EFT calculations and finite-volume techniques for nuclear few-body systems

Sebastian König

EMMI Workshop and International Workshop XLIX on Gross Properties of Nuclei and Nuclear Excitations

Hirschegg, January 18, 2023
S. Dietz, H.-W. Hammer, SK, A. Schwenk, PRC 105064002 (2022)
N. Yapa, SK, PRC 106014309 (2022)
H. Yu, SK, D. Lee, arXiv:2212.14379 [nucl-th]

NC STATE UNIVERSITY

Theory
Alliance

Thanks...

...to my students and collaborators...

- S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)
- H. Yu, N. Yapa (NCSU)
- D. Lee (FRIB/MSU)
- ...
...for support, funding, and computing time...
- Jülich Supercomputing Center

Nuclear theory tower

- QCD $=$ underlying theory of strong interaction
- EFT = effective description in terms of hadrons
- degrees of freedom depend on resolution scale

Nuclear effective field theories

- choose degrees of freedom approriate to energy scale
- only restricted by symmetry, ordered by power counting

Hammer, SK, van Kolck, RMP 92025004 (2020)

- degrees of freedom here: nucleons (and/or clusters thereof)
- even more effective d.o.f.: rotations, vibrations
- most effective theory depends on energy scale and nucleus of interest

Finite periodic boxes

- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions
- leads to volume-dependent energies

Lüscher formalism

- physical properties encoded in the volume-dependent energy levels
- infinite-volume S-matrix governs discrete finite-volume spectrum
- finite volume used as theoretical tool

Outline

Introduction \downarrow
Few-neutron systems
\section*{Charged particles}
Summary and outlook

Part I

Pionless EFT calculations for few-neutron systems

Pionless EFT

- only contact (zero-range) forces (plus electromagnetism)
- closely linked to universality for large scattering lengths
- excels at low energies, exact range of validity still an open question

Nuclear scales

Nuclear scales

SK et al. PRL 118202501 (2017)

Pionless EFT

- only contact (zero-range) forces (plus electromagnetism)
- closely linked to universality for large scattering lengths
- excels at low energies, exact range of validity still an open question

Pionless EFT

- only contact (zero-range) forces (plus electromagnetism)
- closely linked to universality for large scattering lengths
- excels at low energies, exact range of validity still an open question
- no leading-order $3 n$ force for pure neutron systems

Few-neutron systems

Ongoing searches and speculations

- bound dineutron not excluded by pionless EFT

Kirscher + Phillips, PRC 84054004 (2011); SK et al., PLB 736208 (2014)

- new speculations about a three-neutron resonance...
- ...although excluded by previous work

Lazauskas + Carbonell, PRC 71044004 (2005); Offermann + Glöckle, NPA 318138 (1979)

- experimental evidence for tetraneutron resonance (or even bound state?)

Kisamori et al., PRL 116052501 (2016), Duer et al., Nature 606678 (2022), Faestermann et al., PLB 824136799 (2022)

Tetraneutron situation

Observation at RIKEN (2016)

APS/Alan Stonebraker

Kisamori et al., PRL 116052501 (2016)

- double-charge exchange reaction
- excess of near threshold events hints at possible resonance
- motivated follow-up experiment

Tetraneutron situation

Observation at RIKEN (2022)

Kisamori et al., PRL 116052501 (2016)

- knockout reaction: scattering ${ }^{8} \mathrm{He}$ beam off proton target
- clear peak with resonance shape around 2 MeV
- theory suggests alternative explanations (time delay, phase space + FSI)

Higgins et al., PRC 103024004 (2021), Lazauskas et al., arXiv:2207.07575 [nucl-th]

Overview

Search for resonance states with two different methods

Dietz, SK et al., PRC 105064002 (2022)

- analytically continued Faddeev equations
following Glöckle, PRC 18564 (1978); Afnan, Aust. J. Phys. 44201 (1991)
- calculation of S-matrix pole trajectories
- application to three-boson and three-neutron system
- three-neutron scaling exponents
- finite-volume energy levels in large periodic boxes
following Klos, SK et al., PRC 98034004 (2018)
- exact few-body calculation with discrete variable representation
- application to three and four neutrons
- efficient calculation enabled by finite-volume eigenvector continuation

Yapa+König, PRC 106014309 (2022)

Three-body equation

- consider the Faddeev equation with separable interaction

- effective two-body equation structure
- written here for three neutrons with $J^{\pi}=\frac{1}{2}^{-}$or $\frac{3}{2}^{-}$(degenerate)
- very similar form (plus three-body force) for three bosons
- energies for which a solution exists correspond to S-matrix poles

Three-body equation

- consider the Faddeev equation with separable interaction

- effective two-body equation structure
- written here for three neutrons with $J^{\pi}=\frac{1}{2}^{-}$or $\frac{3}{2}^{-}$(degenerate)
- very similar form (plus three-body force) for three bosons
- energies for which a solution exists correspond to S-matrix poles

Three-body equation

- consider the Faddeev equation with separable interaction

- effective two-body equation structure
- written here for three neutrons with $J^{\pi}=\frac{1}{2}^{-}$or $\frac{3}{2}^{-}$(degenerate)
- very similar form (plus three-body force) for three bosons
- energies for which a solution exists correspond to S-matrix poles

Analytic continuation

- rotate the integration contour: $q \rightarrow q \mathrm{e}^{-\mathrm{i} \phi}$
- this exposes lower right quadrant

Afnan, Aust. J. Phys. 44201 (1991)

- possible to rotate back and pick up a residue
- leads to modified effective interaction

Glöckle, PRC 18564 (1978)

Efimov state trajectories

- Efimov bound states become resonances at certain negative scattering length
- possible to follow the trajectory
- EFT reproduces potential models

$$
\operatorname{sign}(\operatorname{Re} E) \cdot \sqrt{\operatorname{Re} E}
$$

Dietz, SK et al., PRC 105064002 (2022)

Neutrons vs. bosons

- for three bosons we can follow the resonance trajectory of an Efimov state
- consistent with previous work

Bringas et al., PRA 69040702 (2004); Deltuva, PRC 102034003 (2020)

- for three neutrons, we can reproduce Glöckle's Yamaguchi model Glockle, PRC 18564 (1978)
- generates a $3 n$ resonance with deep $2 n$ bound state
- no sign of a three-neutron resonance for physical $n \boldsymbol{n}$ scattering length
- consistent with related work

Lazauskas + Carbonell, PRC 71044004 (2005); Deltuva + Lazauskas, PRL 123069201 (2019)

Dietz, SK et al., PRC 105064002 (2022)

Three-neutron point production

- assume that final-state neutrons in experiments are created effectively in a point
- possible to solve Faddeev equation for production amplitude
- same interaction kernel as shown previously in this talk

Dietz, Hammer, SK, in preparation

- spectrum governed by conformal symmetry in universal regime: $\frac{1}{m a^{2}} \ll E \ll \frac{1}{m r^{2}}$
- cross section $\frac{\mathrm{d} \sigma}{\mathrm{dE}} \sim R(E) \sim E^{\Delta-5 / 2} \quad$ Hammer+Son, Proc. Natl. Acad. Sci. 118, e2108716118 (2021)
- scaling dimension Δ depends on partial wave: $4.666(L=0), 4.273(L=1), \ldots$

Three-neutron point production

- assume that final-state neutrons in experiments are created effectively in a point
- possible to solve Faddeev equation for production amplitude
- same interaction kernel as shown previously in this talk

Dietz, Hammer, SK, in preparation

- spectrum governed by conformal symmetry in universal regime: $\frac{1}{m a^{2}} \ll E \ll \frac{1}{m r^{2}}$
- cross section $\frac{\mathrm{d} \sigma}{\mathrm{dE}} \sim R(E) \sim E^{\Delta-5 / 2} \quad$ Hammer+Son, Proc. Natl. Acad. Sci. 118, e2108716118 (2021)
- scaling dimension Δ depends on partial wave: $4.666(L=0), 4.273(L=1), \ldots$

Finite-volume resonance signatures

Lüscher formalism

- finite volume \rightarrow discrete energy levels $\rightarrow p \cot \delta_{0}(p)=\frac{1}{\pi L} S(E(L)) \rightarrow$ phase shift
- resonance contribution \leftrightarrow avoided level crossing

Lüscher, NPB 354531 (1991)
Wiese, NPB (Proc. Suppl.) 9609 (1989);

- spectrum signature carries over to few-body systems
- need considerable range of volumes for such studies!

Discrete variable representation

Need calculation of several few-body energy levels

- use a Discrete Variable Representation (DVR)
well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87051301 (2013)
- basis functions localized at grid points
- potential energy matrix diagonal
- kinetic energy matrix very sparse
- precalculate only 1D matrix elements

- periodic boundary condistions \leftrightarrow plane waves as starting point
- efficient implementation for large-scale calculations
- handle arbitrary number of particles (and spatial dimensions)
- numerical framework scales from laptop to HPC clusters Klos, SK et al., PRC 98034004 (2018)
- recent extensions: GPU acceleration, separable interactions

Dietz, SK et al., PRC 105064002 (2022); SK, arXiv:2211.00395 [nucl-th]

Three-neutron energy levels

Physical n-n scattering length $a_{n n}=-18.9 \mathrm{fm}$

- interacting levels with positive parity, $S_{z}=1 / 2$

- good convergence up to very large boxes \checkmark
- no sign of a three-neutron resonance

Three-neutron energy levels

Positive n-n scattering length $a_{n n}=+18.9 \mathrm{fm}$

- interacting levels with positive parity, $S_{z}=1 / 2$

- good convergence up to very large boxes \checkmark
- no sign of a three-neutron resonance

Three-neutron energy levels

Positive n-n scattering length $a_{n n}=+10.0 \mathrm{fm}$

- interacting levels with positive parity, $S_{z}=1 / 2$

- good convergence up to very large boxes \checkmark
- no sign of a three-neutron resonance

Finite-volume eigenvector continuation

- parametric dependence of Hamiltonian $H(c)$ traces only small subspace
- this can be exploited to construct a powerful extrapolation method called eigenvector continuation
- special case of "reduced basis method" (RBM)
- method extended to handle parametric dependence in model space directly
- enables highly efficient volume extrapolation

- total number of training data: $3 \times 8=24$ (partly covering cubic group multiplets)
- four-neutron finite-volume resonance search finally feasible with FVEC!

Four-neutron energy levels

- preliminary results for four-neutron energy levels
- calculated with separable Gaussian interaction, cutoff $=150 \mathrm{MeV}$

Four-neutron energy levels

- preliminary results for four-neutron energy levels
- calculated with separable Gaussian interaction, cutoff $=150 \mathrm{MeV}$

Part II

Volume dependence of charged-particle bound states
N. Yapa, D. Lee, SK, arXiv:2212.14379 [nucl-th]

Bound-state volume dependence

- finite volume affects the binding energy of states: $E_{B} \rightarrow E_{B}(L)$

$$
\begin{aligned}
\Delta E_{B}(L) \sim-\left|A_{\infty}\right|^{2} \exp (-\kappa L) / L+\cdots, \boldsymbol{A}_{\infty}=\text { ANC } \\
\quad \text { Lüscher, Commun. Math. Phys. } 104177(1986) ;
\end{aligned}
$$

- infinite-volume properties determine volume dependence
- binding momentum κ, asymptotic normalization constant (ANC) A_{∞}
- general prefactor is a polynomial in $1 / \kappa L$ SK et al., PRL 107112001 (2011); A. Phys. 327 , 1450 (2012)
- relation has been extented to arbitrary two-cluster states
- ANCs describe the bound-state wavefunction at large distances
- important input quantities for reaction calculations

Low-energy capture reactions

- $p+{ }^{9} \mathrm{Be} \rightarrow{ }^{10} \mathrm{~B}+\gamma$

Wulf et al., PRC 58517 (1998)

- $\alpha+{ }^{12} \mathrm{C} \rightarrow{ }^{16} \mathrm{O}^{*}+\gamma$
- . . deBoer et al., RMP 89035007 (2017), ...

SK et al., JPG 40045106 (2013)

Charged-particle systems

- most systems of interest in nuclear physics involve charged particles

Bound-state volume dependence

- finite volume affects the binding energy of states: $E_{B} \rightarrow E_{B}(L)$

$$
\begin{aligned}
\Delta E_{B}(L) \sim-\left|A_{\infty}\right|^{2} \exp (-\kappa L) / L+\cdots, \boldsymbol{A}_{\infty}=\text { ANC } \\
\quad \text { Lüscher, Commun. Math. Phys. } 104177(1986) ;
\end{aligned}
$$

- infinite-volume properties determine volume dependence
- binding momentum κ, asymptotic normalization constant (ANC) A_{∞}
- general prefactor is a polynomial in $1 / \kappa L$ SK et al., PRL 107112001 (2011); A. Phys. 327 , 1450 (2012)
- relation has been extented to arbitrary two-cluster states
- ANCs describe the bound-state wavefunction at large distances
- important input quantities for reaction calculations

Low-energy capture reactions

- $p+{ }^{9} \mathrm{Be} \rightarrow{ }^{10} \mathrm{~B}+\gamma$

Wulf et al., PRC 58517 (1998)

- $\alpha+{ }^{12} \mathrm{C} \rightarrow{ }^{16} \mathrm{O}^{*}+\gamma$
- . . deBoer et al., RMP 89035007 (2017), ...

SK et al., JPG 40045106 (2013)

Charged-particle systems

- most systems of interest in nuclear physics involve charged particles

Charged-particle systems

- most systems of interest in nuclear physics involve charged particles
- nonrelativistic description with short-range interaction + long-range Coulomb force

$$
H+H_{0}+V+V_{C}, V_{C}(r)=\frac{\gamma}{r}=\frac{2 \mu \alpha Z_{1} Z_{2}}{r}
$$

- charged bound-state wavefunctions have Whittaker tails:

$$
\psi_{\infty}(r) \sim W_{-\bar{\eta}, \frac{1}{2}}(2 \kappa r) / r \sim \frac{\mathrm{e}^{-\kappa r}}{(\kappa r)^{\bar{\eta}}}
$$

- these govern the asymptotic volume dependence
- additional suppression at large distances
- depends on Coulomb strength: $\bar{\eta}=\gamma /(2 \kappa)$
- for $\alpha-\alpha$ system: $\gamma \approx 0.55 \mathrm{fm}^{-1}$
- details worked out by graduate student Hang Yu

Coulomb $=\exp \rightarrow$ Whittaker function?

Coulomb $=\exp \rightarrow$ Whittaker function?

Yes, but not quite so simple...

Periodic Coulomb potential

- short-range interaction easy to extend periodically: $V_{L}(\mathbf{r})=\sum_{\mathbf{n}} V(\mathbf{r}+\mathbf{n} L)$
- trivial for finite-range potental V
- converging sum, negligible corrections for V falling faster than power law

Periodic short-range potentials

- implement periodic boundary condition via shifted potentials copies:

$$
V_{L}(\mathbf{r})=\sum_{\mathbf{n} \in \mathbb{Z}^{3}} V(\mathbf{r}+\mathbf{n} L)
$$

- necessary condition for this: $R=\operatorname{range}(V) \ll L$

Periodic short-range potentials

- implement periodic boundary condition via shifted potentials copies:

$$
V_{L}(\mathbf{r})=\sum_{\mathbf{n} \in \mathbb{Z}^{3}} V(\mathbf{r}+\mathbf{n} L)
$$

- necessary condition for this: $R=\operatorname{range}(V) \ll L$

Periodic short-range potentials

- implement periodic boundary condition via shifted potentials copies:

$$
V_{L}(\mathbf{r})=\sum_{\mathbf{n} \in \mathbb{Z}^{3}} V(\mathbf{r}+\mathbf{n} L)
$$

- necessary condition for this: $R=\operatorname{range}(V) \ll L$

Periodic Coulomb potential

- short-range interaction easy to extend periodically: $V_{L}(\mathbf{r})=\sum_{\mathbf{n}} V(\mathbf{r}+\mathbf{n} L)$
- trivial for finite-range potental V
- converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

Periodic Coulomb potential

- short-range interaction easy to extend periodically: $V_{L}(\mathbf{r})=\sum_{\mathbf{n}} V(\mathbf{r}+\mathbf{n} L)$
- trivial for finite-range potental V
- converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

Solution

- cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)

Exact result in one dimension

- exact form in one spatial dimension can be found from boundary condition
- derivative of wavefunction needs to vanish at boundary: $\psi_{k}^{\prime}(L / 2)=0$
- for fixed L this determines the binding momentum $\kappa=\kappa(L)$
- linear combination of Jost functions
- ANC from S-matrix residue

Fäldt+Wilkin, Phys. Scr. 56566 (1997)

- $\Delta E(L)=2 \kappa \Delta \kappa(L)$

$$
\Delta E(L)=-\frac{\kappa}{\mu} A_{\infty}^{2} \mathrm{e}^{\mathrm{i} \pi \bar{\eta}} \frac{W_{-\bar{\eta}, \frac{1}{2}}^{\prime}(\kappa L)}{W_{\bar{\eta}, \frac{1}{2}}^{\prime}(-\kappa L)}+\mathcal{O}\left[\mathrm{e}^{-2 \kappa L}\right]
$$

(1D, even parity)

- seemingly complex phase cancels against Whittaker functions \checkmark
- reduces to simple exponential for $\gamma \rightarrow 0$ (no Coulomb) \checkmark

Charged-particle volume dependence

- three-dimensional derivation is more involved due to nontrival boundary condition
- can be done with two-step procedure, formal perturbation theory
- introduce $\tilde{H}_{L}=H_{0}+V_{C,\{L\}}+V=H+\Delta V_{C} \rightsquigarrow$ eigenstate $\tilde{\psi}_{L}$
- for the exact solution, both potentials are periodic: $H_{L}=H_{0}+V_{C,\{L\}}+V_{\{L\}}$
- volume dependence follows from ansatz $\tilde{\psi}_{L, 0}(\mathbf{x})=\sum_{\mathbf{n} \in \mathbb{Z}^{3}} \tilde{\psi}_{L}(\mathbf{x}-\mathbf{n} L)$

$$
\begin{equation*}
\Delta E(L)=\underbrace{-\frac{3 A_{\infty}^{2}}{\mu L}\left[W_{-\bar{\eta}, \frac{1}{2}}^{\prime}(\kappa L)\right]^{2}}_{\equiv \Delta E_{0}(L)}+\Delta \tilde{E}(L)+\Delta \tilde{E}^{\prime}(L)+\mathcal{O}\left[\mathrm{e}^{-\sqrt{2} \kappa L}\right] \tag{1}
\end{equation*}
$$

Charged-particle volume dependence

- three-dimensional derivation is more involved due to nontrival boundary condition
- can be done with two-step procedure, formal perturbation theory
- introduce $\tilde{H}_{L}=H_{0}+V_{C,\{L\}}+V=H+\Delta V_{C} \rightsquigarrow$ eigenstate $\tilde{\psi}_{L}$
- for the exact solution, both potentials are periodic: $H_{L}=H_{0}+V_{C,\{L\}}+V_{\{L\}}$
- volume dependence follows from ansatz $\tilde{\psi}_{L, 0}(\mathbf{x})=\sum_{\mathbf{n} \in \mathbb{Z}^{3}} \tilde{\psi}_{L}(\mathbf{x}-\mathbf{n} L)$

$$
\begin{equation*}
\Delta E(L)=\underbrace{-\frac{3 A_{\infty}^{2}}{\mu L}\left[W_{-\bar{\eta}, \frac{1}{2}}^{\prime}(\kappa L)\right]^{2}}_{\equiv \Delta E_{0}(L)}+\Delta \tilde{E}(L)+\Delta \tilde{E}^{\prime}(L)+\mathcal{O}\left[\mathrm{e}^{-\sqrt{2} \kappa L}\right] \tag{1}
\end{equation*}
$$

Correction terms

- in addition to exponentially suppressed corrections, there are two other terms
- these arise from the Coulomb potential and vanish for $\gamma \rightarrow 0$
- the perturbative approach makes it possible to deriver their behavior

Yu, Lee, SK, arXiv:2212.14379 [nucl-th]

$$
\Delta \tilde{E}(L), \Delta \tilde{E}^{\prime}(L)=\mathcal{O}\left(\frac{\bar{\eta}}{(\kappa L)^{2}}\right) \times \Delta E_{0}(L)
$$

Numerical checks

- the relations can be checked with explicit numerical calculations
- simple lattice discretization with attrative Gaussian potentials
- the Coulomb singularity at the origin is also regularized: $V_{C, \text { Gauss }}(r) \sim \frac{1-\mathrm{e}^{-r^{2} / R_{C}^{2}}}{r}$ - this is equivalent to a redefinition of the short-range potential

Numerical checks

- the relations can be checked with explicit numerical calculations
- simple lattice discretization with attrative Gaussian potentials
- the Coulomb singularity at the origin is also regularized: $V_{C, \text { Gauss }}(r) \sim \frac{1-\mathrm{e}^{-r^{2} / R_{C}^{2}}}{r}$
- this is equivalent to a redefinition of the short-range potential

Numerical checks

- the relations can be checked with explicit numerical calculations
- simple lattice discretization with attrative Gaussian potentials
- the Coulomb singularity at the origin is also regularized: $V_{C, \text { Gauss }}(r) \sim \frac{1-\mathrm{e}^{-r^{2} / R_{C}^{2}}}{r}$
- this is equivalent to a redefinition of the short-range potential

	Finite-volume fit			Continuum result	
γ	κ_{∞}	A_{∞}	L range	κ_{∞}	A_{∞}
$d=1$					
1.0	$0.861110(3)$	$2.1286(1)$	$12 \sim 24$	0.860	2.1284
2.0	$0.861125(9)$	$4.4740(9)$	$12 \sim 23$	0.860	4.4782
3.0	$0.86108(6)$	$10.386(2)$	$12 \sim 20$	0.858	10.435
$d=3$					
1.0	$0.8610(3)$	$5.039(2)$	$17 \sim 28$	0.861	5.049
2.0	$0.8607(3)$	$11.71(4)$	$15 \sim 26$	0.860	11.79
3.0	$0.8605(7)$	$29.95(20)$	$14 \sim 24$	0.859	30.31
4.0	$0.8604(1)$	$83.14(10)$	$14 \sim 22$	0.858	84.76
5.0	$0.8604(2)$	$247.9(5)$	$14 \sim 18$	0.857	255.4

- excellent agreement with direct continuum calculations
- obtained by solving the radial Schrödinger equation

Yu, Lee, SK, arXiv:2212.14379 [nucl-th]

Summary and outlook

Few-neutron systems in pionless EFT

- studied three- and four neutrons with separable contact interaction
- finite-volume simulations complement Faddeev equations for three neutrons
- no indication for three-neutron resonance with large $n n$ scattering length
- consistent with previous work
- finite-volume eigenvector continuation enables studies of larger system
- finite-volume tetraneutron simulations so far not quite conclusive
- more calculations still in progress

Summary and outlook

Few-neutron systems in pionless EFT

- studied three- and four neutrons with separable contact interaction
- finite-volume simulations complement Faddeev equations for three neutrons
- no indication for three-neutron resonance with large $n n$ scattering length
- consistent with previous work
- finite-volume eigenvector continuation enables studies of larger system
- finite-volume tetraneutron simulations so far not quite conclusive
- more calculations still in progress

Volume dependence of charged-particle bound states

- wave function at large distances determines finite-volume energy shift
- possible to extract asymptotic normalization coefficients
- long-range Coulomb force complicates derivation
- leading volume dependence derived for 1D and 3D S-wave systems
- asymptotic bounds for additional correction terms
- will be applied for ANC calculations based on lattice EFT

Thanks...

...to my students and collaborators...

- S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)
- H. Yu, N. Yapa (NCSU)
- D. Lee (FRIB/MSU)
- ...
...for support, funding, and computing time...

- Jülich Supercomputing Center

Thanks...

...to my students and collaborators...

- S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)
- H. Yu, N. Yapa (NCSU)
- D. Lee (FRIB/MSU)
- ...
...for support, funding, and computing time...

- Jülich Supercomputing Center
...and to you, for your attention!

