z gauge bosons to quarks and therefore, in principle,
the hadronic weak interaction (HWI). In nuclei, the HWI
causes parity-violating (PV) admixtures in nuclear wave
functions and produces small, but observable, PV spin-
momentum correlations, photon circular polarizations, and
anapole moments. However, the computational difficulties
associated with nonperturbative QCD dynamics currently
preclude first-principles calculations of hadronic PV
observables. As a result, the HWI is the least well under-
stood sector of the standard model. The most ambitious
effort to carry out a QCD calculation on the lattice has been
that of Wassem [1].
Desplanques, Donoghue, and Holstein (DDH) [2] intro-

duced a physically motivated meson-exchange potential
model. The resulting PV nucleon-nucleon potential is a
sum over the six parity-odd, time-reversal-even, rotation-
ally invariant operators that can be constructed from the

spin, isospin, momenta, and coordinates of the interacting
nucleons and six meson-exchange coupling constants. The
six floating coupling constants (h1π , h0ρ, h1ρ, h2ρ, h0ω, and h1ω)
are labeled by meson type and total isospin change (ΔI).
Modern calculations recast this in terms of pionless
effective field theory (EFT) and chiral EFT, using low
energy constants [3–6]. To determine the spin-isospin
structure of the HWI, one needs precision measurements
of all PV asymmetries for which there are theoretical
predictions, to constrain all couplings in the DDH theory
or EFT.
An inherent problem in the experimental determination

of the structure of the HWI is that asymmetries in calcu-
lable few-body systems are very small (∼10−7 → ∼10−8)
and difficult to measure. Here we present the first precision
measurement of the parity-violating asymmetry in the
direction of proton momentum with respect to the neutron
spin, in the reaction 3Heðn; pÞ3H, a few body system for
which the asymmetry has been calculated, using both the
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+𝝉𝟏 ⋅ 𝝉𝟐 𝝈% ⋅ 𝛁 𝐺̅*'𝑦* 𝑟 − 𝐺̅+'𝑦+ 𝑟

+
𝜏,-

2 𝝈% ⋅ 𝛁 𝐺̅*.𝑦* 𝑟 − 𝐺̅+.𝑦+ 𝑟 − 𝐺̅&.𝑦& 𝑟

+
𝜏%-

2 𝝈, ⋅ 𝛁 𝐺̅*.𝑦* 𝑟 + 𝐺̅+.𝑦+ 𝑟 − 𝐺̅&.𝑦& 𝑟

+ 3𝜏.-𝜏/- − 𝝉𝟏 ⋅ 𝝉𝟐 𝝈% ⋅ 𝛁 𝐺̅*/𝑦* 𝑟 − 𝐺̅+/𝑦+ 𝑟

Introduced through Hamiltonian HPVTV :

• Based on one meson exchange model

• 𝑦! 𝑟 = 𝑒"#!$/(4𝜋𝑟)
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HPVTV introduces parity admixture in the ground state (perturbation theory):

Nuclear EDM is dominated by polarization contribution:

0 0 + #0

#0 = %
-./

1
𝐸/ − 𝐸-

𝑛 𝑛 𝐻0121 0

𝐷(345) = 0 ,𝐷6 #0 + 𝑐. 𝑐. ,𝐷6 =
𝑒
2
%
789

:

1 + 𝜏76 𝑧7



48Parity and time-reversal violating nucleon-nucleon interaction and nuclear EDM
HPVTV introduces parity admixture in the ground state (perturbation theory):

Nuclear EDM is dominated by polarization contribution:
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§ Parity violating (non-conserving) VNNPNC interaction
§ Conserves total angular momentum I
§ Mixes opposite parities 
§ Has isoscalar, isovector and isotensor components
§ Admixes unnatural parity states in the ground state

4

to have a Gaussian shape. WPV can not be measured
and has to be provided from sophisticated molecular cal-
culations.

We use the relativistic coupled cluster approach to de-
termine theWPV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e↵ects
are available.

III. NO-CORE SHELL MODEL NUCLEAR
CALCULATIONS

In the NCSM, nuclei are considered to be systems of A
nonrelativistic point-like nucleons interacting via realis-
tic two- and three-body interactions. Each nucleon is an
active degree of freedom and the translational invariance
of observables, the angular momentum, and the parity
of the nucleus are conserved. The many-body wave func-
tion is expanded over a basis of antisymmetric A-nucleon
harmonic oscillator (HO) states. The basis contains up
to Nmax HO excitations above the lowest possible Pauli
configuration and depends on an additional parameter ⌦,
the frequency of the HO well.

The only input for the present NCSM calculations
was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
order of chiral perturbation expansion (N3LO) [45] and
chiral three-nucleon (3N) interaction at the N2LO or-
der denoted NN N3LO + 3N(lnl). For a more e�cient
convergence, the Hamiltonian was renormalized by the
Similarity-Renormalization-Group (SRG) unitary trans-
formation [46, 47] with the evolution parameter �SRG=2
fm�1. For 9Be, the largest basis space we were able
to reach was Nmax=9, while for the other p-shell nu-
clei we calculated up to Nmax=7 using the importance
truncation [48, 49] for Nmax=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to
Nmax=3 were performed using importance truncation for
Nmax=3. The m-scheme dimensions of the largest basis
spaces were of the order of 108. The HO frequency of
~⌦=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even Nmax spaces while the unnatural
parity eigenstates in the odd Nmax spaces. The parity
non-conserving (PNC) NN interaction admixes the un-

natural parity states in the ground state,

| gs Ii = | gs I
⇡i+

X

j

| j I
�⇡i (9)

⇥ 1

Egs � Ej
h j I

�⇡|V PNC
NN | gs I

⇡i ,

which then gives rise to the anapole moment. We used
the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the f⇡ ⌘ h

1
⇡=2.6⇥ 10�7 taken

from Ref. [51]. In NCSM, when the | gs I
⇡i is calculated

in Nmax space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in Nmax+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function
| gs Ii is obtained by solving the Schrödinger equation
with an inhomogeneous term

(Egs �H)| gs Ii = V
PNC
NN | gs I

⇡i . (10)

To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator

âs =
⇡e

m

AX

i=1

µi(ri ⇥ �i) , (11)

which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), m is the nucleon mass and
µi is the nucleon magnetic moment in units of nuclear
magneton, i.e., µi=µp(1/2+tz,i) + µn(1/2�tz,i).
The relationship between A and as is given by

A =

p
2e

GF
as, (12)

with

as = h gs I Iz=I|â(1)s,0| gs I Iz=Ii. (13)

Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [56] and find for the
dimensionless coupling constant A

A = �i4⇡
e
2

GF

~
mc

(II10|II)p
2I + 1

(14)

⇥
X

j

h gs I
⇡||

p
4⇡/3

AX

i=1

µiri[Y1(r̂i)�i]
(1)|| j I

�⇡i

⇥ 1

Egs � Ej
h j I

�⇡|V PNC
NN | gs I

⇡i .

Here, (II10|II)=I/

p
I(I + 1).

We have also performed NCSM calculations for the
matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax' �

§ Anapole moment operator dominated by 
spin contribution

31

where the weak-interaction constants C
(2)

n,p were intro-
duced in Sec. IV.A and

N = (I + 1/2)(�1)I+`N+1/2

is the relativistic angular quantum number for the un-
paired nucleon in a state with orbital angular momen-
tum `N . Notice that this contribution is substantially
suppressed compared to the VnAe diagram 5(a) because

|C(2)

N /C
(1)

n
| = gA(1� 4 sin2 ✓W) ⇡ 0.1

and only the unpaired nucleon contributes to Fig. 5(b)
whereas all nucleons coherently contribute to Fig. 5(a).

The ⌘NAM coe�cient parameterizes the nuclear
anapole moment (NAM) contribution to atomic parity
violation. It is illustrated in Fig. 5(c) and discussed
in Sec. IV.C.2. Parity violation in the nucleus leads
to toroidal currents that in turn generate a parity-odd,
time-reversal-even (P-odd, T-even) moment, known as
the nuclear anapole moment, that couples electromag-
netically to atomic electrons. The nuclear shell model
expression for the anapole moment (Flambaum et al.,
1984),

⌘NAM = 1.15⇥ 10�3
N

I(I + 1)
µN gNA

2/3
, (38)

depends on the atomic number A, the magnetic moment
µN of the unpaired nucleon expressed in units of the
nuclear magneton, and the weak coupling constant gN .
Their values are µp ⇡ 2.8, µn ⇡ �1.9, gp ⇡ 5, and
gn ⇡ �1.

The combined action of the hyperfine interaction and
the spin-independent Z-exchange interaction from nu-
cleon vector (VnAe) currents leads to the third nuclear-
spin dependent parity violating e↵ect, Fig. 5(d). This
contribution is quantified by a parameter ⌘hf . An an-
alytical approximation for ⌘hf was derived by Flam-
baum and Khriplovich (1985b) and values of ⌘hf were
determined for various cases of experimental interest by
Bouchiat and Piketty (1991) and Johnson et al. (2003).
Johnson et al. (2003) also tabulated the values of ⌘hf

for microwave transitions between ground-state hyper-
fine levels in atoms of potential experimental interest.

Recently, Flambaum (2016) pointed out a novel nu-
clear spin-dependent e↵ect: the quadrupole moment of
the neutron distribution leads to a tensor weak interac-
tion that mixes opposite parity states in atoms with total
angular momentum di↵erence  2. This e↵ect should be
carefully investigated in future work to see if it influences
determination of the anapole moments from APV mea-
surements. The e↵ect is of interest on its own as a probe
of the neutron distributions in nuclei (Flambaum et al.,
2017). The atom or molecule should contain a nucleus
with I > 1/2, and there is an enhancement for heavy and
deformed nuclei.

An outstanding question is the relative importance
of the nuclear spin-dependent contributions. The ⌘hf

coe�cient can be carefully evaluated and it is usually
suppressed compared to ⌘NAM and ⌘axial. Generically,
because of the A

2/3 scaling, the anapole contribution
dominates for heavier nuclei. For lighter nuclei, the
axial contribution is more important and APV experi-

ments can be a sensitive probe of C(2)

n,p electroweak pa-
rameters, providing a window on the AnVe interactions
that are typically studied with deep inelastic scatter-
ing (PVDIS-Collaboration, 2014). The boundary be-
tween the axial- and anapole-dominated regimes depends
on quantum numbers of the valence and type of the va-

lence nucleon (DeMille et al., 2008a). Values of C(2)

n,p can
set constraints on exotic new physics such as leptopho-
bic Z 0 bosons (Buckley and Ramsey-Musolf, 2012), while
NAMs probe hadronic PNC.

2. Nuclear anapole moments as a probe of hadronic parity
violation

The traditional multipolar expansion of electromag-
netic potentials generated by a finite distribution of cur-
rents and charges leads to the identification of mag-
netic (MJ) and electric (EJ) multipolar moments (Jack-
son, 1999). Non-vanishing nuclear multipolar moments
(charge E0, magnetic-dipole M1, electric-quadrupole E2,
. . . ) respect parity and time reversal, i.e. they are P-even
and T-even, and describe multipolar fields outside the fi-
nite distribution. Weak interactions inside the nucleus
lead to additional P-odd moments (Gray et al., 2010);
the leading moment is referred to as the anapole mo-
ment. Zel’dovich and Vaks were the first to point out
the possibility of such a moment (Zel’dovich, 1958).

The anapole moment a of a current density distribu-
tion j(r) is defined as

a = �⇡

Z
d
3
r r

2 j(r), (39)

with magnetic vector potential A = a�(r), leading to
the electromagnetic coupling of electrons to the nuclear
anapole moment, (↵ · A). A classical analog of the
anapole moment is a Tokamak-like configuration shown
in Fig. 7. The inner and outer parts of the toroidal cur-
rents are weighted di↵erently by r

2 in Eq. (39), leading
to a nonvanishing value of the anapole moment. Mi-
croscopically, a nuclear anapole moment can be related
to a chiral distribution of nuclear magnetization caused
by parity-violating nuclear forces (Bouchiat and Piketty,
1991). Due to the Wigner-Eckart theorem, the NAM
(just as the nuclear magnetic moment) is proportional to
the nuclear spin I so that

a =
GF

|e|
p
2
⌘NAMI,
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to have a Gaussian shape. WPV can not be measured
and has to be provided from sophisticated molecular cal-
culations.

We use the relativistic coupled cluster approach to de-
termine theWPV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e↵ects
are available.
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tic two- and three-body interactions. Each nucleon is an
active degree of freedom and the translational invariance
of observables, the angular momentum, and the parity
of the nucleus are conserved. The many-body wave func-
tion is expanded over a basis of antisymmetric A-nucleon
harmonic oscillator (HO) states. The basis contains up
to Nmax HO excitations above the lowest possible Pauli
configuration and depends on an additional parameter ⌦,
the frequency of the HO well.

The only input for the present NCSM calculations
was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
order of chiral perturbation expansion (N3LO) [45] and
chiral three-nucleon (3N) interaction at the N2LO or-
der denoted NN N3LO + 3N(lnl). For a more e�cient
convergence, the Hamiltonian was renormalized by the
Similarity-Renormalization-Group (SRG) unitary trans-
formation [46, 47] with the evolution parameter �SRG=2
fm�1. For 9Be, the largest basis space we were able
to reach was Nmax=9, while for the other p-shell nu-
clei we calculated up to Nmax=7 using the importance
truncation [48, 49] for Nmax=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to
Nmax=3 were performed using importance truncation for
Nmax=3. The m-scheme dimensions of the largest basis
spaces were of the order of 108. The HO frequency of
~⌦=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even Nmax spaces while the unnatural
parity eigenstates in the odd Nmax spaces. The parity
non-conserving (PNC) NN interaction admixes the un-
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not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function
| gs Ii is obtained by solving the Schrödinger equation
with an inhomogeneous term
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âs =
⇡e

m

AX

i=1

µi(ri ⇥ �i) , (11)

which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), m is the nucleon mass and
µi is the nucleon magnetic moment in units of nuclear
magneton, i.e., µi=µp(1/2+tz,i) + µn(1/2�tz,i).
The relationship between A and as is given by

A =

p
2e

GF
as, (12)

with
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FIG. 7 (Color online) The toroidal component of current den-
sity j produces anapole moment a, with magnetic fieldB that
is entirely confined inside the “doughnut”. The azimuthal
component of current density generates magnetic dipole mo-
ment aligned with a, with its associated conventional dipolar
magnetic field not shown.

defining the constant ⌘NAM in Eq. (36). Atomic electrons
interact with NAM only inside the nucleus, as is appar-
ent from the classical analog, since the magnetic field is
entirely confined inside the “doughnut”. Another impor-
tant observation is that the NAM is proportional to the
area of the toroidal winding, i.e., / (nuclear radius)2 /
A

2/3, where A is the atomic number, illustrating the
trend in Eq. (38).

Microscopically, the nuclear anapole arises due to
nucleon-nucleon interaction, mediated by meson ex-
change, where one of the nucleon-meson vertexes is
strong and another is weak and P-violating. Thus,
determination of anapole moments from atomic parity
violation provides an important window into hadronic
PNC (Haxton and Wieman, 2001). The innards of
the anapole bubble in Fig. 5(c) are shown in Fig. 7
of the review by Haxton and Wieman (2001). The
nuclear-physics approach is to characterize weak meson-
nucleon couplings in terms of parameters of Desplan-
ques, Donoghue and Holstein (DDH) (Desplanques et al.,
1980), who deduced SM estimates of their values. These
six hadronic PNC parameters are f⇡, h

0,1,2

⇢
, h

0,1

!
, where

the subscript (⇡, ⇢,!) indicates meson type and the su-
perscript stands for isoscalar (0), isovector (1), or isoten-
sor (2). We refer the reader to Haxton and Wieman
(2001) for a detailed review of nuclear structure cal-
culations of NAMs within the DDH parameterization.
The e↵ective field theory parameterizations of hadronic
PNC, an alternative to DDH, are also discussed (Ramsey-
Musolf and Page, 2006), although NAM analysis in this
framework remains to be carried out. It should be
pointed out that a more recent review (Haxton and Hol-
stein, 2013) omits the Cs result. These authors explain
the omission by the fact that the accuracy of the con-
straints on the nucleon-nucleon PNC interaction derived

FIG. 8 (Color online) Constraints on combinations of par-
ity violating meson couplings (⇥107) derived from Cs anapole
moment (yellow band) and nuclear experiments. Bands have
a width of one standard deviation. Best value predicted by
the DDH analysis is also shown. This figure combines Cs
NAM band from Haxton and Wieman (2001) with more re-
cent nuclear-physics constraints figure from Haxton and Hol-
stein (2013).

from the NAM experiments is somewhat di�cult to as-
sess due to complex nuclear polarizability issues.

The derived bounds (Haxton and Wieman, 2001; Hax-
ton and Holstein, 2013) on PNC meson couplings are
shown in Fig. 8. The 133Cs APV result is shown in addi-
tion to constraints from scattering of polarized protons on
unpolarized proton and 4He targets and emission of cir-
cularly polarized photons from 18F and 19F nuclei. The
area colored red lies at the intersection of nuclear ex-
perimental bands. There is some tension with the Cs
anapole moment result, although the Cs result is consis-
tent with “reasonable ranges” of the DDH parameters.
Haxton and Wieman (2001) point out that additional
APV experiments with unpaired-neutron nuclei would
produce a band perpendicular to the Cs band (the 133Cs
anapole moment is primarily due to a valence proton).
This provides strong motivation for the ongoing exper-
iments to measure nuclear-spin-dependent APV e↵ects
in nuclei with unpaired neutrons such as 171Yb (Leefer
et al., 2014), 212Fr (Aubin et al., 2013), and 137Ba (De-
Mille et al., 2008a).
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sensitivity of the above systems to the NSD-PV e↵ects
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clei we calculated up to Nmax=7 using the importance
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derline of NCSM applicability. Only calculations up to
Nmax=3 were performed using importance truncation for
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spaces were of the order of 108. The HO frequency of
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The natural (i.e., ground-state) parity eigenstates are
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in Nmax space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in Nmax+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function
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termine theWPV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
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are available.
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where the coefficients ĝi(ω) are finite continued fractions
formed from the entries in the tridiagonal matrix. For example,

ĝ1(ω) = 1

ω − α1 − β2
1

ω−α2−
β2

2
ω−α3−β2

3

.

. . . (12)

With each additional iteration, one additional Lanczos vector is
added to the expansion, and each continued fraction increases
in rank by one through the addition of a new αn+1 and βn.
As most Green’s function applications involve convolutions
with relatively smooth operators, often Ĝn(ω)|v1〉 becomes
numerically equivalent to G(ω)|v1〉 after a few Lanczos
iterations (∼20) [13].

An important consequence of Eq. (11) is that, once the
Lanczos calculation is completed, the Green’s function is
known as a function of ω. This will be important in the
applications we discuss later.

III. ELECTROWEAK RESPONSE FUNCTIONS AT
ARBITRARY q2

The discussion of the previous section addressed the special
case of a fixed operator, like the GT operator, that governs
the weak nuclear response along the q = 0 line in the (ω, q)
response plane. However, many electroweak processes of
interest—intermediate-energy electron or neutrino scattering,
muon capture, etc.—involve appreciable three-momentum
transfers (and the associated excitation of radial modes in the
nucleus). That is, the relevant response function is

S(ω, q) =
N∑

i=1

|〈ψEi
|O(q)|g.s.〉|2δ(ω − Ei), (13)

where O(q) is (an assumed one-body) electroweak operator
that depends explicitly on q. If one naively applies the
formalism of the preceding section, a new calculation would
be needed for each desired q, because the operator evolves
with q. This would require tediously stepping over a grid of
fixed q’s computing a Lanczos calculation for each value, to
map the full surface above the response plane.

Here we discuss procedures for evaluating S(ω, q) very
efficiently as a function of q (and ω) over the entire response
plane, at the cost of only a few Lanczos calculations. The
approach depends on the assumption that the shell-model
basis of Slater determinants has been formed from harmonic-
oscillator single-particle wave functions. This choice allows
one to exploit attractive properties of the matrix elements of
O(q) between such wave functions.

While we will delay details of the test application (electro-
magnetic response functions for 28Si) to the next section, here
we sketch the basic idea. One can write O(q)|g.s.〉 in second
quantization,

∑

α,β

〈α|O(q)|β〉a†
αaβ |g.s.〉, (14)

where α and β represent a complete set of single-particle
quantum numbers. For the choice of harmonic oscillators, ma-
trix elements of the standard charge, longitudinal, transverse
electric, and transverse magnetic multipoles can be evaluated
in closed form, leading to [14,15]

〈α|OJ (q)|β〉 = y(J−K)/2e−ypαβ(y). (15)

Here we denote the multipolarity of the operator by J,K =
2(1) for normal (abnormal) parity operators, and y = (qb/2)2,
where b is the oscillator parameter. The crucial point is that
p(y) is a finite polynomial in y or q2. In the 28Si test case, the
most complicated operator that arises has only three nonzero
terms in p(y).

We first go through a schematic argument to show how this
y dependence might be exploited. Denoting the order of the
polynomial p by m, it follows that

O(q)|g.s.〉
= y(J−K)/2e−y

(
c0

∣∣v0
1

〉
+ c1y

∣∣v1
1

〉
+ · · · + cmym

∣∣vm
1

〉)

≡ y(J−K)/2e−yc(y)|v1(y)〉, (16)

with a notation analogous to that of Eq. (6) and with the
strength cj chosen to make |vj

1 〉 a unit vector. For parity-
conserving interactions and standard phase conventions, all
quantities can be taken as real, with the c’s non-negative.
The |vj

1 〉, of course, are not orthonormal. Similarly c(y) and
|v1(y)〉 can be viewed as a y-dependent strength and unit vector,
respectively. It follows that

S(ω, q) = yJ−Ke−2y |c(y)|2
N∑

i=1

|〈ψEi
|v1(y)〉|2δ(ω − Ei),

(17)

where

|c(y)|2|〈ψEi
|v1(y)〉|2 =

m∑

j,k=0

c∗
kcj y

j+k〈vk
1 |ψEi

〉〈ψEi
|vj

1 〉, (18)

so that the response function has a similar polynomial form. It
also follows that moments of S(ω) have the form
∫ ∞

0
S(ω)ωλdω = yJ−Ke−2y |c(y)|2

N∑

i=1

|〈ψEi
|v1(y)〉|2Eλ

i .

(19)

These last two results simply state that if one had a complete
set of N eigenvalues and eigenfunctions, each contributing
transition probability would have a simple, analytical behavior
in y.

Of course, these results are only of academic interest: As
we are assuming that N is prohibitively large, a complete
diagonalization is impossible. This leaves a much more
interesting question: Can we find an analog of Eq. (7) or (8), an
efficient Lanczos representation of S(ω, q), that also exploits
the polynomial behavior of the response in y? If so, it would
appear to be a practical way to construct the response over the
entire (ω, q) plane.

We have explored several of the possibilities, uncovering
some of the numerical pitfalls. Even the less successful
methods are interesting conceptually, so we describe the
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Abstract. The Lorentz integral transform (LIT) method, which allows ab-
initio calculations of few-body cross sections, is reformulated via the Lanczos
algorithm. The new technique, being quite general, is tested on inclusive and
exclusive photonuclear reactions on three- and four-body nuclei. Due to the
rapid convergence of the algorithm one gains a substantial decrease in CPU
time with an excellent agreement with the results of a conventional LIT calcu-
lation. The present work opens up the possibility of ab-initio calculations for
inclusive and exclusive processes for systems with a number of particles
N ! 6.

1 Introduction

The study of reaction cross sections is an important tool to reveal the dynamics of
particle systems. For systems with a small number of particles one aims at micro-
scopic calculations trying to take into account all relevant degrees of freedom of
the considered process. However, calculations via the classical approach, where
one uses initial and continuum state wave functions, are very difficult to perform
for reactions at energies beyond the three-body breakup thresholds. The Lorentz
integral transform (LIT) method [1] offers an alternative solution to the problem:
The transition matrix elements entering in the cross sections are obtained in a direct
way, without the explicit knowledge of the complicated continuum wave functions,
but taking into account final state interactions correctly. Various applications of this
method for electromagnetic reactions on light nuclei can be found in the literature
[1–8].

The LIT method is based on Schr€oodinger-like equations with source terms
(which depend on the kind of reaction one is treating), whose solutions have bound-
state-like asymptotic boundary conditions. The solutions of these equations can be

| gs Ii ⇡
X

k

gk(E0)|vki
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Figure 1. The polarization contribution to 3He EDM (in e fm)
due to the ⇡-exchange PTV NN interaction (5). Dependence
on the NCSM basis size characterized by Nmax for two HO
frequencies is shown. Chiral N3LO PTC NN interaction from
Ref. [35] was used.

with the electric dipole moment operator projected in the
z-direction.

To compute matrix elements of the V
PTV
NN interaction

(5) and solve the equation (6), we adapted codes used for
calculations of anapole moments of light nuclei reported
in Ref. [48]. To benchmark our codes, we calculated the
EDM of 3He using PTC chiral N3LO NN interaction [35]
without any renormalization as 3He EDM results for this
interaction together with the PTV interaction (5) were
published in Ref. [17]. The NCSM basis convergence for
the polarization contribution to 3He EDM is shown in
Fig. 1 and our D

(1) and D
(pol) results are summarized

in Table I. The D
(pol)

Nmax convergence is quite satis-
factory while that of D(1) is still faster. In Fig. 1, the
odd Nmax values correspond to the unnatural states in
Eq. (4), i.e., the largest space for the ground-state was
Nmax=16. While our D

(1) results agree with those re-
ported in Ref. [17] (Table 1, the EFT NN column in
that paper), the present D

(pol) results are smaller by a
factor of 1/2 compared to Ref. [17] (Table 2, the EFT
NN columns in that paper). It should be noted that the
same 1/2 discrepancy was reported in Ref. [20] for the
isoscalar and isovector terms, while a discrepancy of 1/5
was found for the isotensor terms. Similarly, a factor
of 1/2 di↵erence was found in Ref. [25] although for all
the terms. Our results are then consistent with those of
Ref. [25]. The NCSM was applied in Ref. [17] (and also in

1 3 5 7 9 11
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Figure 2. The polarization contribution to 6Li and 9Be EDM
(in e fm) due to the isovector ⇡-exchange PTV NN interac-
tion (5). Dependence on the NCSM basis size characterized
by Nmax is shown. SRG-evolved chiral NN+3N(lnl) PTC in-
teraction from Ref. [34] was used. The HO frequency ~⌦=20
MeV was used.

Ref. [19]). However, the Jacobi-coordinate HO basis was
employed as opposed to the SD HO basis used here, i.e.,
di↵erent codes were utilized. We plan to reexamine the
codes used in Ref. [17] to investigate the issue further.
Basis-size convergence of the polarization contribu-

tions to the EDM for p-shell nuclei is also quite reasonable
and comparable to that of the anapole moments [48]. In
Fig. 2, we show the Nmax convergence of the isovector
⇡-exchange contribution for 6Li and 9Be as a representa-
tive example. Again, the the oddNmax values correspond
to the unnatural-parity states in Eq. (4). The largest
spaces that we were able to reach for 6,7Li wereNmax=11,
while for 9Be Nmax=9. For 10,11B, our calculations have
been performed up to Nmax=7. For 13C, 14,15N we also
reached Nmax=7 basis space. However, we applied the
importance truncation [50, 51] at Nmax=7 for these iso-
topes. The 19F is on the borderline of NCSM applica-
bility. Only calculations up to Nmax=5 were performed
although without any importance truncation. The M -
scheme dimension was 189 million in this case.

OurD(1) andD
(pol) results for all considered nuclei are

shown in Table I. In Fig. 3, we display all the calculated
polarization contributions to the EDMs of the p-shell sta-
ble nuclei and 19F. We can evaluate the uncertainties of
our results due to the basis size convergence at about
10% (20% for 19F). The other sources of uncertainty are
renormalization and incompleteness of the transition op-
erators and the uncertainties due to the description of the
nuclear PTC and PTV forces. A rough estimate of the
accuracy of our calculations can be obtained by a com-
parison of the calculated and experimental magnetic mo-
ments shown in the last two columns of Table I. For 19F,
we obtain in addition the magnetic moment +3.73 µN

for the 5/2+ excited state that can be compared to the
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Figure 1. The polarization contribution to 3He EDM (in e fm)
due to the ⇡-exchange PTV NN interaction (5). Dependence
on the NCSM basis size characterized by Nmax for two HO
frequencies is shown. Chiral N3LO PTC NN interaction from
Ref. [35] was used.

with the electric dipole moment operator projected in the
z-direction.

To compute matrix elements of the V
PTV
NN interaction

(5) and solve the equation (6), we adapted codes used for
calculations of anapole moments of light nuclei reported
in Ref. [48]. To benchmark our codes, we calculated the
EDM of 3He using PTC chiral N3LO NN interaction [35]
without any renormalization as 3He EDM results for this
interaction together with the PTV interaction (5) were
published in Ref. [17]. The NCSM basis convergence for
the polarization contribution to 3He EDM is shown in
Fig. 1 and our D

(1) and D
(pol) results are summarized

in Table I. The D
(pol)

Nmax convergence is quite satis-
factory while that of D(1) is still faster. In Fig. 1, the
odd Nmax values correspond to the unnatural states in
Eq. (4), i.e., the largest space for the ground-state was
Nmax=16. While our D

(1) results agree with those re-
ported in Ref. [17] (Table 1, the EFT NN column in
that paper), the present D

(pol) results are smaller by a
factor of 1/2 compared to Ref. [17] (Table 2, the EFT
NN columns in that paper). It should be noted that the
same 1/2 discrepancy was reported in Ref. [20] for the
isoscalar and isovector terms, while a discrepancy of 1/5
was found for the isotensor terms. Similarly, a factor
of 1/2 di↵erence was found in Ref. [25] although for all
the terms. Our results are then consistent with those of
Ref. [25]. The NCSM was applied in Ref. [17] (and also in
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Figure 2. The polarization contribution to 6Li and 9Be EDM
(in e fm) due to the isovector ⇡-exchange PTV NN interac-
tion (5). Dependence on the NCSM basis size characterized
by Nmax is shown. SRG-evolved chiral NN+3N(lnl) PTC in-
teraction from Ref. [34] was used. The HO frequency ~⌦=20
MeV was used.

Ref. [19]). However, the Jacobi-coordinate HO basis was
employed as opposed to the SD HO basis used here, i.e.,
di↵erent codes were utilized. We plan to reexamine the
codes used in Ref. [17] to investigate the issue further.
Basis-size convergence of the polarization contribu-

tions to the EDM for p-shell nuclei is also quite reasonable
and comparable to that of the anapole moments [48]. In
Fig. 2, we show the Nmax convergence of the isovector
⇡-exchange contribution for 6Li and 9Be as a representa-
tive example. Again, the the oddNmax values correspond
to the unnatural-parity states in Eq. (4). The largest
spaces that we were able to reach for 6,7Li wereNmax=11,
while for 9Be Nmax=9. For 10,11B, our calculations have
been performed up to Nmax=7. For 13C, 14,15N we also
reached Nmax=7 basis space. However, we applied the
importance truncation [50, 51] at Nmax=7 for these iso-
topes. The 19F is on the borderline of NCSM applica-
bility. Only calculations up to Nmax=5 were performed
although without any importance truncation. The M -
scheme dimension was 189 million in this case.

OurD(1) andD
(pol) results for all considered nuclei are

shown in Table I. In Fig. 3, we display all the calculated
polarization contributions to the EDMs of the p-shell sta-
ble nuclei and 19F. We can evaluate the uncertainties of
our results due to the basis size convergence at about
10% (20% for 19F). The other sources of uncertainty are
renormalization and incompleteness of the transition op-
erators and the uncertainties due to the description of the
nuclear PTC and PTV forces. A rough estimate of the
accuracy of our calculations can be obtained by a com-
parison of the calculated and experimental magnetic mo-
ments shown in the last two columns of Table I. For 19F,
we obtain in addition the magnetic moment +3.73 µN

for the 5/2+ excited state that can be compared to the

Examples of Nmax convergence
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5

0.1hsp,zi+0.1hsn,zi. The spin operator matrix elements
are defined as

hs⌫,zi⌘h gs I
⇡
Iz=I|ŝ⌫,z| gs I

⇡
Iz=Ii, (15)

with ⌫=p, n.
Our results for the anapole moment coupling constants

A and ax in 9Be, 13C, 14,15N and 25Mg are summarised
in Table I. Overall, the basis size convergence of the re-
sults is quite reasonable, as shown in Fig. 2 presenting
dependence of A of 9Be on the NCSM basis size charac-
terised by Nmax. We can thus evaluate the uncertainties
due to the basis size convergence at about 10% (25% for
25Mg). The other sources of uncertainty are renormaliza-
tion and incompleteness of the transition operators and
uncertainties due to the description of nuclear and the
parity non-conserving forces.

In Table I, we also present NCSM results for magnetic
moments, where we can compare our results with exper-
imental values. Overall, we find a qualitative agreement
with experiment with some underestimation of absolute
values. This is not surprising, as the present calculations
included only the one-body M1 operator. It is well estab-
lished that two-body currents contribute non-negligibly
to M1 matrix elements in light nuclei [57]. While the
dominant sources of uncertainty are di↵erent for the cal-
culated dipole moments and the NSD-PV parameters, we
can still use the deviation of the former from experiment
as a rough estimate of the accuracy of the calculations of
the latter.

Table I also contains the single particle model esti-
mates of the di↵erent contributions to NSD parity violat-
ing constant  = A+ax+hfs obtained using equations
(2-5) for nuclei in molecules considered in the present
work. Note that the 14N nucleus contains a valence pro-
ton and a valence neutron, both in the p1/2 orbital with
K = 1. The nuclear magnetic moment µN =0.404 is
given, to a good accuracy, by the sum of the magnetic mo-
ments of 13C (with valence p1/2 neutron) and 15N (with
valence p1/2 proton). Therefore, we took the sum of the
valence proton and neutron contributions for the other
constants.

The NCSM A results are higher in absolute values
than the single particle model ones by a factor of 2–3,
except for 14N. The largest di↵erences are found in the
mid-shell nuclei 9Be, 13C and 25Mg, for which the single-
particle model has limited applicability. The 14N anapole
moment is proportional to the sum of the 15N and 13C
anapole moments that have opposite signs and conse-
quently it is particularly sensitive to the V PNC

NN parametri-
sation and the other computational details.

The NCSM ax results are close to the single-particle
model for 13C and 15N while they di↵er more substan-
tially for the mid-shell 9Be and 25Mg. For 14N, the ax'0
as hsp,zi'hsn,zi.

The results obtained within the single particle model
predict that the Z boson exchange constant ax domi-
nates for the light nuclei containing a valence neutron,
that is 25Mg, 13C, and 9Be are significantly more sensi-

9Be 13C 14N 15N 25Mg
I⇡ 3/2� 1/2� 1+ 1/2� 5/2+

µexpt -1.177 0.702 0.404 -0.283 -0.855
NCSM calculations

µ -1.05 0.44 0.37 -0.25 -0.50
A 0.016 -0.028 0.036 0.088 0.035
hsp,zi 0.009 -0.049 -0.183 -0.148 0.06
hsn,zi 0.360 -0.141 -0.1815 0.004 0.30
ax 0.035 -0.019 0.0002 0.015 0.024
 0.050 -0.046 0.037 0.103 0.057

Single particle model calculations
V. p. n n n, p p n
V. o. p3/2 p1/2 p1/2 p1/2 d5/2
K -2 1 1 1 -3
A 0.007 -0.007 0.035 0.044 0.014
ax 0.050 -0.017 0.0 0.017 0.050
hfs -0.001 0.001 0.0006 -0.0004 -0.002
 0.056 -0.023 0.036 0.060 0.062

TABLE I: Magnetic moments (in µN), anapole
moment coupling constants, spin operator matrix
elements, and ax coupling constants for 9Be, 13C,

14,15N and 25Mg obtained within NCSM. The results
obtained using the single particle model are also shown,
along with the valence particle (V.p.) and the valence

orbital (V.o) for each nucleus.
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FIG. 2: Dependence of the anapole moment coupling
constant A for 9Be on the size of the NCSM basis

characterized by Nmax. The dashed line represents A
obtained in the single-particle model.

tive to ax, while in the 14N and 15N nuclei the anapole
moment e↵ect dominates. However, a di↵erent picture
emerges from the NCSM calculations: ax still domi-
nates in 9Be, while 14N and 15N are more sensitive to
the anapole moments, and 25Mg and 13C have roughly
the same sensitivities to the two e↵ects. Furthermore,
within the single particle model, the total NSD-PV ef-
fect is roughly equivalent in 9Be, 15N, 25Mg, while the

2

possible to measure NSD-PV e↵ects in all three nuclei of
these molecules, which would allow the various underly-
ing parity violating e↵ects to be deconvolved.

Light triatomic molecules are especially attractive can-
didates for precision measurements of NSD-PV. Proper
interpretation of an NSD-PV measurement relies on
accurate molecular and nuclear structure parameters.
High-accuracy theoretical determination of the molecu-
lar properties becomes more computationally tractable
for lighter systems, and, even more importantly, nuclear
calculations are significantly more accurate and more re-
liable than in heavy elements. Here, we perform rig-
orous, high accuracy calculations of the molecular and
nuclear parameters required to interpret NSD-PV mea-
surements in molecules composed of light elements Be,
C, N, and Mg. We find that the parameters characteriz-
ing the molecule-specific sensitivity are in line with those
of isoelectronic diatomic molecules [19, 20], as well as
prior semiemprical estimates [18, 21]. However, our ab
initio nuclear calculations find the nuclear anapole mo-
ment interactions to be much stronger (typically 2 to 3
times larger) than predicted by a standard single-particle
model [7, 8, 22, 23], while NSD-PV e↵ects attributed
to Z boson exchange are typically reduced. This high-
lights the necessity of including many-body e↵ects for
correctly interpreting NSD-PV measurements, even in
light nuclear systems. Moreover, the Be and Mg cyanide
and isocyanide molecules considered here have favorable
laser cooling and trapping properties which are essential
to enabling high-sensitivity measurements through long
interaction time.

II. THEORY

The NSD-PV interaction with the atomic or molecular
electrons can be defined by the following e↵ective Hamil-
tonian [8, 24],

H
e↵
NSD-PV =

GFp
2

⇣↵ · I
I

⌘
⇢(r), (1)

where GF is the Fermi weak interaction coupling con-
stant. The Dirac matrices ↵ are defined in the usual
way, I is the nuclear spin, and ⇢(r) is the nuclear den-
sity distribution function normalized to 1.

In a given nucleus, various underlying electroweak in-
teractions contribute to the total NSD-PV e↵ect:  =
A + ax + hfs. In this section, we proceed by consider-
ing each of these three terms in turn, then explore how
to evaluate Eq. (1) in a molecular system.

The e↵ective coupling constant A describes the
strength of the nuclear anapole moment interaction. In
a simple valence nucleon model, A takes the following
form [8, 24],

A =
9

10

↵µ⌫

mPr0
g⌫A

2/3 K

I + 1

' 1.15⇥ 10�3
g⌫µ⌫A

2/3 K

I + 1
,

(2)

where ↵ ' 1/137 is the fine structure constant, mP is
the proton mass, r0 ' 1.2 fm is the scale of the nuclear
radius, µ⌫ (µp=2.8 for proton, µp=-1.9 for neutron) is
the nucleon magnetic moment in nuclear magnetons, A
is the mass number, and K = (I + 1/2)(�1)I�`⌫+1/2,
with l⌫ being the orbital angular momentum of the ex-
ternal unpaired nucleon. The anapole contribution also
depends on the poorly-known dimensionless constants g⌫
(⌫ = p, n), which characterize the nucleon-nucleus weak
potential. In Refs. [8, 25] these constants were expressed
in terms of the meson exchange model, and in Ref. [26]
the results based on di↵erent calculations of the meson-
nucleon interactions are presented. Using the most recent
experimental data [27], the authors of Ref. [26] obtained
gp = 3.4 ± 0.8 and gn = 0.9 ± 0.6. In the following, we
will use central points gp = 3.4 and gn = 0.9 for the nu-
merical estimates. We note that this updated estimate
of gn has opposite sign compared to the one used in ear-
lier molecule NSD-PV considerations [18, 28]. One of the
aims of the measurements of NSD-PV e↵ects is to extract
the accurate values of these constants.
The nuclear anapole moment of 133Cs was confirmed

at a 7� significance level by Wood et al., with the value
of A ' 0.392 ± 0.056 [5]. A more accurate theorecti-
cal treatment performed after the experiment obtained
a similar value [25]. Further NSD-PV measurements in
Cs with improved accuracy have been proposed [29, 30],
and additional experiments have been designed to mea-
sure the anapole moment in other atoms with unpaired
nucleons, such as 137Ba (using the BaF molecule) [15],
163Dy [31], 171Yb [32], and 212Fr [33].

The second contribution, ax, is associated with the Z
exchange interaction between the electron vector and the
nucleon axial-vector currents (VeAN ) [9]; the magnitude
of ax within the nuclear shell model is defined as [7]

ax = C2
1/2�K

I + 1
, (3)

where C2 represents the VeAN coupling and takes the
value C2 ⌘ �C2p for proton and C2 ⌘ �C2n for neutron
[34]. Here, C2p and C2n are given by

C2p = �C2n = gA(1� 4 sin2 ✓W )/2 ' 0.05, (4)

with gA ' 1.26 being a scale factor accounting for the
partially conserved axial vector current, and sin2✓W =
0.23126(5) [35].
The PVDIS experiment [10] combined with the Cs

PV measurement [5] provides the best determination
to date of the linear combination 2C2u � C2d (u and
d standing for the up and the down quarks, respec-
tively) with a 50% uncertainty, with substantial improve-
ment expected from the upcoming SoLID experiment
[11]; the orthogonal quadrature is currently known with
several times less precision. Measurements of NSD-PV
in light molecule systems are highly complimentary to
the on-going scattering-based measurements. Because
9Be and 25Mg possess an unpaired neutron, measure-
ments of NSD-PV in these nuclei are primarily sensi-
tive to C2n ' �0.4C2u + 0.8C2d [36]. Combined with

ax ' �2C2phsp,zi � 2C2nhsn,zi ' �0.1hsp,zi+ 0.1hsn,zi
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FIG. 5 (Color online) Major diagrams contributing to the
parity violation in atoms. N and e

� label nucleons and
atomic electrons. Ae,N and Ve,N denote axial-vector and vec-
tor currents. (a) Z-boson exchange between electron axial-
vector and nucleon vector currents (AnVe); (b) Z-boson ex-
change between nucleon axial-vector and electron vector cur-
rents (VnAe); (c) Electromagnetic interaction of atomic elec-
trons with the nuclear anapole moment (shown as a blob); (d)
Combined e↵ect of the AnVe diagram (a) and hyperfine inter-
action. The vertical line separates nuclear spin-independent
(a) and spin-dependent (b)–(d) diagrams.

experiments described below show how Laporte’s rule is
violated in atoms and molecules.

Microscopically, APV is caused by the weak interaction
mediated by the exchange of a Z boson. Since the range
of this interaction is ⇠ ~/(mZc) ⇡ 2 ⇥ 10�3 fm [mZ ⇡
91GeV/c

2 is the mass of the Z boson], it is essentially
a contact interaction on the scale of atomic distances.
The relevant contact contribution to the SM Hamiltonian
density reads (Marciano, 1995)

HPV =
GFp
2

X

q

⇣
C

(1)

q
ē�µ�5e q̄�

µ
q + C

(2)

q
ē�µe q̄�

µ
�5q

⌘
,

(32)
where the Fermi constant

GF ⇡ 1.17⇥ 10�5(~c)3 GeV�2 = 2.22⇥ 10�14 a.u.

determines the overall strength of the weak interaction,
the summation is over quark flavors, q = {u, d, s, ...}, e
and q are field operators for electrons and quarks respec-
tively, �µ are Dirac matrices, and �5 is the Dirac matrix
associated with pseudoscalars.

The coupling of the electron axial-vector currents to
the quark vector currents is parametrized by the con-

stants C
(1)

q ; the constants C
(2)

q describe the coupling of
the electron vector currents to quark axial-vector cur-
rents. These interactions and constants could be fur-
ther combined into couplings to protons and neutrons of
atomic nuclei (Marciano and Sanda, 1978), e.g.,

C
(1)

p
= 2C(1)

u
+ C

(1)

d
,

C
(1)

n
= C

(1)

u
+ 2C(1)

d
,

reflecting the quark composition of nucleons. Explicitly

in terms of the Weinberg angle ✓W:

C
(1)

p
=

1

2

�
1� 4 sin2✓W

�
,

C
(1)

n
= �1

2
,

C
(2)

p
= �C

(2)

n
= gAC

(1)

p
,

where gA ⇡ 1.26 is the scale factor accounting for the
partially conserved axial vector current and sin2 ✓W =
0.23126(5) (Patrignani et al., 2016). Since sin2 ✓W ⇡ 1/4,

the C
(1)

n contribution dominates HPV except for the 1H
atom.
The main diagrams contributing to PNC processes in

atoms are shown in Fig. 5. The HPV terms discussed
above are illustrated by diagrams (a) and (b). In addi-
tion, there is also a contribution from the nuclear anapole
moment (c) and a combined e↵ect of Z-boson exchange
and hyperfine interaction (d). The e↵ective weak Hamil-
tonian arising from diagram (a) does not depend on the
nuclear spin, while that from the set of diagrams (b)–(d)
does. We will consider the former in Sec. IV.B and the
latter in Sec. IV.C.

B. Nuclear-spin independent e↵ects

1. Overview

The dominant contribution to parity violation in atoms
arises from the electron axial-vector – nucleon-vector
term in HPV, Fig. 5(a). If we treat the nucleon mo-
tion non-relativistically, average over the nucleon distri-
bution, and neglect the di↵erence between proton and
neutron distributions, we reduce the corresponding part
of HPV to an e↵ective weak Hamiltonian in the electron
sector

HW = QW

GFp
8
�5 ⇢ (r) , (33)

where ⇢ (r) is the nuclear density and QW is a nuclear
weak charge. The non-relativistic limit of the operator
�5 ⇢ (r) is

1

2c
[2⇢(r)(� · p)� i(� ·r⇢)] ,

where p is the linear momentum operator and � are elec-
tron Pauli matrices.
The nuclear weak charge QW entering the e↵ective

weak Hamiltonian is

QW ⌘ 2Z C
(1)

p
+ 2N C

(1)

n
,

where Z and N are the numbers of protons and neu-
trons in the nucleus. Electrons predominantly couple
to neutrons and QW ⇡ �N . This is a “tree-level” [or

ax
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Measurements of nuclear spin-dependent parity-violating (NSD-PV) effects provide an excellent opportunity
to test nuclear models and to search for physics beyond the Standard Model. Molecules possess closely
spaced states with opposite parity which may be easily tuned to degeneracy to greatly enhance the observed
parity-violating effects. A high-sensitivity measurement of NSD-PV effects using light triatomic molecules is in
preparation [E. B. Norrgard et al., Commun. Phys. 2, 77 (2019)]. Importantly, by comparing these measurements
in light nuclei with prior and ongoing measurements in heavier systems, the contribution to NSD-PV from
Z0-boson exchange between the electrons and the nuclei may be separated from the contribution of the nuclear
anapole moment. Furthermore, light triatomic molecules offer the possibility to search for new particles, such
as the postulated Z ′ boson. In this work, we detail a sensitive measurement scheme and present high-accuracy
molecular and nuclear calculations needed for interpretation of NSD-PV experiments on triatomic molecules
composed of light elements, Be, Mg, N, and C. The ab initio nuclear structure calculations, performed within
the no-core shell model provide a reliable prediction of the magnitude of different contributions to the NSD-PV
effects in the four nuclei. These results differ significantly from the predictions of the standard single-particle
model and highlight the importance of including many-body effects in such calculations. In order to extract
the NSD-PV contributions from measurements, a parity-violating interaction parameter WPV, which depends
on the molecular structure, needs to be known with a high accuracy. We have calculated these parameters
for the triatomic molecules of interest using the relativistic coupled-cluster approach. In order to facilitate
the interpretation of future experiments we provide uncertainties on the calculated parameters. A scheme for
measurement using laser-cooled polyatomic molecules in a molecular fountain is presented, along with an
estimate of the expected sensitivity of such an experiment. This experimental scheme, combined with the
presented state-of-the-art calculations, opens exciting prospects for a measurement of the anapole moment and
the PV effects due to the electron-nucleon interactions with unprecedented accuracy and for a new path towards
detection of signatures of physics beyond the Standard Model.

DOI: 10.1103/PhysRevA.102.052828

I. INTRODUCTION

Measurements and calculations of parity-violating effects
in atoms and molecules are important both for the verifica-
tion of the Standard Model (SM) and for the investigation
of phenomena that cannot be explained within this model,
such as the nature of dark matter and matter-antimatter asym-
metry. One of the candidates for the dark-matter particles is
a low-mass Z ′ boson [1–3]. The best limits on the parity-
violating interaction of this Z ′ boson with electrons, protons,
and neutrons were obtained from the data on atomic par-
ity violation [4]; in particular, information on its interaction
with nucleons was extracted from the measurements of the

*a.borschevsky@rug.nl

nuclear anapole moment of the 133Cs nucleus in Ref. [5].
The possibility to study the nuclear anapole moments in
additional systems, and thus to set further constraints on
this interaction, provides a major motivation for the current
work.

The notion of the anapole moment was introduced by
Zel’dovich in 1958 [6]. The nuclear anapole moment was
originally considered in Ref. [7] and calculated in Ref. [8]
for a number of heavy atoms. This work also proposed pos-
sible schemes to observe nuclear anapole-moment effects in
atomic and molecular experiments. Studies of the nuclear
anapole-moment effects can provide information about parity-
violating nuclear forces [7,8] and may be considered as a
test of nuclear theory and low-energy quantum chromody-
namics. The nuclear anapole moment rapidly increases with
the nucleon number A (as A2/3) and dominates the nuclear
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were able to reach was Nmax = 9, while for the other p-shell
nuclei we calculated up to Nmax = 7 using the importance
truncation [49,50] for Nmax=7. The 25Mg is on the borderline
of NCSM applicability. Only calculations up to Nmax=3 were
performed using importance truncation for Nmax=3. The m-
scheme dimensions of the largest basis spaces were of the
order of 108. The HO frequency of h̄!=20 MeV, optimized
in Ref. [45] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even Nmax spaces; the unnatural parity eigen-
states, in the odd Nmax spaces. The parity-nonconserving
(PNC) NN interaction admixes the unnatural parity states in
the ground state,

|ψgs I〉 = |ψgs Iπ 〉 +
∑

j

|ψ j I−π 〉

× 1
Egs − Ej

〈ψ j I−π |V PNC
NN |ψgs Iπ 〉, (9)

which then gives rise to the anapole moment. We used
the Desplanques, Donoghue, and Holstein (DDH) PNC NN
interaction from Ref. [51] with their recommended param-
eter values except for the fπ ≡ h1

π=2.6 × 10−7, taken from
Ref. [30]. In the NCSM, when the |ψgs Iπ 〉 is calculated in
Nmax space, the corresponding unnatural parity states appear-
ing in Eq. (9) are obtained in Nmax+1 space. It is not necessary
to compute many excited unnatural parity states as Eq. (9)
suggests. Rather, first, we solve the standard Schrödinger
equation using the Hamiltonian H consisting of the kinetic
term and the NN N3LO+3N(lnl) interaction and obtain the
|ψgsIπ 〉 wave function, and second, we invert the generalized
Schrödinger equation with an inhomogeneous term,

(Egs − H )|ψgs I〉 = V PNC
NN |ψgs Iπ 〉, (10)

to obtain the unnatural parity admixture in the ground state.
The inversion is performed by the Lanczos continued fraction
method [52–54].

In the presented calculations, we use the spin part of the
anapole operator

as = πe
m

A∑

i=1

µi(ri × σ i ) , (11)

which gives the dominant contribution to the anapole mo-
ment [28]. In Eq. (11), m is the nucleon mass and µi is
the nucleon magnetic moment in units of nuclear magnetons,
i.e., µi=µp(1/2+tz,i ) + µn(1/2−tz,i ) with tz,i=1/2 (−1/2)
for proton (neutron). The relationship between κA and as is
given by

κA =
√

2e
GF

as, (12)

with

as = 〈ψgs I Iz=I|a(1)
s,0|ψgs I Iz=I〉. (13)

Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [55] and find for the dimen-

TABLE I. Magnetic moments (in units of nuclear magneton)
[27,57–61], anapole-moment coupling constants, spin operator ma-
trix elements, and κax coupling constants for 9Be, 13C, 14,15N, and
25Mg obtained within the NCSM. The results obtained using the
single-particle model are also shown, along with the valence particle
(V.p.) and the valence orbital (V.o.) for each nucleus.

9Be 13C 14N 15N 25Mg

Iπ 3/2− 1/2− 1+ 1/2− 5/2+

µexp. −1.177a 0.702b 0.404c −0.283d −0.855e

NCSM calculations
µ −1.05 0.44 0.37 −0.25 −0.50
κA 0.016 −0.028 0.036 0.088 0.035
〈sp,z〉 0.009 −0.049 −0.183 −0.148 0.06
〈sn,z〉 0.360 −0.141 −0.1815 0.004 0.30
κax 0.035 −0.009 0.0002 0.015 0.024
κ 0.050 −0.037 0.037 0.103 0.057

Single-particle model calculations
V.p. n n n, p p n
V.o. p3/2 p1/2 p1/2 p1/2 d5/2

K −2 1 1 1 −3
κA 0.007 −0.007 0.035 0.044 0.014
κax 0.050 −0.017 0.0 0.017 0.050
κhfs −0.001 0.001 0.0006 −0.0004 −0.002
κ 0.056 −0.023 0.036 0.060 0.062

aReferences [27] and [57].
bReferences [27] and [58].
cReferences [27] and [59].
dReferences [27] and [60].
eReferences [27] and [61].

sionless coupling constant κA

κA = −i4π
e2

GF

h̄
mc

(II10|II )√
2I + 1

×
∑

j

〈ψgs Iπ ||
√

4π/3
A∑

i=1

µiri[Y1(r̂i )σi](1)||ψ j I−π 〉

× 1
Egs − Ej

〈ψ j I−π |V PNC
NN |ψgs Iπ 〉, (14)

where (II10|II )=I/
√

I (I + 1).
We have also performed NCSM calculations for the ma-

trix elements of the spin operators that serve as input for
the calculation of the coupling constant κax= − 2C2p〈sp,z〉 −
2C2n〈sn,z〉' − 0.1〈sp,z〉+0.1〈sn,z〉. The spin operator matrix
elements are defined as

〈sν,z〉≡〈ψgs Iπ Iz=I|sν,z|ψgs Iπ Iz=I〉, (15)

with ν=p, n.
Our results for the anapole-moment coupling constants κA

and κax in 9Be, 13C, 14,15N, and 25Mg are summarized in
Table I. Overall, the basis size convergence of the results is
quite reasonable, as shown in Fig. 1, presenting the depen-
dence of the κA of 9Be on the NCSM basis size characterized
by Nmax. We can thus evaluate the uncertainties due to the
basis size convergence at about 10% (25% for 25Mg). The
other sources of uncertainty are renormalization and incom-
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Applications of ab initio nuclear theory to tests 
of fundamental symmetries
§ Precision measurements of β-decay observables offer the possibility to search for 

deviations from the Standard Model

§ Discovering such small deviations demands high-precision theoretical calculations

§ Theoretical analysis of β-decay observables of the pure Gamow-Teller (GT) 
transition 6He(0+) → 6Li(1+) using ab initio NCSM nuclear structure calculations in 
combination with the chiral effective field theory (𝝌EFT)

§ Four experiments investigating 6He β decay at present

§ We find up to 1% correction for the β spectrum and up to 2% correction for the 
angular correlation

§ Propagating nuclear structure and 𝝌EFT uncertainties results in an overall 
uncertainty of 10-4

§ Comparable to the precision of current experiments 

to the LHC frontier) implies bBSM
Fierz =

CT+C
0
T

CA
⇠ 10

�3.
The angular correlation, as well as the Fierz term, show a distinguished

deviation from the GT known values, and since the experiments are aiming to
reach an accuracy of per-mill, those corrections will be crucial for analyzing the
measurements data.
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Note that new physics at TeV scale implies

Non-zero Fierz interference term due to nuclear structure corrections 
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Structure corrections for the extraction of the Vud matrix element from the 10C→10B Fermi transition

§ CKM unitarity sensitive probe of BSM physics
§ Vud element from super-allowed Fermi transitions

§ 𝛿NS parametrizes correction to free 𝛾W box
§ Apply NCSM and calculate

§ 𝛿C isospin symmetry breaking correction
§ Apply NCSMC: 10C → 9B+p; 10B → 9Be+p, 9B+n

Work in progress…

In collaboration with 
C.-Y. Seng & M. Gorchtein

See talk by Chien-Yeah Seng
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Conclusions
§ Ab initio nuclear theory 

§ Makes connections between the low-energy QCD and many-nucleon systems
§ Applicable to nuclear structure, reactions including those relevant for astrophysics, electroweak processes, tests of fundamental 

symmetries
§ Very recently reach extended to heavy nuclei

§ Applications of ab initio NCSMC to
§ 11Be 𝛽 decay with the proton emission
§ Radiative capture of protons on 7Be and deuteron capture on 4He
§ Proton capture on 7Li - internal pair conversion and the X17 boson claim 

§ Ab initio NCSM capable to calculate accurately nuclear structure effects needed for analysis of parity-violation and time-reversal violation 
experiments in atoms and molecules

§ First results available; 10% precision within the reach
§ Different nuclei can be used to probe different terms of the parity & time-reversal violating interaction

§ NCSM applied to analyze the nuclear-structure corrections to 6He β-decay observables

§ NCSM and NCSMC calculations of structure corrections for the extraction of the Vud matrix element from Fermi transitions

In synergy with experiments, ab initio nuclear theory is the right approach to understand low-energy properties of atomic nuclei


