Wave function matching and the quantum many-body problem

Dean Lee
Facility for Rare Isotope Beams
Michigan State University
NLEFT Collaboration

Hirschegg 2023 - Effective field theories for nuclei and nuclear matter
EMMI Workshop and International Workshop XLIX on
Gross Properties of Nuclei and Nuclear Excitations
January 19, 2023

Outline

Tale of two interactions

Essential elements for nuclear binding
Wave function matching
Chiral effective field theory results at N3LO
Summary

Lattice effective field theory

See Ulf's talk from Wednesday

Lähde, Meißner, Nuclear Lattice Effective Field Theory, Springer (2019)
D.L, Prog. Part. Nucl. Phys. 63 117-154 (2009)

A tale of two interactions

We consider two different interactions, A and B , at leading order (LO) in chiral effective field theory. They both have the same one-pion exchange potential and Coulomb potential. The difference between A and B resides with their short-range interactions.

Interaction A

Nonlocal short-range interaction

Interaction B

Nonlocal short-range interaction
\qquad
Local short-range interaction

alpha-alpha S-wave scattering

Elhatisari, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, D.L., Rupak, PRL 117, 132501 (2016)

Sensitivity to short-distance physics

nonlocal

local

Rokash, Epelbaum, Krebs, D.L., PRL 118, 232502 (2017) Kanada-En'yo, D.L., PRC 103, 024318 (2021)

Nuclear physics near a quantum phase transition

Elhatisari, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, D.L., Rupak, PRL 117, 132501 (2016)

Essential elements for nuclear binding

What is the minimal nuclear interaction that can reproduce the ground state properties of light nuclei, medium-mass nuclei, and neutron matter simultaneously with no more than a few percent error in the energies and charge radii?

We construct an interaction with only four parameters.

1. Strength of the two-nucleon S-wave interaction
2. Range of the two-nucleon S-wave interaction
3. Strength of three-nucleon contact interaction
```
fit to
A=2,3 systems
```

4. Range of the local part of the two-nucleon interaction

The lattice Hamiltonian has the form of a smeared four-component Hubbard model with two-body and three-body interactions

$$
\begin{gathered}
H_{\mathrm{SU}(4)}=H_{\text {free }}+\frac{1}{2!} C_{2} \sum_{\boldsymbol{n}} \tilde{\rho}(\boldsymbol{n})^{2}+\frac{1}{3!} C_{3} \sum_{\boldsymbol{n}} \tilde{\rho}(\boldsymbol{n})^{3} \\
\tilde{\rho}(\boldsymbol{n})=\sum_{i} \tilde{a}_{i}^{\dagger}(\boldsymbol{n}) \tilde{a}_{i}(\boldsymbol{n})+s_{L} \sum_{\left|\boldsymbol{n}^{\prime}-\boldsymbol{n}\right|=1} \sum_{i} \tilde{a}_{i}^{\dagger}\left(\boldsymbol{n}^{\prime}\right) \tilde{a}_{i}\left(\boldsymbol{n}^{\prime}\right) \\
\tilde{a}_{i}(\boldsymbol{n})=a_{i}(\boldsymbol{n})+s_{N L} \sum_{\left|\boldsymbol{n}^{\prime}-\boldsymbol{n}\right|=1} a_{i}\left(\boldsymbol{n}^{\prime}\right)
\end{gathered}
$$

Lu, Li, Elhatisari, D.L., Epelbaum, Meißner, PLB 797, 134863 (2019)

Lattice Monte Carlo simulations can compute highly nontrivial correlations in nuclear many-body systems. Unfortunately, sign oscillations prevent direct simulations using a high-fidelity Hamiltonian based on chiral effective field theory due to short-range repulsion.

Wave function matching

Elhatisari, Bovermann, Epelbaum, Frame, Hildenbrand, Krebs, Lähde, D.L., Li, Lu, M. Kim, Y. Kim, Ma, Meißner, Rupak, Shen, Song, Stellin, arXiv: 2210.17488

easily computable Hamiltonians

Wave function matching

$$
V_{A}(r)
$$

$$
V_{B}(r)
$$

Let us write the eigenenergies and eigenfunctions for the two interactions as

$$
\begin{aligned}
& H_{A}\left|\psi_{A, n}\right\rangle=\left(K+V_{A}\right)\left|\psi_{A, n}\right\rangle=E_{A, n}\left|\psi_{A, n}\right\rangle \\
& H_{B}\left|\psi_{B, n}\right\rangle=\left(K+V_{B}\right)\left|\psi_{B, n}\right\rangle=E_{B, n}\left|\psi_{B, n}\right\rangle
\end{aligned}
$$

We would like to compute the eigenenergies of H_{A} starting from the eigenfunctions of H_{B} and using first-order perturbation theory.

Not surprisingly, this does not work very well. The interactions V_{A} and V_{B} are quite different.

$E_{A, n}(\mathrm{MeV})$	$\left\langle\psi_{B, n}\right\| H_{A}\left\|\psi_{B, n}\right\rangle(\mathrm{MeV})$
-1.2186	3.0088
0.2196	0.3289
0.8523	1.1275
1.8610	2.2528
3.2279	3.6991
4.9454	5.4786
7.0104	7.5996
9.4208	10.0674
12.1721	12.8799
15.2669	16.0458

Let P be a projection operator that is nonzero only for separation distances r less than R. We define a short-distance unitary operator U such that

$$
U: P\left|\psi_{B}^{0}\right\rangle / \| P\left|\psi_{B}^{0}\right\rangle \| \rightarrow P\left|\psi_{A}^{0}\right\rangle / \| P\left|\psi_{A}^{0}\right\rangle \|
$$

There are many possible choices for U. The corresponding action of U on the Hamiltonian is

$$
U: H_{A} \rightarrow H_{A}^{\prime}=U^{\dagger} H_{A} U
$$

and the resulting nonlocal interaction is

$$
V_{A}^{\prime}=H_{A}^{\prime}-K=U^{\dagger} H_{A} U-K
$$

Since they are unitarily equivalent, the phase shifts are exactly the same

Ground state wave functions

With wave function matching, we can now compute the eigenenergies starting from the eigenfunctions of H_{B} and using first-order perturbation theory.

$R=2.6 \mathrm{fm}$		
$E_{A, n}=E_{A, n}^{\prime}(\mathrm{MeV})$	$\left\langle\psi_{B, n}\right\| H_{A}\left\|\psi_{B, n}\right\rangle(\mathrm{MeV})$	$\left\langle\psi_{B, n}\right\| H_{A}^{\prime}\left\|\psi_{B, n}\right\rangle(\mathrm{MeV})$
-1.2186	3.0088	-1.1597
0.2196	0.3289	0.2212
0.8523	1.1275	0.8577
1.8610	2.2528	1.8719
3.2279	3.6991	3.2477
4.9454	5.4786	4.9798
7.0104	7.5996	7.0680
9.4208	10.0674	9.5137
12.1721	12.8799	12.3163
15.2669	16.0458	15.4840

Hamiltonian translators

Suppose $U_{A B}$ is a unitary transformation mapping all the eigenvectors of H_{B} to all the eigenvectors of H_{A}. Let $U_{B A}$ be the inverse of $U_{A B}$. We note the curious fact that

$$
H_{A}^{\prime}=U_{B A} H_{A} U_{A B}
$$

has the eigenvectors of H_{B} but has the eigenvalues of H_{A}. We call $U_{A B}$ and $U_{B A}$ Hamiltonian translators.

We can construct a Hamiltonian translator using quantum adiabatic evolution

$$
U_{T}=\lim _{T \rightarrow \infty} \overleftarrow{\mathcal{T}} \exp \left[-i \int_{0}^{T} H_{T}(t) d t\right]
$$

where $H_{T}(t)$ smoothly interpolates between H_{B} and H_{A} as t goes from 0 to T.

Wave function matching is an approximate Hamiltonian translator at the two-body level.

straight lines mean the eigenvectors don't change with x

N3LO chiral effective field theory interaction

Tjon line

Tjon, Phys. Lett. B 56, 217 (1975); Nogga, Kamada, Glöckle, Phys. Rev. Lett. 85, 944 (2000); Platter, Hammer, Meißner, Phys. Lett. B607, 254 (2005)

Sensitivity to short-distance physics

Sensitivity to short-distance physics

Sensitivity to short-distance physics

Short-distance three-nucleon interactions

Binding energy per nucleon

Elhatisari, Bovermann, Epelbaum, Frame, Hildenbrand, Krebs, Lähde, D.L., Li, Lu, M. Kim, Y. Kim, Ma, Meißner, Rupak, Shen, Song, Stellin, arXiv: 2210.17488

Charge radius

Elhatisari, Bovermann, Epelbaum, Frame, Hildenbrand, Krebs, Lähde, D.L., Li, Lu, M. Kim, Y. Kim, Ma, Meißner, Rupak, Shen, Song, Stellin, arXiv: 2210.17488

Neutron and nuclear matter

Figure adapted from Tews, Krüger, Hebeler, Schwenk, Phys. Rev. Lett. 110, 032504 (2013)
Elhatisari, Bovermann, Epelbaum, Frame, Hildenbrand, Krebs, Lähde, D.L., Li, Lu, M. Kim, Y. Kim, Ma, Meißner, Rupak, Shen, Song, Stellin, arXiv: 2210.17488

Carbon isotopes

M. Kim, Song, Y. Kim, et al., work in progress

Some things to do:

Calculate the binding energies, radii, and structure of the isotopic chains of carbon, oxygen, silicon, and calcium.

Search for clustering in medium mass nuclei.
Adapt and optimize GPU codes for Frontier and the new supercomputer at Forschungszentrum Jülich and extend calculations to heavy nuclei.

Extract ANCs from finite-volume energy corrections. See Sebastian's talk from Wednesday.

Extend calculations to light and medium mass hypernuclei.
Calculate resonance widths.
Compute thermodynamic properties of neutron matter and symmetric and asymmetric nuclear matter.

Summary

We started with a discussion of the differences between local and nonlocal interactions and the fact that the interaction between two alpha particles is sensitive to short-distance physics. We used this information to produce a simple interaction that gave a decent description of light and medium mass nuclei.

We then introduced the technique of wave function. We demonstrated the basic concepts using simple examples and then applied wave function matching to calculations at N3LO in chiral effective field theory. We are able to control sensitivity to short-distance physics using several three-nucleon interactions beyond N3LO.

