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QCD = underlying theory of strong interaction

EFT = effective description in terms of hadrons

degrees of freedom depend on resolution scale

Nuclear theory tower
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Hammer, SK, van Kolck, RMP 92 025004 (2020)

Papenbrock, NPA 852 36 (2011); ...

Nuclear e�ective �eld theories
choose degrees of freedom approriate to energy scale

only restricted by symmetry, ordered by power counting

 

 

 

 

 

 

 

 

 

 

 

degrees of freedom here: nucleons (and/or clusters thereof)

even more effective d.o.f.: rotations, vibrations

most effective theory depends on energy scale and nucleus of interest

Chiral EFT

Halo/Cluster EFT

Pionless 
EFT
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Lüscher, Commun. Math. Phys. 104 177 (1986); ...

Finite periodic boxes
 

physical system enclosed in finite volume (box)

typically used: periodic boundary conditions

leads to volume-dependent energies

 

 

 

 

 

 

Lüscher formalism

physical properties encoded in the volume-dependent energy levels

infinite-volume S-matrix governs discrete finite-volume spectrum

finite volume used as theoretical tool
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Outline
  Introduction ✔

Few-neutron systems

Charged particles

Summary and outlook
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S. Dietz, H.-W. Hammer, SK, A. Schwenk, PRC 105 064002 (2022)

N. Yapa, SK, PRC 106 014309 (2022)

and work in progress

Part I

Pionless EFT calculations for few-neutron systems
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Pionless EFT
only contact (zero-range) forces (plus electromagnetism)

closely linked to universality for large scattering lengths

excels at low energies, exact range of validity still an open question
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Nuclear scales

chiral EFT

Q/M
QCD

Q/

unitarity limit:

pionless EFT
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SK et al. PRL 118 202501 (2017)

Nuclear scales

chiral EFT

Q/M
QCD

unitarity limit:

pionless EFT

Q/
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Pionless EFT
only contact (zero-range) forces (plus electromagnetism)

closely linked to universality for large scattering lengths

excels at low energies, exact range of validity still an open question

no leading-order 3n force for pure neutron systems
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SK et al., PLB 736 208 (2014)Kirscher + Phillips, PRC 84 054004 (2011); 

Gandolfi et al., PRL 118 232501 (2017)

Offermann + Glöckle, NPA 318 138 (1979)Lazauskas + Carbonell, PRC 71 044004 (2005); 

Kisamori et al., PRL 116 052501 (2016), Duer et al., Nature 606 678 (2022), Faestermann et al., PLB 824 136799 (2022)

Few-neutron systems
Ongoing searches and speculations

n
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4
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3

Li
5

Li
6

Li
7

bound dineutron not excluded by pionless EFT

new speculations about a three-neutron resonance...

...although excluded by previous work

experimental evidence for tetraneutron resonance (or even bound state?)
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APS/Alan Stonebraker
 

Kisamori et al., PRL 116 052501 (2016)
 

Tetraneutron situation
Observation at RIKEN (2016)

 

double-charge exchange reaction

excess of near threshold events hints at possible resonance

motivated follow-up experiment
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Kisamori et al., PRL 116 052501 (2016)
 

Higgins et al., PRC 103 024004 (2021), Lazauskas et al., arXiv:2207.07575 [nucl-th]

Tetraneutron situation
Observation at RIKEN (2022)

 

knockout reaction: scattering 8He beam off proton target

clear peak with resonance shape around 2 MeV

theory suggests alternative explanations (time delay, phase space + FSI)
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Dietz, SK et al., PRC 105 064002 (2022)

following Glöckle, PRC 18 564 (1978); Afnan, Aust. J. Phys. 44 201 (1991)

following Klos, SK et al., PRC 98 034004 (2018)

Overview
Search for resonance states with two different methods

 
analytically continued Faddeev equations

finite-volume energy levels in large periodic boxes

calculation of S-matrix pole trajectories► 

application to three-boson and three-neutron system► 

Dietz, Hammer, SK, work in progressthree-neutron scaling exponents► 

exact few-body calculation with discrete variable representation► 

application to three and four neutrons► 

Yapa+König, PRC 106 014309 (2022)

efficient calculation enabled by finite-volume eigenvector continuation► 
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Three-body equation
consider the Faddeev equation with separable interaction

 

effective two-body equation structure

written here for three neutrons with  or  (degenerate)

energies for which a solution exists correspond to S-matrix poles

F(q) = − ∫ d dx g( ) (E; , )
1

2
q ′q ′2 ∫ 1

−1

π1 G0 π2 q ′

  × g( ) (x)τ (E − )F(q′)π2 P1
3

4
q ′2

=J π 1
2

− 3
2

−

very similar form (plus three-body force) for three bosons► 
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rotate the integration contour: 

possible to rotate back and pick up a residue

Three-body equation
consider the Faddeev equation with separable interaction

 

effective two-body equation structure

written here for three neutrons with  or  (degenerate)

energies for which a solution exists correspond to S-matrix poles

Analytic continuation

F(q) = − ∫ d dx g( ) (E; , )
1

2
q ′q ′2 ∫ 1

−1

π1 G0 π2 q ′

  × g( ) (x)τ (E − )F(q′)π2 P1
3

4
q ′2

=J π 1
2

− 3
2

−

very similar form (plus three-body force) for three bosons► 

q → qe−iϕ

Afnan, Aust. J. Phys. 44 201 (1991)
this exposes lower right quadrant► 

Glöckle, PRC 18 564 (1978)
leads to modified effective interaction► 

Im

Re

q
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E�mov state trajectories
Efimov bound states become resonances at certain negative scattering length

possible to follow the trajectory

EFT reproduces potential models

 

 

 

 

 

 

 

 

 

 

 

     Dietz, SK et al., PRC 105 064002 (2022)
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Dietz, SK et al., PRC 105 064002 (2022)

Neutrons vs. bosons
for three bosons we can follow the resonance trajectory of an Efimov state

for three neutrons, we can reproduce Glöckle's Yamaguchi model

no sign of a three-neutron resonance for physical  scattering length

 

Bringas et al., PRA 69 040702 (2004); Deltuva, PRC 102 034003 (2020)consistent with previous work► 

Glöckle, PRC 18 564 (1978)

generates a  resonance with deep  bound state► 3n 2n

nn

Lazauskas + Carbonell, PRC 71 044004 (2005); Deltuva + Lazauskas, PRL 123 069201 (2019)
consistent with related work► 
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Dietz, Hammer, SK, in preparation

Hammer+Son, Proc. Natl. Acad. Sci. 118, e2108716118 (2021)

Three-neutron point production
assume that final-state neutrons in experiments are created effectively in a point

possible to solve Faddeev equation for production amplitude

spectrum governed by conformal symmetry in universal regime: 

cross section 

same interaction kernel as shown previously in this talk► 

≪ E ≪
1

ma2

1

mr2

∼ R(E) ∼
dσ

dE
EΔ−5/2

scaling dimension  depends on partial wave: 4.666 ( ), 4.273 ( ), ...► Δ L = 0 L = 1

p. 19



Dietz, Hammer, SK, in preparation

Hammer+Son, Proc. Natl. Acad. Sci. 118, e2108716118 (2021)

Three-neutron point production
assume that final-state neutrons in experiments are created effectively in a point

possible to solve Faddeev equation for production amplitude

spectrum governed by conformal symmetry in universal regime: 

cross section 

same interaction kernel as shown previously in this talk► 

≪ E ≪
1

ma2

1

mr2

∼ R(E) ∼
dσ

dE
EΔ−5/2

scaling dimension  depends on partial wave: 4.666 ( ), 4.273 ( ), ...► Δ L = 0 L = 1

p. 19



Lüscher, NPB 354 531 (1991); ...

Wiese, NPB (Proc. Suppl.) 9 609 (1989); ...

Klos, SK et al., PRC 98 034004 (2018)

Finite-volume resonance signatures
Lüscher formalism

finite volume  discrete energy levels   phase shift

resonance contribution  avoided level crossing

spectrum signature carries over to few-body systems

→ → p cot (p) = S(E(L))δ0
1
πL

→

↔

need considerable range of volumes for such studies!► 
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well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 051301 (2013)

basis functions localized at grid points

potential energy matrix diagonal

kinetic energy matrix very sparse

Discrete variable representation
Need calculation of several few-body energy levels

use a Discrete Variable Representation (DVR)

periodic boundary condistions  plane waves as starting point

efficient implementation for large-scale calculations

precalculate only 1D matrix elements► 

↔

handle arbitrary number of particles (and spatial dimensions)► 

Klos, SK et al., PRC 98 034004 (2018)numerical framework scales from laptop to HPC clusters► 

Dietz, SK et al., PRC 105 064002 (2022); SK, arXiv:2211.00395 [nucl-th]

recent extensions: GPU acceleration, separable interactions► 
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Dietz, SK et al., PRC 105 064002 (2022)

Three-neutron energy levels

Physical n-n scattering length 

interacting levels with positive parity, 

 

 

 

 

 

 

 

 

 

 

 

good convergence up to very large boxes ✓

no sign of a three-neutron resonance

= −18.9 fmann

= 1/2Sz
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Dietz, SK et al., PRC 105 064002 (2022)

Three-neutron energy levels

Positive n-n scattering length 

interacting levels with positive parity, 
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Dietz, SK et al., PRC 105 064002 (2022)

Three-neutron energy levels

Positive n-n scattering length 

interacting levels with positive parity, 

 

 

 

 

 

 

 

 

 

 

 

good convergence up to very large boxes ✓

no sign of a three-neutron resonance

= +10.0 fmann

= 1/2Sz
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Frame et al., PRL 121 032501 (2018)

Bonila et al., arXiv:2203.05282; Melendez et al., arXiv:2203.05528

Finite-volume eigenvector continuation
parametric dependence of Hamiltonian  traces only small subspace

this can be exploited to construct a powerful extrapolation method called

eigenvector continuation

special case of "reduced basis method" (RBM)

method extended to handle parametric dependence in model space directly

total number of training data:  (partly covering cubic group multiplets)

four-neutron finite-volume resonance search finally feasible with FVEC!

H(c)

Yapa+König, PRC 106 014309 (2022)enables highly efficient volume extrapolation► 

3 × 8 = 24
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Four-neutron energy levels
preliminary results for four-neutron energy levels

calculated with separable Gaussian interaction, cutoff = 150 MeV
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Four-neutron energy levels
preliminary results for four-neutron energy levels

calculated with separable Gaussian interaction, cutoff = 150 MeV
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N. Yapa, D. Lee, SK, arXiv:2212.14379 [nucl-th]

Part II

Volume dependence of charged-particle bound states
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Lüscher, Commun. Math. Phys. 104 177 (1986); ...

SK et al., PRL 107 112001 (2011); A. Phys. 327, 1450 (2012)

SK + Lee, PLB 779 9 (2018)

u

~
Wulf et al., PRC 58 517 (1998)

deBoer et al., RMP 89 035007 (2017), ...

SK et al., JPG 40 045106 (2013)

Bound-state volume dependence
finite volume affects the binding energy of states: 

,  = ANC

 

infinite-volume properties determine volume dependence

general prefactor is a polynomial in 

relation has been extented to arbitrary two-cluster states

ANCs describe the bound-state wavefunction at large distances

 

Low-energy capture reactions

→ (L)EB EB

Δ (L) ∼ −| exp(− κL)/L+⋯EB A∞|
2

A∞

binding momentum , asymptotic normalization constant (ANC) ► κ A∞

1/κL

important input quantities for reaction calculations► 

p+ Be → B+ γ9 10

α+ C → + γ12 16O∗

⋯
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Charged-particle systems
most systems of interest in nuclear physics involve charged particles
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Charged-particle systems
most systems of interest in nuclear physics involve charged particles
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Yu, Lee, SK, arXiv:2212.14379 [nucl-th]        

Charged-particle systems
most systems of interest in nuclear physics involve charged particles

nonrelativistic description with short-range interaction + long-range Coulomb force

charged bound-state wavefunctions have Whittaker tails:

details worked out by graduate student Hang Yu

  

H + + V +  ,   (r) = =H0 VC VC
γ

r

2μαZ1Z2

r

(r) ∼ (2κr)/r ∼ψ∞ W− ,η̄ 1

2

e−κr

(κr)η̄

these govern the asymptotic volume dependence► 

additional suppression at large distances► 

depends on Coulomb strength: ► = γ/(2κ)η̄

for  system: ► α− α γ ≈ 0.55 fm−1
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Coulomb = exp  Whittaker function?
Yes, but not quite so simple...

→
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Coulomb = exp  Whittaker function?
Yes, but not quite so simple...

→
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Periodic Coulomb potential
short-range interaction easy to extend periodically: (r) = V (r+ nL)VL ∑

n

trivial for finite-range potental ► V

converging sum, negligible corrections for  falling faster than power law► V
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Periodic short-range potentials
implement periodic boundary condition via shifted potentials copies:

necessary condition for this: 

(r) = V (r+ nL)VL ∑
n∈Z3

R = range(V ) ≪ L
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Periodic Coulomb potential
short-range interaction easy to extend periodically: 

not possible for Coulomb potential with infinite range!

(r) = V (r+ nL)VL ∑
n

trivial for finite-range potental ► V

converging sum, negligible corrections for  falling faster than power law► V
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Periodic Coulomb potential
short-range interaction easy to extend periodically: 

not possible for Coulomb potential with infinite range!

Solution

cut off at box boundary, grow Coulomb tail with 

nicely matches practical implementation (e.g. in Lattice EFT)

  

(r) = V (r+ nL)VL ∑
n

trivial for finite-range potental ► V

converging sum, negligible corrections for  falling faster than power law► V

L
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Exact result in one dimension
exact form in one spatial dimension can be found from boundary condition

derivative of wavefunction needs to vanish at boundary: 

for fixed  this determines the binding momentum 

 

 

 

 

 

 

 

seemingly complex phase cancels against Whittaker functions ✓

reduces to simple exponential for  (no Coulomb) ✓

(L/2) = 0ψ′
κ

L κ = κ(L)

linear combination of Jost functions► 

Fäldt+Wilkin, Phys. Scr. 56 566 (1997)

ANC from S-matrix residue► 

► ΔE(L) = 2κΔκ(L)

ΔE(L) = − +O [ ] (1D, even parity)
κ

μ
A2

∞eiπη̄

(κL)W ′
− ,η̄

1

2

(−κL)W ′
,η̄

1

2

e−2κL

γ → 0
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Charged-particle volume dependence
three-dimensional derivation is more involved due to nontrival boundary condition

can be done with two-step procedure, formal perturbation theory► 

introduce   eigenstate ► = + + V = H +ΔH
~
L H0 VC,{L} VC ⇝ ψ

~
L

for the exact solution, both potentials are periodic: ► = + +HL H0 VC,{L} V{L}

volume dependence follows from ansatz ► (x) = (x− nL)ψ
~
L,0 ∑

n∈Z3 ψ
~
L

   ΔE(L) = +Δ (L) + Δ (L) +O [ ] (3D,  )−
3A2

∞

μL
[ (κL)]W ′

− ,η̄ 1

2

2

ó ôòñõõõõõõõõõõõ õõõõõõõõõõõ
≡Δ (L)E0

E
~

E
~′

e− κL2√ A+
1

p. 39



Yu, Lee, SK, arXiv:2212.14379 [nucl-th]

Charged-particle volume dependence
three-dimensional derivation is more involved due to nontrival boundary condition

Correction terms

in addition to exponentially suppressed corrections, there are two other terms

these arise from the Coulomb potential and vanish for 

the perturbative approach makes it possible to deriver their behavior

can be done with two-step procedure, formal perturbation theory► 

introduce   eigenstate ► = + + V = H +ΔH
~
L H0 VC,{L} VC ⇝ ψ

~
L

for the exact solution, both potentials are periodic: ► = + +HL H0 VC,{L} V{L}

volume dependence follows from ansatz ► (x) = (x− nL)ψ
~
L,0 ∑

n∈Z3 ψ
~
L

   ΔE(L) = +Δ (L) + Δ (L) +O [ ] (3D,  )−
3A2

∞

μL
[ (κL)]W ′

− ,η̄ 1

2

2

ó ôòñõõõõõõõõõõõ õõõõõõõõõõõ
≡Δ (L)E0

E
~

E
~′

e− κL2√ A+
1

γ → 0

Δ (L),Δ (L) = O( )×Δ (L)E
~

E
~′ η̄

(κL)2
E0
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Numerical checks
the relations can be checked with explicit numerical calculations

simple lattice discretization with attrative Gaussian potentials

the Coulomb singularity at the origin is also regularized: (r) ∼VC,Gauss
1 − e− /r2 R

2
C

r
this is equivalent to a redefinition of the short-range potential► 
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Yu, Lee, SK, arXiv:2212.14379 [nucl-th]

Numerical checks
the relations can be checked with explicit numerical calculations

simple lattice discretization with attrative Gaussian potentials

the Coulomb singularity at the origin is also regularized: 

excellent agreement with direct continuum calculations

(r) ∼VC,Gauss
1 − e− /r2 R

2
C

r
this is equivalent to a redefinition of the short-range potential► 

obtained by solving the radial Schrödinger equation► 

p. 40



Summary and outlook
Few-neutron systems in pionless EFT

studied three- and four neutrons with separable contact interaction

finite-volume simulations complement Faddeev equations for three neutrons

no indication for three-neutron resonance with large  scattering length

finite-volume eigenvector continuation enables studies of larger system

finite-volume tetraneutron simulations so far not quite conclusive

nn

consistent with previous work► 

more calculations still in progress► 
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finite-volume simulations complement Faddeev equations for three neutrons

no indication for three-neutron resonance with large  scattering length

finite-volume eigenvector continuation enables studies of larger system

finite-volume tetraneutron simulations so far not quite conclusive

Volume dependence of charged-particle bound states

wave function at large distances determines finite-volume energy shift

possible to extract asymptotic normalization coefficients

long-range Coulomb force complicates derivation

leading volume dependence derived for 1D and 3D S-wave systems

asymptotic bounds for additional correction terms

will be applied for ANC calculations based on lattice EFT

nn

consistent with previous work► 

more calculations still in progress► 

p. 41



Thanks...
...to my students and collaborators...

S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)

H. Yu, N. Yapa (NCSU)

D. Lee (FRIB/MSU)

...

...for support, funding, and computing time...

  

Jülich Supercomputing Center

p. 42



Thanks...
...to my students and collaborators...

S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)

H. Yu, N. Yapa (NCSU)

D. Lee (FRIB/MSU)

...

...for support, funding, and computing time...

  

Jülich Supercomputing Center

...and to you, for your attention!

p. 42


