Gaussian Characterization of the Universal Window

A. Kievsky

INFN, Sezione di Pisa (Italy)

EMMI Hirschegg Workshop

Hirschegg, 15-21 January 2023

A. Kievsky (INFN-Pisa)

Gaussian Characterization

Hirschegg, January 2023 1/40

< 回 > < 三 > < 三 >

Collaborators

- M. Gattobigio INPHYNI & Nice University, Nice (France)
- M. Viviani and L.E. Marcucci INFN & Pisa University, Pisa (Italy)
- L. Girlanda Universita' del Salento, Lecce (Italy)
- R. Schiavilla Jlab & Old Dominion University, (USA)
- E. Garrido CSIC, Madrid (Spain)
- A. Deltuva ITPA, Vilnius (Lithuania)
- A. Polls Universitat de Barcelona, Barcelona Spain
- B. Juliá-Díaz Universitat de Barcelona, Barcelona Spain
- N. Timofeyuk University of Surrey, Guildford (UK)
- I. Bombaci and D. Logoteta INFN & Pisa University, Pisa (Italy)

< ロ > < 同 > < 回 > < 回 >

Outline

- Appearance of universal behavior
 - \rightarrow independence of the interaction details
 - \rightarrow equal long-range behavior but different short-range behavior
- Definition of the unitary window
 - \rightarrow Weakly bound systems
 - \rightarrow Correlation between bound and scattering states
- Dynamics governed by a few parameters (control parameters)
 → Continuous (or discrete) scale invariance

Interplay of two aspects

- Weakly bound systems are strongly correlated
- In the universal regime details of the interaction are not important
 - ightarrow Effective interactions
 - ightarrow Gaussian (or other) characterization
- Are correlated systems and universal properties compatible?
- Transition from universal to non-universal regime

A. Kievsky (INFN-Pisa)

Gaussian Characterization

Outline

- Appearance of universal behavior
 - \rightarrow independence of the interaction details
 - \rightarrow equal long-range behavior but different short-range behavior
- Definition of the unitary window
 - \rightarrow Weakly bound systems
 - \rightarrow Correlation between bound and scattering states
- Dynamics governed by a few parameters (control parameters)
 → Continuous (or discrete) scale invariance

Interplay of two aspects

- Weakly bound systems are strongly correlated
- In the universal regime details of the interaction are not important
 - \rightarrow Effective interactions
 - \rightarrow Gaussian (or other) characterization
- Are correlated systems and universal properties compatible?
- Transition from universal to non-universal regime

A. Kievsky (INFN-Pisa)

Gaussian Characterization

The unitary window

Low energy quantities

• We consider a short-range interaction: $V(r > r_0) \rightarrow 0$

In this case low energy means $E = k^2 \hbar^2 / m < \hbar^2 / m r_0^2$

 In this regime the s-wave phase shift is well described by the effective range expansion up to second order

 $k\cot \delta_0 = -1/a + r_e k^2/2 + \dots$

with *a* the scattering length defined from the zero-energy Schrödinger equation, $H\phi_0 = 0$

 $\phi_0(r\to\infty)\to u_0=1-a/r$

and r_e the effective range $r_e = \frac{2}{a^2} \int_0^\infty (\phi_0^2 - u_0^2) r^2 dr$

A. Kievsky (INFN-Pisa)

The unitary window

The presence of a shallow bound (or virtual) state

A bound state correspond to the S-matrix pole $k \cot \delta_0 - ik = 0$ In general all terms in the expansion of $k \cot \delta_0$ are needed. However, when a shallow state appears (fine tuning), we can use the expansion up to second order ($i\kappa = k$)

 $\kappa = 1/a + r_e \kappa^2/2 + \dots$

which introduces a strict correlation between the low energy parameters. When $\kappa \to 0$, $a \to \infty$, and $r_e/a << 1$.

Defining the lengths $a_B = 1/\kappa$ and $r_B = a - a_B$, they are related up to second order by

 $r_e a = 2r_B a_B$

The unitary window

Protagonists of the story:

 $a \rightarrow$ scattering length $r_{eff} \rightarrow$ effective range $a_B \rightarrow E = \hbar^2/ma_B^2 \rightarrow$ energy length

The Hero

A. Kievsky (INFN-Pisa)

2

イロト イヨト イヨト イヨト

Universal behavior in few-body systems

• When a shallow state exists, the systems can be placed inside the universal window. The experimental points can be connected using a potential model (here a Gaussian potential).

A. Kievsky (INFN-Pisa)

Hirschegg, January 2023 8/40

Gaussian characterization of the universal window $V(1,2) = V_0 e^{-r^2/r_0^2}$

At $r_0/a = 0.2877$ a Gaussian potential describes the low-energy nuclear parameters a^1, r_e^1, a_B within 1% accuracy

Moving along the universal window

- By scaling the strength of the potential, systems can be (ideally) moved along the universal window
- The Gaussian charaterization can be used to continously connect systems inside the window

4 3 5 4 3 5

Moving along the universal window

- The scaled $\lambda V_{\text{He-He}}$ potential can be followed by a gaussian with fixed range $V_0 e^{-(r/r_0)^2}$
- The running of the Gaussian strength is

$$V_0/(\hbar^2/mr_0^2) = C_0(1 + \alpha_1 \frac{r_0}{a} + \alpha_2 \left(\frac{r_0}{a}\right)^2 + \ldots)$$

- Two movements can be used to connect the systems:
 i) to change the strength V₀ maintaining r₀ fixed
 ii) to change the strength V₀ and range r₀ maintaining fixed r_{eff}/a
- Points having equal r_{eff}/a are related by a scale transformation:

$$\begin{cases} a \to \epsilon a & r_B = a - a_B \to \epsilon r_B \\ \Rightarrow & \\ a_B \to \epsilon a_B & r_{eff} = 2a_B r_B / a \to \epsilon r_{eff} \end{cases}$$

< ロ > < 同 > < 回 > < 回 >

The universal window

Observables

Observables are stricted correlated to the low-energy parameters (up to second order).

The mean square radius:

$$\langle r^2 \rangle = \frac{a^2}{8} \left[1 + \left(\frac{r_B}{a} \right)^2 + \cdots \right] = \frac{a_B^2}{8} e^{2r_B/a_B} = \frac{a_B^2}{8} f_{sc}$$

The asymptotic normalization constant

$$C_a^2 = rac{2}{a_B} rac{1}{1 - r_e/a_B} = rac{2}{a_B} \; e^{2r_B/a_B} = rac{2}{a_B} \; f_{sc}$$

the probability to be outside the interaction range

$$P_e = C_a^2 \int_{2r_B}^{\infty} e^{-2r/a_B} dr = e^{-2r_B/a_B} = rac{1}{f_{sc}}$$

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Universal behavior in few-body systems

Examples

- The helium dimer (as given by the LM2M2 potential):
 - *a* = 189.415 a.u.,
 - $r_e = 13.8447$ a.u., $E_d = 1.303$ mk,
 - $(r_e a)/(2r_B a_B) = 1.0002$
- The deuteron:
 - $a^{1} = 5.419 \pm 0.007$ fm, $r_{e}^{1} = 1.753 \pm 0.008$ fm, $E_{d} = 2.224575(9)$ MeV $\langle r \rangle = 1.97535(85)$ fm
 - $C_a = 0.8781(44) \text{ fm}^{-1/2}$

 $(r_e \ a)/(2r_Ba_B) = 0.9991$ $(16/a_B^3)(\langle r^2 \rangle/C_a^2) = 1.005$

- $\rightarrow a_B = 182.221$ a.u.
- \rightarrow $r_B = 7.194$ a.u.
- $ightarrow E(a, r_e) = 1.303 ext{ mk}$

13/40

3

Other characterizations

The Gaussian potential is often used in the literature, however it is not the only one-parameter potential that can be used to characterize the universal window.

The Eckart potential

$$V_{Eckart}(r) = -2rac{\hbar^2}{mr_0^2}rac{W_0 e^{-r/r_0}}{(1+W_0 e^{-r/r_0})^2}$$

reproduces the effective range expansion up to second order exactly

$$k\cot \delta_0 = -1/a + r_e k^2/2$$

with $a = 4W_0r_0/(W_0 - 1)$ and $r_e = 4(a - 2r_0)r_0/a$

For $W_0 > 1$ there is a bound state with energy $E = \hbar^2 / ma_B^2$ with $a_B = a - 2r_0$

The three-body system inside the universal window

• The energy spectrum of three equal bosons shows a discrete scale invariance (DSI)

 \bullet As the range of the interaction goes to zero, $(\textbf{\textit{r}}_0 \rightarrow 0) \rightarrow$ Thomas collapse

• At the unitary limit $1/a \rightarrow 0 \rightarrow$ Efimov effect

A. Kievsky (INFN-Pisa)

Gaussian characterization of the universal window for three bosons: $H = T + V_0 \sum_{i < j} e^{r_{ij}^2/r_0^2}$

A.K., M. Gattobigio, L. Girlanda and M. Viviani, Ann.Rev.Nucl.Part.Sci. 2021, 71:465 < 🗆 🕨 🖉 🕨

A. Kievsky (INFN-Pisa)

Gaussian Characterization

16/40

Footprint of universality

where the van der Waals length is $\ell_{vdW} = \frac{1}{2} (2mC_6/\hbar^2)^{1/4}$ For the Gaussian characterization this is encoded in the (almost) model independent relation $\kappa_*^{(0)} a_-^{(0)} = -4.37r_0 \frac{0.4883}{r_0} = -2.14$ For van der Waals species $\kappa_*^{(0)} a_-^{(0)} \approx -2.2$

Moving along the universal window

To study movements along the three-bosons universal window, we use the fact that different He-He interactions exist with different E_N values.

Potential	E ₂ (mK)	<i>E</i> ₃ (mK)	E ₄ (mK)	$r_0^{(3)}(a_0)$	$r_0^{(4)}(a_0)$
a: HFD-HE2	0.8301	117.2	535.6	11.146	11.840
b: LM2M2	1.3094	126.5	559.2	11.150	11.853
c: HFD-B3-FCH	1.4475	129.0	566.1	11.148	11.853
d: CCSAPT	1.5643	131.0	571.7	11.149	11.851
e: PCKLJS	1.6154	131.8	573.9	11.148	11.852
f: HFD-B	1.6921	133.1	577.3	11.149	11.854
g: SAPT96	1.7443	134.0	580.0	11.147	11.850

The Gaussian potential

$$V^{(N)} = V_0^{(N)} \sum_{i < j} e^{-(r_{ij}/r_0^{(N)})^2}$$

< 回 > < 回 > < 回 >

Moving along the universal window

 $E_N^* = (\hbar^2/m)(\kappa_N^*)^2 = [\hbar^2/m \ (r_0^{(N)})^2](\kappa_N^* r_0^{(N)})^2$ $E_3^* = 83.05 \pm 0.05 mK \text{ and } E_4^* = 433.5 \pm 0.5 mK$

A. Kievsky (INFN-Pisa)

Appearing non universal beahvior

physical point (HFD-HE2)unitary point (HFD-HE2)

A. Kievsky (INFN-Pisa)

A.K, et al, PRA 102, 063320 (2020)

20/40

Hirschegg, January 2023

Some remarks

- The Gaussian characterization determines paths inside the universal window.
- When one scale emerges as a control parameter the system moves along the Gaussian path with fixed range
- In this case the Gaussian range depends on N
- This behavior is a manifestation of universal behavior
- It deteriorates as N increases
- In the following we consider a three-body force to incorporate the new scale

$$V = V_0 \sum_{i < j} e^{-r_{ij}^2/r_0^2} + W_0 \sum_{i < j < k} e^{-2
ho_{ijk}^2/
ho_0^2}$$

with $\rho_{ijk}^2 = (2/3)(r_{ij}^2 + r_{jk}^2 + r_{ki}^2)$.

• We study the effects of the three-body range ρ_0

The range of the three-body force

A. Kievsky (INFN-Pisa)

22/40

The two- plus three-body Gaussian interaction

	physical point		unitary point		
	SGP	HFD-HF2	SGP	HFD-HF2	
$r_0[a_0]$	10.0485		10.0485		
$V_0[K]$	1,208018		1.150485		
$\rho_0[a_0]$	8 4853		8 4853		
<i>W</i> ₀ [K]	3.011702		3.014051		
$E_{\Lambda}[K]$	0.536	0.536	0.440	0.440	
$E_{5}[K]$	1.251	1.266	1.076	1.076	
$E_6[K]$	2.216	2.232	1.946	1.963	
$\frac{E_{10}}{E_{10}}$	0.792(2)	0.831(2)	0.714(2)	0.746(2)	
$E_{20}/20[K]$	1.525(2)	1.627(2)	1.389(2)	1.491(2)	
$E_{40}/40[K]$	2.374(2)	2.482(2)	2.170(2)	2.308(2)	
$E_{70}/70[K]$	3.07(1)	3.14(1)	2.80(1)	2.92(1)	
$E_{112}/112[K]$	3.58(2)	3.63(2)	3.30(2)	3.40(2)	
$E_N/N(\infty)$ [K]	7.2(3)	7.14(2)	6.8(3)	6.72(2)	
HFD-B [K]	. ,	7.33(2)		6.73(2)	
			I → I → I → I → I → I → I → I → I → I →	★ ≥ ► ★ ≥ ► = 3	

A. Kievsky (INFN-Pisa)

Gaussian characterization of the universal window for three 1/2 spin-isospin fermions

Two nucleon data

two nucleons	E ₂ (MeV)	a ^S (fm)	r_e^S (fm)
<i>np S</i> = 1	2.2245	5.419	1.753
np S = 0	0.0661	-23.740	2.77

The Potential:

$$V(i,j) = V_0 e^{-r_{ij}^2/r_0^2} \mathcal{P}_{01} + V_1 e^{-r_{ij}^2/r_1^2} \mathcal{P}_{10}$$

with \mathcal{P}_{ST} the projector on the spin-isospin channels S, T

Walking along the nuclear cut: Fixing $r_0 = r_1$, the strengths V_0 and V_1 are varied verifying $a^0/a^1 = -4.38$

A. Kievsky (INFN-Pisa)

Gaussian Characterization

Gaussian characterization of the universal window for three 1/2 spin-isospin fermions

A. Kievsky (INFN-Pisa)

Hirschegg, January 2023 25/40

Correlations inside the universal window, the *nd* scattering length: ${}^{2}a_{nd} = 0.65 \pm 0.01$ fm

A. Deltuva, M. Gattobigio, A. K. and M. Viviani, PRC 102, 064001 (2020)

A. Kievsky (INFN-Pisa)

Gaussian characterization of the universal window for four 1/2 spin-isospin fermions

A. Kievsky (INFN-Pisa)

The ³H and ⁴He physical points

At the ³H physical point $r_0/a_B = 0.457$ or $r_0 = 1.97$ fm At the ⁴He physical point $r_0/a_B = 0.483$ or $r_0 = 2.08$ fm This implies that exist a potential

$$\sum_{i < j} \left(V_0 e^{-r_{ij}^2/r_0^2} \mathcal{P}_{01} + V_1 e^{-r_{ij}^2/r_0^2} \mathcal{P}_{10} \right)$$

that describes simultaneously ²H and ³H (for $r_0 = 1.97$ fm) and ²H and ⁴He (for $r_0 = 2.08$ fm).

At the unitary limit $E_*^3 = 2.5 \text{ MeV}$ and $E_*^4 = 13.5 \text{ MeV}$

These potentials are a low-energy representation of the nuclear interaction.

The unitary limit with a realistic force

To see if the nuclear system moves along the Gaussian path we modify the tw-nucleon potential:

$$V(1,2) = \sum_{ST\nu} V_{\nu}^{ST}(r) \mathcal{O}_{\nu}^{ST}$$

with S, T the spin-isospin channels 01, 10, 00, 11.

Taking the AV14 potential as example and multiplying

$$V^{01}
ightarrow 1.0633 V^{01}
ightarrow {}^{1}a_{np}
ightarrow \infty$$

$$V^{10}
ightarrow 0.8 V^{10}
ightarrow {}^3\!a_{np}
ightarrow \infty$$

with this calibration $E_3 \rightarrow 2.4 \, \text{MeV}$

< 日 > < 同 > < 回 > < 回 > < □ > <

Gaussian characterization of the universal window for 1/2 spin-isospin fermions up to A = 6

A. Kievsky (INFN-Pisa)

Including the three-nucleon force

The potential is now

$$\sum_{i < j} V(i,j) + \sum_{i < j < k} W(i,j,k)$$

with

$$V(i,j) = \left(V_0 e^{-r_{ij}^2/r_0^2} \mathcal{P}_{01} + V_1 e^{-r_{ij}^2/r_0^2} \mathcal{P}_{10}\right)$$

and

$$W(i,j) = W_0 e^{-r_{ijk}^2/\rho_0^2}$$

with $r_{ijk}^2 = r_{ij}^2 + r_{jk}^2 + r_{ki}^2$ and W_0 and ρ_0 fixed to describe simultaneously ³H and ⁴He.

A. Kievsky (INFN-Pisa)

イロト イヨト イヨト イヨト

The physical point turning on the Coulomb interaction

 $V_C(r) = \epsilon \frac{e^2}{r}$

M. Gattobigio, A.K. and M. Viviani, PRC 100, 034004 (2019)

A. Kievsky (INFN-Pisa)

Gaussian Characterization

Hirschegg, January 2023 32/40

The nuclear chart with the two- plus three-body gaussian potential

R. Schiavilla et al., PRC 103, 054003 (2021)

A. Kievsky (INFN-Pisa)

Hirschegg, January 2023

The saturation point of nuclear matter

The two-body potential includes now the OPEP potential

$$\sum_{i < j} \left(V_0 e^{-r_{ij}^2/r_0^2} \mathcal{P}_{01} + V_1 e^{-r_{ij}^2/r_0^2} \mathcal{P}_{10} + V_{\pi}(r_{ij}) \right) + \sum_{i < j < k} W(i, j, k)$$

where V_{π} is the regularized OPEP potential

$$V_{\pi}(r) = \tau_1 \cdot \tau_2 \left[\sigma_1 \cdot \sigma_2 Y_{\beta}(r) + S_{12} T_{\beta}(r) \right]$$

with the central and tensor factors ($x = m_{\pi}r$)

$$Y_{\beta}(x) = \frac{g_A^2 m_{\pi}^3}{12\pi F_{\pi}^2} \frac{e^{-x}}{x} (1 - e^{-r^2/\beta^2})$$
$$T_{\beta}(x) = \frac{g_A^2 m_{\pi}^3}{12\pi F_{\pi}^2} \frac{e^{-x}}{x} (1 + \frac{3}{x} + \frac{3}{x^2}) (1 - e^{-r^2/\beta^2})^2$$

A. Kievsky (INFN-Pisa)

• (1) • (1) • (1)

.

The saturation point of nuclear matter

A. Kievsky et al., PRL 121, 072701 (2018)

The 0⁺ resonance of ⁴He

M. Viviani et al., PRC 102, 034007 (2020)

The 0⁺ resonance of ⁴He

Energy of the resonance and its width as extracted from the $p-{}^{3}$ H phase-shifts using the HH method (M. Viviani et al, PRC 102, 034007 (2020)). The experimental values are extracted from the R-matrix analysis (D. R. Tilley, H. R. Weller, and G. M. Hale, Nucl. Phys. A541i, 1 (1992)).

Interaction	E_R (MeV)	Г (MeV)
N3LO500	0.126	0.556
N3LO600	0.134	0.588
N3LO500/N2LO500	0.118	0.484
N3LO600/N2LO600	0.130	0.989
N4LO450/N2LO450	0.126	0.400
N4LO500/N2LO500	0.118	0.490
N4LO550/N2LO550	0.130	0.740
Expt.	0.39	0.50

A (1) > A (2) > A (2) >

The $d(d, n)^3$ He and $d(d, p)^3$ H s-factor

M.Viviani, L.Girlanda, A.K., D.Logoteta, L.E.Marcucci, arXiv:nucl-th/2207.01433

A. Kievsky (INFN-Pisa)	Gaussian Characterization	Hirschegg, January 2023	38/40
------------------------	---------------------------	-------------------------	-------

イロト イポト イヨト イヨト

The *dd* polarization observables

M.Viviani, L.Girlanda, A.K., D.Logoteta, L.E.Marcucci, arXiv:nucl-th/2207.01433

A. Kievsky (INFN-Pisa)

Gaussian Characterization

 Image: Image

Conclusions

- Weakly bound systems can be located inside a window in which universal behavior emerges
- The universal behavior can be encoded in a one-parameter potential (as a Gaussian)
- Using this potential, trajectories (and correlations) can be studied along the universal window
- Non universal behavior has been identified as N increases
- A soft interaction has been used to reproduce the N = 2, 3, 4 energies and then used to predict binding energies as N → ∞
- The Gaussian characterization can be used to analyse some aspects of EFTs
 - Its results are very similar to NLO pionless EFT though using a finite cutoff
 - When including the OPEP it looks very similar to chiral EFT at LO though a three-body force is included

40/40