Gaussian Characterization of the Universal Window

A. Kievsky
INFN, Sezione di Pisa (Italy)

EMMI Hirschegg Workshop

Hirschegg, 15-21 January 2023

Collaborators

- M. Gattobigio - INPHYNI \& Nice University, Nice (France)
- M. Viviani and L.E. Marcucci - INFN \& Pisa University, Pisa (Italy)
- L. Girlanda - Universita' del Salento, Lecce (Italy)
- R. Schiavilla Jlab \& Old Dominion University, (USA)
- E. Garrido - CSIC, Madrid (Spain)
- A. Deltuva - ITPA, Vilnius (Lithuania)
- A. Polls - Universitat de Barcelona, Barcelona Spain
- B. Juliá-Díaz - Universitat de Barcelona, Barcelona Spain
- N. Timofeyuk - University of Surrey, Guildford (UK)
- I. Bombaci and D. Logoteta - INFN \& Pisa University, Pisa (Italy)

Outline

- Appearance of universal behavior
\rightarrow independence of the interaction details
\rightarrow equal long-range behavior but different short-range behavior
- Definition of the unitary window
\rightarrow Weakly bound systems
\rightarrow Correlation between bound and scattering states
- Dynamics governed by a few parameters (control parameters)
\rightarrow Continuous (or discrete) scale invariance
- Weakly bound systems are strongly correlated
- In the universal reaime details of the interaction are not important Effective interactions
\rightarrow Gaussian (or other) characterization
- Are correlated systems and universal properties compatible?
- Transition from universal to non-universal regime

Outline

- Appearance of universal behavior
\rightarrow independence of the interaction details
\rightarrow equal long-range behavior but different short-range behavior
- Definition of the unitary window
\rightarrow Weakly bound systems
\rightarrow Correlation between bound and scattering states
- Dynamics governed by a few parameters (control parameters)
\rightarrow Continuous (or discrete) scale invariance

Interplay of two aspects

- Weakly bound systems are strongly correlated
- In the universal regime details of the interaction are not important
\rightarrow Effective interactions
\rightarrow Gaussian (or other) characterization
- Are correlated systems and universal properties compatible?
- Transition from universal to non-universal regime

The unitary window

Low energy quantities

- We consider a short-range interaction: $V\left(r>r_{0}\right) \rightarrow 0$

In this case low energy means $E=k^{2} \hbar^{2} / m<\hbar^{2} / m r_{0}^{2}$

- In this regime the s-wave phase shift is well described by the effective range expansion up to second order
$k \cot \delta_{0}=-1 / a+r_{e} k^{2} / 2+\ldots$
with a the scattering length defined from the zero-energy Schrödinger equation, $H \phi_{0}=0$

$$
\phi_{0}(r \rightarrow \infty) \rightarrow u_{0}=1-a / r
$$

and r_{e} the effective range

$$
r_{e}=\frac{2}{a^{2}} \int_{0}^{\infty}\left(\phi_{0}^{2}-u_{0}^{2}\right) r^{2} d r
$$

The unitary window

The presence of a shallow bound (or virtual) state
A bound state correspond to the S-matrix pole $k \cot \delta_{0}-i k=0$ In general all terms in the expansion of $k \cot \delta_{0}$ are needed. However, when a shallow state appears (fine tuning), we can use the expansion up to second order $(i \kappa=k)$

$$
\kappa=1 / a+r_{e} \kappa^{2} / 2+\ldots
$$

which introduces a strict correlation between the low energy parameters. When $\kappa \rightarrow 0, a \rightarrow \infty$, and $r_{e} / a \ll 1$.

Defining the lengths $a_{B}=1 / \kappa$ and $r_{B}=a-a_{B}$, they are related up to second order by

$$
r_{e} a=2 r_{B} a_{B}
$$

The unitary window

Protagonists of the story:

$a \rightarrow$ scattering length

$r_{\text {eff }} \rightarrow$ effective range
$a_{B} \rightarrow E=\hbar^{2} / m a_{B}^{2} \rightarrow$ energy length

The Hero

Universal behavior in few-body systems

- When a shallow state exists, the systems can be placed inside the universal window. The experimental points can be connected using a potential model (here a Gaussian potential).

Gaussian characterization of the universal window

 $V(1,2)=v_{0} e^{-r^{2} / / r_{0}^{2}}$

At $r_{0} / a=0.2877$ a Gaussian potential describes the low-energy nuclear parameters a^{1}, r_{e}^{1}, a_{B} within 1% accuracy

Moving along the universal window

- By scaling the strength of the potential, systems can be (ideally) moved along the universal window
- The Gaussian charaterization can be used to continously connect systems inside the window

Moving along the universal window

- The scaled $\lambda V_{\text {He-He }}$ potential can be followed by a gaussian with fixed range $V_{0} e^{-\left(r / r_{0}\right)^{2}}$
- The running of the Gaussian strength is

$$
V_{0} /\left(\hbar^{2} / m r_{0}^{2}\right)=C_{0}\left(1+\alpha_{1} \frac{r_{0}}{\boldsymbol{a}}+\alpha_{2}\left(\frac{r_{0}}{\boldsymbol{a}}\right)^{2}+\ldots\right)
$$

- Two movements can be used to connect the systems:
i) to change the strength V_{0} maintaining r_{0} fixed
ii) to change the strength V_{0} and range r_{0} maintaining fixed $r_{\text {eff }} / a$
- Points having equal $r_{\text {eff }} / a$ are related by a scale transformation:

$$
\left\{\begin{array}{l}
a \rightarrow \epsilon a \\
a_{B} \rightarrow \epsilon a_{B}
\end{array} \Rightarrow \begin{array}{l}
r_{B}=a-a_{B} \rightarrow \epsilon r_{B} \\
r_{\text {eff }}=2 a_{B} r_{B} / a \rightarrow \epsilon r_{\text {eff }}
\end{array}\right.
$$

The universal window

Observables

Observables are stricted correlated to the low-energy parameters (up to second order).
The mean square radius:

$$
\left\langle r^{2}\right\rangle=\frac{a^{2}}{8}\left[1+\left(\frac{r_{B}}{a}\right)^{2}+\cdots\right]=\frac{a_{B}^{2}}{8} e^{2 r_{B} / a_{B}}=\frac{a_{B}^{2}}{8} f_{s C}
$$

The asymptotic normalization constant

$$
C_{a}^{2}=\frac{2}{a_{B}} \frac{1}{1-r_{e} / a_{B}}=\frac{2}{a_{B}} e^{2 r_{B} / a_{B}}=\frac{2}{a_{B}} f_{s c}
$$

the probability to be outside the interaction range

$$
P_{e}=C_{a}^{2} \int_{2 r_{B}}^{\infty} e^{-2 r / a_{B}} d r=e^{-2 r_{B} / a_{B}}=\frac{1}{f_{s c}}
$$

Universal behavior in few-body systems

Examples

- The helium dimer (as given by the LM2M2 potential):

$$
\begin{array}{ll}
a=189.415 \text { a.u., } & \rightarrow a_{B}=182.221 \mathrm{a} . \mathrm{u} . \\
r_{e}=13.8447 \mathrm{a.u.,} & \rightarrow r_{B}=7.194 \mathrm{a.u} . \\
E_{d}=1.303 \mathrm{mk}, & \rightarrow E\left(a, r_{e}\right)=1.303 \mathrm{mk} \\
\left(r_{e} a\right) /\left(2 r_{B} a_{B}\right)=1.0002 &
\end{array}
$$

- The deuteron:
$a^{1}=5.419 \pm 0.007 \mathrm{fm}$,
$r_{e}^{1}=1.753 \pm 0.008 \mathrm{fm}$,
$E_{d}=2.224575(9) \mathrm{MeV}$
$\langle r\rangle=1.97535(85) \mathrm{fm}$
$C_{a}=0.8781(44) \mathrm{fm}^{-1 / 2}$
$\left(r_{e} a\right) /\left(2 r_{B} a_{B}\right)=0.9991$
$\left(16 / a_{B}^{3}\right)\left(\left\langle r^{2}\right\rangle / C_{a}^{2}\right)=1.005$
$\rightarrow a_{B}^{1}=4.318 \mathrm{fm}$
$\rightarrow r_{B}^{1}=1.101 \pm 0.007 \mathrm{fm}$
$\rightarrow E\left(a, r_{e}\right)=2.223 \mathrm{MeV}$
$\rightarrow\langle r\rangle\left(a, r_{e}\right)=1.970 \mathrm{fm}$
$\rightarrow C_{a}\left(a, r_{e}\right)=0.8782 \mathrm{fm}^{-1 / 2}$

Other characterizations

The Gaussian potential is often used in the literature, however it is not the only one-parameter potential that can be used to characterize the universal window.

The Eckart potential

$$
V_{\text {Eckart }}(r)=-2 \frac{\hbar^{2}}{m r_{0}^{2}} \frac{W_{0} e^{-r / r_{0}}}{\left(1+W_{0} e^{-r / r_{0}}\right)^{2}}
$$

reproduces the effective range expansion up to second order exactly

$$
k \cot \delta_{0}=-1 / a+r_{e} k^{2} / 2
$$

with $a=4 W_{0} r_{0} /\left(W_{0}-1\right)$ and $r_{e}=4\left(a-2 r_{0}\right) r_{0} / a$
For $W_{0}>1$ there is a bound state with energy $E=\hbar^{2} / m a_{B}^{2}$ with $a_{B}=a-2 r_{0}$

The three-body system inside the universal window

- The energy spectrum of three equal bosons shows a discrete scale invariance (DSI)
- As the range of the interaction goes to zero, $\left(r_{0} \rightarrow 0\right) \rightarrow$ Thomas collapse
- At the unitary limit $1 / a \rightarrow 0 \rightarrow$ Efimov effect

Gaussian characterization of the universal window for

 three bosons: $H=T+V_{0} \sum_{i<j} e^{r_{j}^{2} / r_{0}^{2}}$
A.K., M. Gattobigio, L. Girlanda and M. Viviani, Ann.Rev.Nucl.Part.Sci. 2021, 71:465

Footprint of universality

where the van der Waals length is $\ell_{v d W}=\frac{1}{2}\left(2 m C_{6} / \hbar^{2}\right)^{1 / 4}$ For the Gaussian characterization this is encoded in the (almost) model independent relation $\kappa_{*}^{(0)} a_{-}^{(0)}=-4.37 r_{0} \frac{0.4883}{r_{0}}=-2.14$
For van der Waals species $\kappa_{*}^{(0)} a_{-}^{(0)} \approx-2.2$

Moving along the universal window

To study movements along the three-bosons universal window, we use the fact that different $\mathrm{He}-\mathrm{He}$ interactions exist with different E_{N} values.

Potential	$E_{2}(\mathrm{mK})$	$E_{3}(\mathrm{mK})$	$E_{4}(\mathrm{mK})$	$r_{0}^{(3)}\left(a_{0}\right)$	$r_{0}^{(4)}\left(a_{0}\right)$
a: HFD-HE2	0.8301	117.2	535.6	11.146	11.840
b: LM2M2	1.3094	126.5	559.2	11.150	11.853
c: HFD-B3-FCH	1.4475	129.0	566.1	11.148	11.853
d: CCSAPT	1.5643	131.0	571.7	11.149	11.851
e: PCKLJS	1.6154	131.8	573.9	11.148	11.852
f: HFD-B	1.6921	133.1	577.3	11.149	11.854
g: SAPT96	1.7443	134.0	580.0	11.147	11.850

The Gaussian potential
$V^{(N)}=V_{0}^{(N)} \sum_{i<j} e^{-\left(r_{i j} / r_{0}^{(N)}\right)^{2}}$

Moving along the universal window

$E_{N}^{*}=\left(\hbar^{2} / m\right)\left(\kappa_{N}^{*}\right)^{2}=\left[\hbar^{2} / m\left(r_{0}^{(N)}\right)^{2}\right]\left(\kappa_{N}^{*} r_{0}^{(N)}\right)^{2}$
$E_{3}^{*}=83.05 \pm 0.05 \mathrm{mK}$ and $E_{4}^{*}=433.5 \pm 0.5 \mathrm{mK}$

Appearing non universal beahvior

■ physical point (HFD-HE2)

- unitary point (HFD-HE2)

Some remarks

- The Gaussian characterization determines paths inside the universal window.
- When one scale emerges as a control parameter the system moves along the Gaussian path with fixed range
- In this case the Gaussian range depends on N
- This behavior is a manifestation of universal behavior
- It deteriorates as N increases
- In the following we consider a three-body force to incorporate the new scale

$$
V=V_{0} \sum_{i<j} e^{-r_{i j}^{2} / r_{0}^{2}}+W_{0} \sum_{i<j<k} e^{-2 \rho_{i j k}^{2} / \rho_{0}^{2}}
$$

with $\rho_{i j k}^{2}=(2 / 3)\left(r_{i j}^{2}+r_{j k}^{2}+r_{k i}^{2}\right)$.

- We study the effects of the three-body range ρ_{0}

The range of the three-body force

The two- plus three-body Gaussian interaction

	physical point		unitary point	
	SGP	HFD-HE2	SGP	HFD-HE2
$r_{0}\left[a_{0}\right]$	10.0485		10.0485	
$V_{0}[\mathrm{~K}]$	1.208018		1.150485	
$\rho_{0}\left[a_{0}\right]$	8.4853		8.4853	
$W_{0}[\mathrm{~K}]$	3.011702		3.014051	
$E_{4}[\mathrm{~K}]$	0.536	0.536	0.440	0.440
$E_{5}[\mathrm{~K}]$	1.251	1.266	1.076	1.076
$E_{6}[\mathrm{~K}]$	2.216	2.232	1.946	1.963
$E_{10} / 10[\mathrm{~K}]$	$0.792(2)$	$0.831(2)$	$0.714(2)$	$0.746(2)$
$E_{20} / 20[\mathrm{~K}]$	$1.525(2)$	$1.627(2)$	$1.389(2)$	$1.491(2)$
$E_{40} / 40[\mathrm{~K}]$	$2.374(2)$	$2.482(2)$	$2.170(2)$	$2.308(2)$
$E_{70} / 70[\mathrm{~K}]$	$3.07(1)$	$3.14(1)$	$2.80(1)$	$2.92(1)$
$E_{112} / 112[\mathrm{~K}]$	$3.58(2)$	$3.43(2)$	$3.30(2)$	$3.40(2)$
$E_{N} / N(\infty)[\mathrm{K}]$	$7.2(3)$	$7.14(2)$	$6.8(3)$	$6.72(2)$
HFD-B $[\mathrm{K}]$		$7.33(2)$		$6.73(2)$

Gaussian characterization of the universal window for three 1/2 spin-isospin fermions

Two nucleon data

two nucleons	$E_{2}(\mathrm{MeV})$	$a^{S}(\mathrm{fm})$	$r_{e}^{S}(\mathrm{fm})$
$n p S=1$	2.2245	5.419	1.753
$n p S=0$	0.0661	-23.740	2.77

The Potential:

$$
V(i, j)=V_{0} e^{-r_{i j}^{2} / r_{0}^{2}} \mathcal{P}_{01}+V_{1} e^{-r_{i j}^{2} / r_{1}^{2}} \mathcal{P}_{10}
$$

with $\mathcal{P}_{S T}$ the projector on the spin-isospin channels S, T
Walking along the nuclear cut:
Fixing $r_{0}=r_{1}$, the strengths V_{0} and V_{1} are varied verifying $a^{0} / a^{1}=-4.38$

Gaussian characterization of the universal window for three $1 / 2$ spin-isospin fermions

Correlations inside the universal window, the nd scattering length: ${ }^{2} a_{\text {nd }}=0.65 \pm 0.01 \mathrm{fm}$

A. Deltuva, M. Gattobigio, A. K. and M. Viviani, PRC 102, 064001 (2020)

Gaussian characterization of the universal window for four 1/2 spin-isospin fermions

The ${ }^{3} \mathrm{H}$ and ${ }^{4} \mathrm{He}$ physical points

At the ${ }^{3} \mathrm{H}$ physical point $r_{0} / a_{B}=0.457$ or $r_{0}=1.97 \mathrm{fm}$ At the ${ }^{4} \mathrm{He}$ physical point $r_{0} / a_{B}=0.483$ or $r_{0}=2.08 \mathrm{fm}$ This implies that exist a potential

$$
\sum_{i<j}\left(V_{0} e^{-r_{i j}^{2} / r_{0}^{2}} \mathcal{P}_{01}+V_{1} e^{-r_{i j}^{2} / r_{0}^{2}} \mathcal{P}_{10}\right)
$$

that describes simultaneously ${ }^{2} \mathrm{H}$ and ${ }^{3} \mathrm{H}$ (for $r_{0}=1.97 \mathrm{fm}$) and ${ }^{2} \mathrm{H}$ and ${ }^{4} \mathrm{He}\left(\mathrm{for} r_{0}=2.08 \mathrm{fm}\right.$).

At the unitary limit $E_{*}^{3}=2.5 \mathrm{MeV}$ and $E_{*}^{4}=13.5 \mathrm{MeV}$
These potentials are a low-energy representation of the nuclear interaction.

The unitary limit with a realistic force

To see if the nuclear system moves along the Gaussian path we modify the tw-nucleon potential:

$$
V(1,2)=\sum_{S T \nu} V_{\nu}^{S T}(r) \mathcal{O}_{\nu}^{S T}
$$

with S, T the spin-isospin channels $01,10,00,11$.
Taking the AV14 potential as example and multiplying

$$
\begin{gathered}
V^{01} \rightarrow 1.0633 V^{01} \rightarrow{ }^{1} a_{n p} \rightarrow \infty \\
V^{10} \rightarrow 0.8 V^{10} \rightarrow{ }^{3} a_{n p} \rightarrow \infty
\end{gathered}
$$

with this calibration $E_{3} \rightarrow 2.4 \mathrm{MeV}$

Gaussian characterization of the universal window for $1 / 2$ spin-isospin fermions up to $A=6$

Including the three-nucleon force

The potential is now

$$
\sum_{i<j} V(i, j)+\sum_{i<j<k} W(i, j, k)
$$

with

$$
V(i, j)=\left(V_{0} e^{-r_{i j}^{2} / r_{0}^{2}} \mathcal{P}_{01}+V_{1} e^{-r_{i j}^{2} / r_{0}^{2}} \mathcal{P}_{10}\right)
$$

and

$$
W(i, j)=W_{0} e^{-r_{i j k}^{2} / \rho_{0}^{2}}
$$

with $r_{i j k}^{2}=r_{i j}^{2}+r_{j k}^{2}+r_{k i}^{2}$ and W_{0} and ρ_{0} fixed to describe simultaneously ${ }^{3} \mathrm{H}$ and ${ }^{4} \mathrm{He}$.

The physical point turning on the Coulomb interaction

$$
V_{C}(r)=\epsilon \frac{e^{2}}{r}
$$

M. Gattobigio, A.K. and M. Viviani, PRC 100, 034004 (2019)

The nuclear chart with the two- plus three-body gaussian potential

R. Schiavilla et al., PRC 103, 054003 (2021)

The saturation point of nuclear matter

The two-body potential includes now the OPEP potential

$$
\sum_{i<j}\left(V_{0} e^{-r_{i j}^{2} / r_{0}^{2}} \mathcal{P}_{01}+V_{1} e^{-r_{i j}^{2} / r_{0}^{2}} \mathcal{P}_{10}+V_{\pi}\left(r_{i j}\right)\right)+\sum_{i<j<k} W(i, j, k)
$$

where V_{π} is the regularized OPEP potential

$$
V_{\pi}(r)=\tau_{1} \cdot \tau_{2}\left[\sigma_{1} \cdot \sigma_{2} Y_{\beta}(r)+S_{12} T_{\beta}(r)\right]
$$

with the central and tensor factors $\left(x=m_{\pi} r\right)$

$$
\begin{gathered}
Y_{\beta}(x)=\frac{g_{A}^{2} m_{\pi}^{3}}{12 \pi F_{\pi}^{2}} \frac{e^{-x}}{x}\left(1-e^{-r^{2} / \beta^{2}}\right) \\
T_{\beta}(x)=\frac{g_{A}^{2} m_{\pi}^{3}}{12 \pi F_{\pi}^{2}} \frac{e^{-x}}{x}\left(1+\frac{3}{x}+\frac{3}{x^{2}}\right)\left(1-e^{-r^{2} / \beta^{2}}\right)^{2} .
\end{gathered}
$$

The saturation point of nuclear matter

A. Kievsky et al., PRL 121, 072701 (2018)

The 0^{+}resonance of ${ }^{4} \mathrm{He}$

M. Viviani et al., PRC 102, 034007 (2020)

The 0^{+}resonance of ${ }^{4} \mathrm{He}$

Energy of the resonance and its width as extracted from the $p-{ }^{3} \mathrm{H}$ phase-shifts using the HH method (M. Viviani et al, PRC 102, 034007 (2020)). The experimental values are extracted from the R-matrix analysis (D. R. Tilley, H. R. Weller, and G. M. Hale, Nucl. Phys. A541i, 1 (1992)).

Interaction	$E_{R}(\mathrm{MeV})$	$\Gamma(\mathrm{MeV})$
N3LO500	0.126	0.556
N3LO600	0.134	0.588
N3LO500/N2LO500	0.118	0.484
N3LO600/N2LO600	0.130	0.989
N4LO450/N2LO450	0.126	0.400
N4LO500/N2LO500	0.118	0.490
N4LO550/N2LO550	0.130	0.740
Expt.	0.39	0.50

The $d(d, n)^{3} \mathrm{He}$ and $d(d, p)^{3} \mathrm{H}$ s-factor

M.Viviani, L.Girlanda, A.K., D.Logoteta, L.E.Marcucci, arXiv:nucl-th/2207.01433

The dd polarization observables

M.Viviani, L.Girlanda, A.K., D.Logoteta, L.E.Marcucci, arXiv:nucl-th/2207.01433

Conclusions

- Weakly bound systems can be located inside a window in which universal behavior emerges
- The universal behavior can be encoded in a one-parameter potential (as a Gaussian)
- Using this potential, trajectories (and correlations) can be studied along the universal window
- Non universal behavior has been identified as N increases
- A soft interaction has been used to reproduce the $N=2,3,4$ energies and then used to predict binding energies as $N \rightarrow \infty$
- The Gaussian characterization can be used to analyse some aspects of EFTs
- Its results are very similar to NLO pionless EFT though using a finite cutoff
- When including the OPEP it looks very similar to chiral EFT at LO though a three-body force is included

