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Introduction

Dilute many-fermion systems with large scattering lengths

@ Low-density nuclear or neutron star matter, a,, ~ 19fm
@ Ultracold atom gases: interactions tunable via Feshbach resonances
@ Of particular interest: “unitary limit”, a — oo, boundstate at zero energy

3k?

scale invariance : E(k) = T

&, & = Bertsch parameter

@ Calculation of ¢ an intrinsically non-perturbative problem
@ Quantum Monte-Carlo simulations [PRA 84, 061602 ('11)]: £ = 0.372 4 0.005
@ Experimental determination [MIT-Harvard, M. Zwierlein et al.]: £ = 0.37 + 0.01
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Introduction

o Effective field theory: low-density expansion for fermionic systems with
short-range interactions [H.-W. Hammer, R. Furnstahl, NPA 678, 277 (00)]

k2 3 4
= o 11 — 21n 2)(aks)?
E(ky) = 2M{5 (g 1)[ 3572 n2)(ak)
5] @rsk? apk?
—(0.0756 + 0.0574(g — 3))(aky) ] TR A CARIE

+(g — 1)(g — 2) ——= (47 — 3V3)(ak;)* In | ak;| +}

273

@ a = s-wave scattering length (a > 0 attraction), density p = g k? /67>
@ Non-analytical (aks)* In |ak;| term from three-particle scattering

@ Resummation of particle-particle ladders in form of geometrical series
gives value £%7) ~ 0.237 [T. Schafer et al., NPA 762, 82 (05)]

@ Hole-hole ladder series starts at a°, unitary limit a — co does not exist
@ Beyond that: large classes of diagrams with mixed pp- and hh-ladders

@ First mixed ladder at order a*: J. Steele’s numerical result [nucl-th/0010066]
has to be corrected by a factor 2 (confirmed by H.-W. Hammer)

@ Here: Evaluate and resum all ladder diagrams ~ &"
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Preparation: in-medium propagator

@ Key to solution: different organization of many-body calculation

@ Keep propagating particles and holes together, measure difference to
propagation in vacuum by a “medium-insertion” (on-shell, |5 | < k)

= 0P| — k) O(ki — |P]) )
Glpo,P) = ’(po—52/2M+ie+po—ﬁ2/2M—ie
i

. _=A IR
= R~ 2O — B°/2M) 0tk ~1B)

@ Consider a closed ladder diagram AN
@ Minimal pair of medium-insertions on
adjacent positions of double-ring VVVVVY
@ After opening: planar ladder diagram VNV
with kinetic energy denominators only
AVAVAVAVAVAY ]
@ Balances M factors from interact. 472
@ Further medium-ins. on internal lines
@ Multiloops = power of in-medium loop MVVVVA
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In-medium loop generated by contact interaction

' By ' ' By |
D D> 2 P2

e External momenta | 2| < kt, introduce P=1 (B +p2) and G= 1(p
@ Contributions from zero, one, and two medium-insertions: By + By +

By =4 a/ i /dl 1+ =0+ialg|
0 = 4w (@r )3/2 = q

D Do

—P2)

B,

@ Rescatterings in vacuum: unitarized scattering length approximation

1 1
_ b= = N2 _ _
ffa{1 +ialq| + (ialg|) +...}7 AT ] = [§](cotdy )

@ Leads to (well-known) relation for s-wave phase shift: tan dp = a|q |
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In-medium loop generated by contact interaction

@ By from diagrams with one medium-insertion (two equal contributions)

ol 1 L .-

@ Shift loop momentum / —  + P, Fermi spheres centered at the origin

Re By = —37"' R(s, k)

1+s—k
1-s+k

1+s+k

_oy Vo 2
R(s,m) =2+ 5ell = (s +m)Tn o=~

+ 21—8[1 —(s—&)%]In

@ where s = | By +52|/2ks and k = |B1 — PB2|/2ks, constraint s+ k2 < 1
@ Equal to sum of pp- and hh-bubble R(s, k) = Fpp(S, &) + Fpp(—S5, k)
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In-medium loop generated by contact interaction

@ B, purely imaginary contribution, total imaginary part of in-medium loop

Bl 5 =
_ 2 2_ =2 . . .
m(Bo + Br + Bz) = dn°a | 5 550(0° G ){ [1 Ok — |P /|)]

1= 0k P-+71)] + 6tk — 1P =T otk ~ 1P +T)}

@ First (1—0)(1—0) term: phase space Pauli-blocked, energy conservation

Im(Bo + By + Bg) = % = aks /(S7 Ii)

K , O<k<1-s

I(S:’f):{ (1,32752)/23 , 1—-s<r<V1-—82

@ Complex-valued in-medium loop, if B, taken out: Im-part changes sign

Bo+Bi+ By = —37"’ {H(s, k) — ir (s, n)}

ak .
By + B :—#{R(S,H)-{-Iﬂl(&l’ﬁ)}

@ Crucial property to derive correct expression for energy per particle E(k;)
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Energy per particle at order a” and resummation to all orders

@ Construct energy density at order a": close open lines and integrate over
|B1.2] < ke, but complex quantity (R — in/)"~" cannot be correct integrand

@ Diagrams with repeated double medium-insert. have symmetry factors,
not respected by binomial expansion (R—iz/)"~1 = [(R+inl) + (—2ix )]~

@ Example: (R+inl)3+(R+inh?(=2xil)(1+1/2)+(R+inl)(—2mil)?+(—2mil)3 /4

= R(R?—=?P) is real-valued in the end
@ This crucial amendment leads to summation formula

o 1
/z;(mm/) 1=i(—2ir /)f( )/+1 2m/n{(qurm/) — (R—ir)"}

N. Kaiser Many-body perturbation theory and beyond



Energy per particle at order a” and resummation to all orders

e Coefficient (";")/(j+1) = (;;)/n number of possibilities to attach j+1
double medium-insert. on ring with n segments, divided by n rotations

Now sum up series >_>° ,[—ak/(R+inl)/=]"/n via a (complex) logarithm
Complete Hartree term by Fock-exchange term (1 —1/g =1/2)

152

24k, akel(s, k)
E(ki) = /dss / dk k arctan T T2k A(s, )

Usual branch of arctangent function: arctan(—x) = — arctan x,
in order to respect weak coupling limit a — +0

When denominator passes through zero: discontinuity by amount —

R(s, ) unbounded: radius of convergence of power series in ak; is zero
Double-integral representation obtained with help of master formula

1—s2

‘

3, o3 2k6

/MF( k)= —1 [dss? /dnxl(syﬂ)F(S”‘)
(271.)6 4

|P1,2| <Kt ° ’

s =|P1+P2l/2k:, K =|P1—P2l/2ks

N. Kaiser Many-body perturbation theory and beyond



Expansion in powers of ak; and unitary limit

@ Check against low-density expansion (terms from pp and hh-ladders)

_ k2 2 4 5
E(k)) = B —S—Trak,+%7(11—2|n2)a2k,

—0.0755733 2%k} + 0.0524813 a*kf + ... }

@ At 2°: partition R?2 — 722 /3 versus twofold pp and twofold hh scattering,
0.0861836 — 0.0106103 = 0.0640627 4+ 0.0115106

@ At a*: here R® — Rx? 2 vs. triple pp, triple hh, and mixed pphh scattering,
0.0671902 — 0.0147089 = 0.0383116 — 0.0006851 + 6 - 0.0024758

@ For resummed ladder series the limit a — oo is straightforward

80 1 Vi1-g?2 '
&n=1-—— /d832 / dr r arctan (5, ) = 0.5067
T R(s, )
0 0

@ More than twice as large as result from resummation of pp ladders only
PP — 1 - 80 [ dss2 41" drr I(s, k) Fpp' (s, 1) =~ 0.237

@ Smooth extrapolations of unitary Fermi gas over pairing transition at T,
give for “normal” Bertsch parameter ¢, ~ 0.45
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Non-perturbative resummation

o E(k;) from resummed ladder diagrams plus kinetic energy 3k2/10M

18—
r |

1.6 =

———=- Steele —
resummation

'
I

&)
T
|

o
%

E(k,) / (3k/10M)

g
>

=3
=
L B e e

Sharp peak with maximum value of 1.62 at ak; ~ —0.9

Outside |ak¢| > 6 curve is almost flat (— unitary limit reached)
Repulsive scattering length (a < 0) gives attraction for ak; < —1.8
Steele’s suggested geometric series: E(k;)®) = —ak?[3M(r + 2aks)] "
Negative compressibility K = 9dP/dp = 3k? /M+KZE" (k) +4k E' (k)
in region —7/2 < aks < —4x /9 of coupling parameter
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Application to neutron matter equation of state

@ Very large nn-scattering length an, = (19.0 £ 0.4) fm
@ Low density neutron matter supposed to be close to a unitary Fermi gas
@ Apply result E(ks) for resummation of ladder diagrams to neutron matter

w
7}
T

Neutron matter equation of state

w
=3
\

|

- 0.9 Neutron matter equation of state A

25—
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neutron density: p, =k /3" [fm”] 2,k

@ Fair agreement with realistic n-matter calculations up to quite high p,

@ Quantum Monte Carlo calc. of neutron matter [Armani, Gezerlis, Pederiva,...]:
at low densities p, kinetic energy gets reduced to about 1/2

@ Extension to P-waves and effective range by J.M. Alarcon and J.A. Oller,
several long papers, arXiv:2106.02652, arXiv:2107.0805, arXiv:2212.05092.
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Spin-polarized Fermi gas or neutron matter

@ Generalize resummation to spin-asymmetric situation k|, = k(1 & n)'/®
@ Four channels (11, 44, 1}, {1), interaction only in spin-singlet state S =0
@ Work with diagonalized 4 x 4 matrices to perform resummation

_ 3 k?-i—kf 16 [(kpthky)/2 o [ dmax
E(kp, k) = { —— dPP/ dgq
MEE kY10 7 o -
d(P, g, k, k
arctan Z a%(P, g, kr. k) }
T+ 5. [kTR(P/kT7Q/kT) + kﬂ(”/’&ﬂ/’&)}

@ ®(P,q, kt, k) generalization of imaginary part (three different branches)

1 T T T T
§=0 oL T quadrat. approx. & (1) = (1+1)/2 / ] .
wFo. @ a — oo: Bertsch parameter £,(n)
L Y 1 @ spin asymmetry energy:
h E(ky, k) = E(kr) +n°S(ki) + . .
570 / E = 32 )
2 7 @ E(k;)>) ~ 5t - 1 (reduction)
E 06 K2
g S(ks)(*) ~ b - & (enhancement)
T

spin-asymmetry 1

@ Polarized neutron matter ~ free Fermi gas, EFT calc. [T. Kriiger et al. ('15)]
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Nonperturbative construction of single-particle potential

Single-particle potential reveals more details of many-body dynamics

First functional derivative: add a “test-particle” with g to filled Fermi sea
Ok = |Bj)) = Ny(B},B) = 0(ks — |Bj]) + 47°n 8°(B — P)

@ To linear order in 7 energy density of system changed as:

k3 kS _
f f . g
sz Ek) = I E(k) + n[U(p. k) + 1 W(p. k)]

Modification of in-medium loop: real part

a®l 1 s 5 o
Re By = —47F3/(27r)3 W{Nn(P+l’p)+Nn(P—/,p)}-

@ Twice the same energy denominator, average over the directions of §

— ak ~
ReBy =~ {R(s,) +iiR(s.mx)} . i=n=/K}

2_ 2
1, s+ x2 =

R(s = ores 2l
(8:m%) = (62— r2|’

x = p/k

Imaginary part of in-medium loop

Im(By+B; +B: )—47r2a/ i)
0 1 2) = (27r)3

1= NP +TB)[1- M(P-15)] |

N. Kaiser Many-body perturbation theory and beyond

§(7% - 2){ Ny (P +T.B) Ny (P~ 1.5)



Nonperturbative construction of single-particle potential

@ Averaging over directions of p: Im(By+ By +B,) = aki{I(s, x) + 7 I(s, v, x)}

1 .
I(s, k) = — min (28/{, |82 + K2 — 1|) , S,k unconstrained
2s
(s, K, x) = ;—X 0(s + x — x)0(x — |s — x|) sign(1 + x% — 2(s% + K2))

@ Diagram with two medium insertions: B, = 2iak{/.(s, x) + 777*(5, K, X)}
l(s, k) = I(s,x) 0(1 — s> — k2),  restriction to s* + k2 < 1

- 1
L(s.mx) = — 0(s+r = x)0(x = [s = x]) 0(1 +x° = 2(s? + #2))
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Nonperturbative construction of single-particle potential

@ Interaction density of resummed ladder diagrams

_ 4ra In1—Bo—B1 —Bg

- MB; 1—By— B

@ Two contributions to complex single-particle potential U(p, k¢)+i W(p, k)

i) 77 from “last two” momentum space integrations — weight fct. /.(s, x, x)
i) 7 from expansion of V(7)) to linear order — weighting function /. (s, )

V(#)

o Analyze . V(0) + /. V/(0) for x < 1 and x > 1 in domains of sk plane:
obtain real and imaginary potential as well as continuation across p = k¢

@ Single-particle potential inside Fermi sphere p < k; (for a hole-state)

V1—s2

1 ~ —~
8ak? — bk
U(p. k) :,aw ; / s & / den {ak,R(s, K, X)I(s, &) = (s, 5, X) [ + aksA(s, )]
0

/ [7 + akeR(s, 5)]2 + [akem (S, K)]2

1 T
_aT(,R(S’ K, x)6(a—kf + R(s, n))}

@ Origin of §-function term is very subtle: it arises from differentiating the
discontinuity (by —) of the arctangent-function at infinity
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Nonperturbative construction of single-particle potential

@ J-termis crucial for (numerical) validity of Hugenholtz-Van-Hove theorem
ki OE (ki)
3 Oks

@ Imaginary part of single-particle potential: W(k, ks) = 0

U(kf, kf) = E(kf) =+

1—s2

4 ! & N
W(p, kf) = SWZZKf /ds 52 / dk k [l*(57 K, X) — l(37 K, X)] I(S7 IQ)
0 0

[r + ak¢R(s, k)2 + [akem I(s, K)]2

@ Single-particle potential outside Fermi sphere p > k; (for a particle-state)

(x+1)/2  (x+1)/2

8ak?
a Z/dmn

U(p’kf):v, /dss {akfF{(s,n,x)I*(s,n)—l*(s,n,x)[w—&-akf.‘?(s,n)]

[r + akeR(s, k)2 + [akem I(s, K)]?

aky aky

_ wﬁ(& K, x)a(l +A(s, ff)) } ;

(x+1)/ (x+1)/ e
8ralkt / de 82 / d L(s, &, X)I(s, k) 0($? + w2 — 1)
KK
M [7 + ak¢R(s, k)2 + [akem I(s, K)]?

W(p7 kf) =
0

@ Continuation of potentials across p = k¢ is continuous, but not smooth
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Perturbative expansion of single-particle potential

@ Expansion of single-particle potential in powers of —ak;

K2
7f

U(p, k) + i W(p, ky) = Z( aky)" [ ®n(x) + i 2n(x)]

@ J-function term drops out in this expansion, a truly nonperturbative term
@ First order Hartree-Fock mean-field result: ®1(x) = 4/3x, Q1(x) =0
@ Second order in scattering length a: V.M. Galitskii’s classical work (1958)

4 1-x2 A 1 2 1+ xv/2 - x2
®a(x) = {11 ot =X 10 2y X —X2)5/2In¥}
X

—(1 =X ~ 2@
1572 +x( )n1—x X( 1—x2

4 21 10 12
®a(x) = 157r2{11 —2x*In sz + =1 =%)n ;f1 - ;[a(ﬁ—x)(z—xz)s/z

14xv/2—x2 1
|n%+o(x7\/§)(xz,2)5/2arcsinxz 1]} x>1,
0(1 — x) 22 20(x = 1) 215/2
Q(x) = 1—x%) 7= — X 6(vV2 — x
2(0) = =5 ( = 20(v2 - x}

@ Perfect numerical reproduction of these exact analytical results

@ Crucial check of construction of U(p, kr)+1 W(p, kr) with a complex
in-medium loop that includes corrections linear in n from a “test-particle”
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Perturbative results for single-particle potential

@ Expansion up to fifth order in the scattering length a:
@ Single-particle potential inside the Fermi sphere p < k¢
T

T T I T T T T
real part 0.15

combined particle-hole ladders

0.4

0.1

Q,®

0.05

0.2
combined particle-hole ladders

| L | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4
x=plk,

.

@ Single-particle potential outside the Fermi sphere p > k¢

01 T T T T

imaginary part

real part

combined particle-hole ladders

1. L.
x=plk, x=pk;
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Results in strong coupling limit a — oo

@ Strong coupling limit a — oo can be performed straightforwardly

o) k2
U(p, k)™ + i W(p, ki) =

ZMFMH+MM)

@ ¢,,(0) =—-0.214, &,(1) =& —1 = —0.493 (Hugenholtz-Van-Howe)
@ &,,(1) = —0.031 — 0.462 comes almost entirely from §-function term
1.5 — —— —— —
[ ‘ //_\‘\\ cumbi‘ncd parlic]c—h‘ulc ladders 1
/ > \\ strong coupling limit

—

0.5k = =mie
[ &
o
[ real part
-0.5 ; | | | ‘in-l =-0.493 :
0 02 0.4 0.6 0.8 1

x = p/k;
@ Strong p-dependence of ®u,i(x): instability against (topological) phase
transition to state with separation in momentum space (Sarma phase)
@ Single-particle states above Fermi energy £,k?/2M are not occupied
— empty shell in Fermi sphere, density gets reduced to 0.95 k? /372
@ Bubble formation in n-matter: 7°-condensation [Pankratoy,...], large ann
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Results in strong coupling limit a — oo

@ Continuation of U(p, k;)\>) + i W(p, k¢)(>*) outside the Fermi surface
Op 7 7 T

-0.2
-0.4

0.6

[\ \ s combined particle-hole ladders ]
0.8 1 \ s Lo —
[ 7 strong coupling limit
S \~ ]
P S IS S S AR S S
1 1.5 2 2.5 3
x = p/k,

@ Particle excitations with high p weakly attracted by fermionic medium
@ Imaginary potential W(p, kr) vanishes linearly at Fermi surface p = k¢

8rs2(1 — s?)

Q)= ——"7"-—-——1
( ) 2+7r(akf)—1512

AT =, { >0

aikf’ aks < —m/2

@ Numerator in representation of W(p, k;) gives quadratic behavior (1—x)?2
@ Denominator introduces singular region into double-integral —1 — x
@ Nonperturb. counterexample to “Luttinger theorem”: W(p,k¢) ~ +(ks—p)?
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Resummation of ladder diagrams in two dimensions

@ In 2 dimensions: density p; = k? /2, free Fermi gas E(ki)© = k?/4M
@ Contact coupling 2w/ M, first-order contribution E (k)" = —a k? /4M
@ Vacuum loop in two dimensions:

o . =
B(’)zzm/ﬂﬁ; :a(’l_ n@)
(2m)? T2 — G2 —je 2 A
@ Bound-state pole in resummed vacuum scattering amplitude o/ (1 — Bp)
determines cutoff A = g, €'/, two-body binding energy E, = —q2/M <0
@ Medium corrections from Pauli-blocking:
B;

ReBi =a{Ink— H(s,k)}, Im(Bé—l—B{—l—Bé):Z:aJ(s,m)

@ Two-dimensional in-medium loop functions:

V1= (s+r2+V1—(s—r)?
2k
2_,€2

1_
J(s, k) = geu fsfn)+9(s+nf1)arcsin:T, 2+ r2 <1

H(s,k) =26(1 —s—k)In

+0(s+r—1)Ins

@ J(s, k) is weighting function for integrals over two Fermi discs |p1,2| < ky
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Resummation of ladder diagrams in two dimensions

@ Resummed energy per particle for a two-dimensional Fermi gas:

1 V/1-82
E(k)—fB—kfz/dss / dk k arctanﬁ
BT H(s, v) +In(ks/as)

@ Parameter o has dropped out in above ratio: o' + In(ks/A) = In(ks/qb)

@ Binding momentum g, remains as a single scale in the equation of state
2

_ k 4 3 5 _3 Ky
E(k)= L4 =777+ (= —In2)y 2 -0.16079~+ 3 +... }, ~y=In—
4M 4 [/
0.8
0.6 \ \ \ \ \ ‘ ‘ 4
.
-
04 i free,
0.6 energy per particle s m
_02f a4
3 2
o 0 f
o =z
= -02F - <
24 53]
= combined particle-hole ladders
0.4~ in two dimensions !
0.6 -
| | | | | |
R S S 1 2 3 4 , b )
v=In(k/q,) (k/q,)"  (prop. to density p,)

@ Weak repulsion at low densities «» sizeable attraction at high densities
@ S. Beane et al., Toward precision Fermi liquid theory in flatland, arXiv:2212.05177
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3rd order ph-ring diagrams with contact-interactions

@ Known from low-density expansion: 3rd order ph-contribution from
contact-interaction proportional to S-wave scattering length a

3.5
E(k)¥ =(g-1)3-9) fr4’;;l - 2.7950523 J

g is spin-degeneracy factor, density p = gk? /672, a > 0 attraction

@ Nuclear Fermi gas with two different scattering lengths: as and a;

as + ar)k?

E(k)%" = 1.0481446" — (5as® + 5a° — 14asar) J

@ Extend this result to general ©(p?) NN-contact interaction (9 parameters)
in NLO chiral NN-potential named: Cs, Cr and Cy,...,Cy
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3rd order ph-ring diagrams with contact-interactions

@ Direct and exchange-type 3-ring diagrams: I+ /I+/ll4+1V = (dir—exc)®/6

I

O‘J:;Q

.

@ Antisymmetrized Galilei-invariant contact-interaction (ala Skyrme)

Vsk = PoPrVailg & =(1—PsP; ){to (1+xPs )+ (1 + X1 Ps)( qout+q1§)}
+(1 + PO'PT)IZ(1 +X2P0')q()l]l qm (1 a4 PT)’WO(U1 +U2) (qOUthin)

Spin and isospin exchange operators: P, =(1+&1-52)/2, P =(1+7-%2)/2,
Gn=(B1 —B2)/2, Gou = (B — P2 )/2 momentum differences in initial/final state,
completed to general O(p?) contact-interaction by adding 2 tensor terms
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3rd order ph ring-diagrams from contact interactions

@ Triple spin- and isospin-traces:
*trﬂfztrs{(AvLB?fw -Go+CFy-To+DG1 - GoTy - To) (A +B' G- 53+ C' 7o T3+ D' G- GaTo-T3)
X(A"+B"33-531+C" -7 +D" 53-5175 ‘?1)} = AA'A" +3BB'B" +3CC'C"+9DD' D"
@ Resulting interaction product, exploiting permutational symmetry (123)
126(1-63) + 881 (1 -2 —4x0x) (13+3°) + 98k [5+4x-+2(1+210)] (13 —57)
+gtot12(1 — dxpxy — 2x12)(7;§7;§ +212G% + 64) + gtgh B [5 + 4% + 2x0x1 (1 4 2x2)]

4
a9 1272 _ g7
*) + 2055+ 8x +25) (T3 15 — 21,

x(hahs — g 25%+§"%)

9 e =
+— b [5+ 2x% + 4x(1 + X12)] (’12 [5hs +h3h3

E1
9 p222 727222 72 a4 | =
+1g £(5+8x +2x5)(heh5hs — 513G —T5G* +G°)
3 P 2220 p | om2 a4
+Et13(1 - 6X12)(/1§/1§lzg +3h3 713 G2 + 82 g* +q6)

& SAmaT —awm = 2824 =
+35(35 + 84x + 78x% +28x3) (1212 T,2 — 31,372 G2 + 312G* — §°)
+OWs (i xG)- (ha x G){4t(1 + x0) + tr(1 + x1)(bs + G°) + 56(1 + %) (s — G°)}

I;=T—1; difference of loop-momenta, g flows through polarization-bubbles
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Euclidean polarization functions

@ Finite-temperature formalism in limit T — 0 gives the representation:
a®l 1
(27 jw+T-G/M

Nw,§) = {60k — 7= G/2)) — 6k — [T+ G/2))}

Fermionic Matsubara-sum yields Fermi-distributions — step-functions

@ Euclidean polarization function: M[1](w, §) = Mk Qu(s, x)/(47°s),
setting |g | = 2sk;, w = 2skk? /M, agrees with alternative derivations

(1+8) +x2

1+s
Qo(s, k) = s — Sk arctan (S

— Sk arctan

—S 1
+ 401 — s+ 5%

@ For contact-interaction: 3-loops factorize into “cube” of 1-loop

- MK? . MK} [ 5; NP
N0 = - o i Qo(s, )8, 0] = g { L (s + (a0 = L) Culer)}

i
2 3
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3rd order ph-ring energy per particle

@ Translate products of scalar-products into cubic expressions in Q;(s, x)
@ Resulting 3-ring energy per particle for isospin-symmetric nuclear matter
= 3ph IV’2kf5 3 2 2 .2 2
E(ke)™ = W{toﬁ — 6x5)N1 + kf toty(1 — 2x5 — 4xpx1) N2
+h2 2[5+ dxp + 22 (1 + 2x0) ] N3 + Ki fot2(4xoxq + 2x2 — 1),

5 5

i oty o [5 +x0%1 (1 + 2xp) + 2 | N5 + Kf tof3 [5 + 43 + X5 | No
5 5

+k8 1 [5 +x2 4+ 2x(1 + x12)]./\/7 + Kt b +4x + )(ZZ]N8

5 39
+KE (1 = 6X7)No + k7 fg[z +3% + ﬁxg +x| N

i WG [0+ x0) N1 + K (14 xa) N1 + K (1 +X2)N13}}

@ For neutron matter isospin-factors change, no Ni1,12 terms (381 -state)

M?Kp {5 3 22 2
%ﬁ? {to(Xo — )N+ Ky ot (o — 1)7(x — A2

K2 Bl (xo — 1P (e + 1)3N3 + K o2 (1 — x0)(xy — 1) A

En(kn)3ph _

4 3Ns 4, 2 2 3N
o otz (o — D1 — Dk + 1) —= + Ky ol (1 = X0)(1 +xe)” —=

3N 3N
+k8 Bo(1 — xp)2(1 +x2)77 F KA — x)(1 + %) 78

45N 8N,
RSB0 — 1PN + K B (1 + x0)° 710 + K W2h(1 + xp) 5‘3 }
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Calculation of four-loop coefficients

@ For fourth loop-integral [dw [d®q/(2x)* introduce polar coordinates
in sk-plane: s =rcosp, Kk = rsine

/2

o0
Ny = 12/ dr|  dor[Qu(s,«)]® = 4.1925784
0 0

@ Dimensional regularization of Aj: subtract power divergences [/ dr r?"

™/ 16
No = / dr/ d<p{18r Q5[0 +(25°+K%) Qo) -3 cosscp(2+c052ap)} = —0.4633512
0

oo 7r 16
N :/ dr/ d¢{18r [Qr + (5% — 25%) @] + 3 cosy c052<p} = —2.259163
0

@ Expand integrands up to r—* and include a/fmax +as/3r3,, for outside
region r > rmax, accurate and well converged results for 20 < . < 40

@ Method verified by rederiving analytical results for 2nd order contribut.
@ Remaining four-loop coefficients in dimensional regularization:
Ny =2.902123, N5 =2.12658, N = 0.438970, N7 =0.48756,

N = —0.27614, Ng=—1.01924, N = 0.315484,
Nij = —2.244200, Njp = —2.30577, Niz = 2.53887
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Recovering second-order contributions

@ 2nd order particle-particle ladder diagram = 2-ring particle-hole diagram,
factor 1/2 not to double-count direct + exchange term via (dir — exc)?

_ 3Mk}
E(kp)™ = 32ﬂ; {t§(1 +X8) 21 + K tots (1 + Xox1) 22

KA (14 x2) 25 + k* £2(5 + 8x, + 5x2) 24 + k* W0225}

@ Three-loop coefficients Z; in dimensional regularization:
oo /2 4 47
= — 2 —_ - 3 = = — _
) = 8/0 dr/o dw{srsoo 3 oS (p} 3.451697 = == (11— 2In2),

=) /2 > > 8w
Zp = 724/ dr/ d(p{rsQo[Q1 + @+ x )oo]} =3.99902 = —— (167—241n2),
0 0 reg 945

2y =1.37573 = — . (4943-564In2),  Z; =0.0931718 = —~

(1033—156In2)
10395 31185

z 128/Oodr/ﬂ/2d {a(@ - an} =270935 167 631 — 102In2)
= = = 2. = — = n
S L e e = S 10395
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Tensorial contact-terms

@ Contact-interaction of O(p?) gets completed by adding two tensor terms

N o= L o 1. . . =
Vien— Po Pr Vien| 2 =(1- Pr)f4{51'qmn G2 Gout+1 - Gin 02'Qin—§<71‘t72(qoit+0in2)}

Gout — —Gout

o S s s S s 2, . . -
+(1+ P7) 15{01 *Qout 02 Qin + 01 * Qin 02" Qout — 30102 Qout - qin}

@ Tensor contributions to 3-ring energy per particle (& absent in n-matter)

E(k)™

. 7{k, Ws [ts Nig + t5 Nis]

+£ [to(xo — 2)Nig + K t1(x1 — 2)Ni7 + KZ bo(X + 2)Nig]
+iats [foXo Nig + K2 tyxy Noo + K boxo Noai]
+f52 [f0(3X0 — 2)./\/22 + kfz ty (3X1 — 2)N23 + k,z [2(3X2 + 2)/\/24]

v [tff Nas + 215 Nag + t412 Noy + £ Nos) } ;

_ 2t
En(ka)™ {k2 > [WE Nis + £ Nag)

24n7
+£ [to(xo — 1)Naz + K5 ti(x1 — 1)Nas + K o0z + 1)N2a] }

@ Spin-traces — triple scalar-products — cubic expressions in Q(s, x)

@ Accurate four-loop coefficients calculated in dimensional regularization:
Nig = 0.8722, N5 = —5.0175, N1 = —2.9160, N7 = —2.7834, Nig = 0.42202,
Nig = 10.154, Ny = 8.0564, Ny = —0.7457, Npp = —1.0762, ..., Nog = 5.4015
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Third-order ladder diagrams with contact-interactions

@ Known from low-density expansion: contributions up to 3rd order ladder
diagrams from contact-interaction prop. to S-wave scattering length a

_ k2 ak, 2 aky ak
oY — ,14{,4 Z(11-2In2 —1.1716223( }
E(k)™ = (9 - 1301 — 5+ + 35 (&) 6223~ ")

@ Extend this result to general O(p?) contact-interaction (7+2 parameters)

1§
Veont = to(1 + %0Po) + 5 (1 + X1 Po) (G + G2) + (1 + X2Po) Gour Gin
+iWo (31 + G2) - (Gour X Gin) + Vien(ta, t5)

@ Third-order Hartree (direct) and Fock (exchange) ladder diagrams

D 9

@ Twice-iterated interaction in medium integrated over two Fermi spheres
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In-medium loop functions

@ P-wave interactions introduce factor //; in loop integrals, decompose this
tensor into a transversal and a longitudinal part

MK - o
real part: @{Rl(s, ®)[65 — PiPj] + Ry (s, n)P,-P,-},

. LM
Imaginar re
aginary pa 1272

relations: 2R, + R =4+3x°R, 2+ =3I

{u(s, r)[65 — PiP] + Iy (s, n)f’,-/:",-},

@ Mixing terms of S- and P-wave interactions vanish in a medium with one
single Fermi momentum ki, i.e. without isospin- or spin-asymmetries,
weight functions 6(k; — |P & [|) in loop integral are even under | — —/

@ Proper real-valued integrand for energy density pE at third order

2
(R— ixl)? + (R — inl)(2inl) + %(2:'771)2 —R-TF
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Evaluation of 3rd order ladder diagrams: S-wave interactions

@ Results in pure neutron matter (only 'Sy, P, — —1), density pp = k3 /372
E 3lad _ 3 2 52 2
Enlkn) ™ = o1 6{r (1= x0)°Bs + k2 B (1 — x0)2(1 — x1)B2

+h4 (1 = x0)(1 = x1)?Bs + K (1 — x1)° By }

@ Four-loop coefficients with high numerical accuracy, ty(x — 1) = 4ra/M

o
B, —B/dss / dm/(s x)[3R? — w2 /7] = 1.1716223,

N
S/dss / dnn/[Sn (3R%—7%I?)+8R]= 1.9893144

B; = 1.360736, B, = 0.3344923
@ Result in isospin-symmetric nuclear matter, density p = 2k?3 /372
C 3lad _ M k 3
E(k) {t (1+3x3)B; + k2 2t;(1 + X2 + 2x0x1) B,

—|—kf t0t1 (1 + 2XOX1 + X1 )Bg + ka t?( + 3X1 )84}

@ Sum contributions from isotriplet 'S;- and isosinglet °S; -states
[B(1 — x0)° + 365 (1 + x0)°] /2 = 365 (1 + 3x),
[B4(1 — x0)2(1 — x1) + 36 (1 + x0)°(1 + x1)] /2 = 34 (1 + ¢ + 2x0%)
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Evaluation of 3rd order ladder diagrams: P-wave interactions

@ Results for neutron matter (only *Py 1 ») and symmetric nuclear matter

En(kn)¥d = {t3(1 + %)%Bs5 + (1 + x) W2B5 + W2 57}

646

_ M2k11 t3 3
E(kf)Slad — 5476 { 2(5+12X2+15X2+4X )BS+7(1+X2)W236+ 2W3B7}

Spin-traces: Hartree tr,, tr,,, Fock tr., ., taking care of ordering
£-term: 9(1 + x2)3 — [3(1 — x2)® +27(1 + x2)3] /2 = 3(5+ 12x2 + 15x2 + 4x3)
Isotriplet 3P,-interactions: 3(Hart+Fock)=4Hart+2Fock, thus: Hart=Fock
Pertinent four- Ioop coeffcients computed from double-integrals

/dss / S [2IL(3R —m?R) + 3RS — /H)}: 0.06699116,

128 Vi-s
Bs = / / dm{u [3/?2 +2R.R) +A; - ?(3/ +20 ) + /”)}

2
+) [m(/::L +2R)) - %IJ_(IJ_ + 2/“)] }: 1.327456 ,

_ 128 Vi-& 2
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Tensor contact-interactions up to third order

@ Tensor contributions in neutron matter (only 3P,) and symmetric N-matter

En(kn)Slad

64 6 {f WOBg+t5t2(1 +X2)Bg+t5 W()B1()+TSB11}

_ M2k11 3 3 35
E(kf)Slad = W{ 2t5 WZBS + = t2t2(1 + X2)Bg —+ 715 WoB10

+§thﬁ + k2 2to(1 + X0)Bi2 + ££11(1 +X1)B13}

ts-term acts in ° P,-states, t5t22 and tst, W interferences give spin-trace =0
Bs = —2.243263, Bg = 2.042028, B, =6.66812, Bj; = —1.655323
Tensorial ty-term responsible for 3S;*D;-mixing: P, — 1, param. to (1+x0.1)
Spin-traces give: Hart = Fock, relevant in nuclear matter: 4 Hart - 2 Fock
Pertinent four-loop coefficients: By, = 2.421103, B;3 = 1.559127

Summary: Semi-analytical many-body calculations

Resummation of in-medium ladder diagrams ~ a to all orders: arctan
Construction of complex single-particle potential U(p, k¢) + i W(p, k)
Third-order particle-hole ring diagrams from ©O(p?) contact-interaction
Third-order ladder diagrams from general O(p?) NN-contact interaction
Four-loop coefficients computed accurately from dim-reg. double-integral
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