

Hyperon-Nucleon Interaction Constrained by Light Hypernuclei

Marco Knöll

Hypernuclei in Ab Initio Calculations

- hypernuclei are systems with strangeness composed of nucleons and hyperons
- CI methods like the (IT-)NCSM have been modified to describe hypernuclei
- calculations require the inclusion of hyperon-nucleon (YN) and hyperon-hyperon (YY) interactions
- first YN interactions from chiral EFT have recently been derived up to N²LO Polinder et. al. 2006, Haidenbauer et. al. 2019, 2023, Haidenbauer et. al. 2023
- LO and NLO interactions have been studied in IT-NCSM and Jacobi NCSM applications *Wirth 2018, Le et. al. 2020*

Optimization of YN Interaction

Motivation for Optimization

- systematic overbinding of hyperon
- hyperon-nucleon interaction is poorly constraint
- LEC optimization successful for regular nuclei
 Hüther et. al. 2020
- ansatz: optimize LECs based on hypernuclear structure observables

Hypernuclear Hamiltonian from Chiral EFT

• hypernuclear Hamiltonian $H = \Delta M + T + V_{NN} + V_{NNN} + \ldots + V_{YN} + V_{YNN} + \ldots$

- $V_{\rm NN}$: non-local nucleon-nucleon from chiral EFT at N³LO EMN 2017
- V_{NNN}: non-local three-body interactions at N³LO Hüther et. al. 2020
- V_{YN}: hyperon-nucleon interaction in SU(3) chiral EFT at LO Polinder et. al. 2006
- *V*_{YNN}: no initial interaction available but SRG induced forces *V*^{ind}_{YNN} are considered

Hypernuclear Hamiltonian from Chiral EFT

hypernuclear Hamiltonian
$$H = \Delta M + T + V_{NN} + V_{NNN} + \ldots + V_{YN} + V_{YNN} + \ldots$$

- $V_{\rm NN}$: non-local nucleon-nucleon from chiral EFT at N³LO EMN 2017
- V_{NNN}: non-local three-body interactions at N³LO Hüther et. al. 2020
- V_{YN}: hyperon-nucleon interaction in SU(3) chiral EFT at LO Polinder et. al. 2006
- V_{YNN} : no initial interaction available but SRG induced forces $V_{\text{YNN}}^{\text{ind}}$ are considered

Possibilities for Improvement

TECHNISCHE UNIVERSITÄT DARMSTADT

starting point

- YN interaction at LO Polinder et. al. 2006
- 5 LECs
- constrained on
 35 YN data points

Possibilities for Improvement

starting point

- YN interaction at LO Polinder et. al. 2006
- 5 LECs
- constrained on 35 YN data points

higher orders

- extension to NLO (and N²LO)
 Haidenbauer et. al. 2019 (2023)
- 23 LECs can be reduced assuming strict SU(3) symmetry
- 36 YN data for S-waves, practically no data for P-waves

Possibilities for Improvement

starting point

- YN interaction at LO Polinder et. al. 2006
- 5 LECs
- constrained on 35 YN data points

higher orders

- extension to NLO (and N²LO)
 Haidenbauer et. al. 2019 (2023)
- 23 LECs can be reduced assuming strict SU(3) symmetry
- 36 YN data for S-waves, practically no data for P-waves

FCHNISCH

UNIVERSITÄ" DARMSTAD

Hypernuclear IT-NCSM

- expand Hamiltonian on finite Slater Determinant basis and diagonalize
- include strangeness S in single-particle basis $|n(ls)jm_j, Stm_t\rangle$
- constituents: $n, p, \Lambda, \Sigma^-, \Sigma^0, \Sigma^+$
- SRG induces YNN forces
- inclusion of induced YNN forces is key for accurate description
- access larger model spaces through importance measure

LEC Sensitivity Analysis

 5 LECs associated with particle species and partial waves:

 $C_{1}^{\Lambda\Lambda}$, $C_{3}^{\Lambda\Lambda}$, $C_{1}^{\Sigma\Sigma}$, $C_{3}^{\Sigma\Sigma}$, $C_{3}^{\Sigma\Sigma}$, $C_{3}^{\Lambda\Sigma}$

- vary single LECs by "natural" amounts
- most sensitive to $C_{3S_1}^{\Lambda\Lambda}$ followed by $C_{1S_0}^{\Lambda\Lambda}$
- limit optimization to these two LECs

LEC Sensitivity Analysis

 5 LECs associated with particle species and partial waves:

 $C_{1S_0}^{\Lambda\Lambda}, C_{3S_1}^{\Lambda\Lambda}, C_{1S_0}^{\Sigma\Sigma}, C_{3S_1}^{\Sigma\Sigma}, C_{3S_1}^{\Lambda\Sigma}$

- vary single LECs by "natural" amounts
- most sensitive to $C_{3S_1}^{\Lambda\Lambda}$ followed by $C_{1S_0}^{\Lambda\Lambda}$
- limit optimization to these two LECs

Jan. 17, 2023 | TU Darmstadt | Institute for Nuclear Physics | Marco Knöll

Optimization of LECs

- optimization based on observables predominantly controlled by YN interaction $\Rightarrow B_{\Lambda}$ and hypernuclear splitting ΔE^* of excited energy levels
- selected set of experimentally well-known hypernuclei $\Rightarrow {}^{3}_{\Lambda}$ H, ${}^{5}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ Li and ${}^{9}_{\Lambda}$ Be
- χ^2 -metric including experimental and theoretical errors

$$\chi^2 = \sum \frac{(o - o_{\text{exp}})^2}{\sigma_{\text{theo}}^2 + \sigma_{\text{exp}}^2}$$

Optimization Results

Description of Scattering Data

data provided by J. Haidenbauer

- ΛN interaction slightly weakened
- deviation from previous results is reasonably small

- systematic decrease of B_{Λ}
- improved agreement with experiment except for ⁸_ΛHe
- even isotopes tend to be underbound
- IT-NCSM calculations not converged

 \Rightarrow require systematic extrapolation and uncertainty estimation

Uncertainty Quantification

Many-Body Uncertainties - Neural Networks

- prediction and uncertainty from machine learning tool *MK et. al. 2022*
- train 1000 feed-forward ANNs on converged NCSM calculations for ²H, ³H and ⁴He

Energies MK et. al. 2022

Jan. 17, 2023 | TU Darmstadt | Institute for Nuclear Physics | Marco Knöll

Many-Body Uncertainties - Neural Networks

- neural network approach can be applied to hypernuclei including B_{Λ}
- robust predictions for well-behaved B_{Λ}

Many-Body Uncertainties - Neural Networks

- neural network approach can be applied to hypernuclei including B_{Λ}
- robust predictions for well-behaved B_{Λ}

- convergence behavior of B_Λ is not constrained
- sufficiently large model spaces required for accurate prediction

Dependence on Nucleonic Interaction

- non-negligible dependence on nucleonic interaction
- effects decrease with increasing order
- allows for order-by-order uncertainty estimation

Interaction Uncertainties - Bayesian Order by Order

- correlated EFT truncation errors including many-body uncertainties Melendez et. al. 2019
- uncertainty estimation regarding the nucleonic sector only
- YN interaction at LO is insufficient for more accurate description

Conclusions

- significant improvement of the description of hyperon separation energies B_{Λ}
- p-shell hypernuclei provide a useful source for experimental data in addition to the very little scattering data
- uncertainty quantification accessible
- higher accuracy requires the inclusion of higher orders
- next step: LEC optimization based on p-shell hypernuclei for NLO or N²LO

Thank you for your attention!

thanks to my group and collaborators

P. Falk	R. Roth
L. Mertes	L. Wagner
J. Müller	C. Wenz
K. Katzenmeier	T. Wolfgruber

computing time

