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Progress in Ab Initio Calculations
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Decoupling in A-Body Space

goal: decouple reference state  
from excitations
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Flow Equation
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Flow Equation

d
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Operators

truncated at two-body level -

matrix is never constructed  

explicitly!
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IMSRG-Improved Methods

XYZ 
define


reference

IMSRG 
evolve


operators

XYZ 
extract


observables

Could add

 self-consistency.

* mean field or 
explicitly correlated
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IMSRG-Improved Methods

XYZ 
define


reference

IMSRG 
evolve


operators

XYZ 
extract


observables

• IMSRG for closed and open-shell nuclei: IM-HF and 
IM-PHFB

• HH, Phys. Scripta, Phys. Scripta 92, 023002 (2017)


• HH, S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tuskiyama, Phys. 
Rept. 621, 165 (2016)


• Valence-Space IMSRG (VS-IMSRG)                 

• S. R. Stroberg, HH, S. K. Bogner, J. D. Holt, Ann. Rev. Nucl. Part. Sci.  

69, 165 


• In-Medium No Core Shell Model (IM-NCSM)                                         

• E. Gebrerufael, K. Vobig, HH, R. Roth, PRL 118, 152503


• In-Medium Generator Coordinate Method (IM-GCM)                                                
• J. M. Yao, J. Engel, L. J. Wang, C. F. Jiao, HH PRC 98, 054311 (2018)


• J. M. Yao et al., PRL 124, 232501 (2020) 



Merging IMSRG and CI:

Valence-Space IMSRG

Review: 
S. R. Stroberg, HH, S. K. Bogner, and J. D. Holt, Ann. Rev. Part. Nucl. Sci. 69, 165 
(2019)

Full CI: 
E. Gebrerufael, K. Vobig, HH, and R. Roth, Phys. Rev. Lett. 118, 152503 (2017)
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Ground-State Energies

VS-IMSRG: easy 
access to odd nuclei, 

excited states

S. R. Stroberg, A. Calci, HH, J. D. Holt, S. K.Bogner, R. Roth, A. Schwenk, PRL 118, 032502 (2017) 
S. R. Stroberg, HH, S. K. Bogner, J. D. Holt, Ann. Rev. Part. Nucl. Sci. 69, 307 (2019)



H. Hergert - Hirschegg 2023 - “Effective Field Theories for Nuclei and Nuclear Matter”, Hirschegg, Austria, Jan 16, 2023

Quenching of Gamow-Teller Decays

• empirical Shell model calculations require quenching factors 
of the weak axial-vector couling gA

• VS-IMSRG explains this through consistent renormalization of 
transition operator, incl. two-body currents

LETTERSNATURE PHYSICS

of 2BCs in A ≤ 7 nuclei is similar to what was found in the Green’s 
function Monte Carlo calculations of ref. 26. We find a rather sub-
stantial enhancement of the 8He Gamow–Teller matrix element due 
to the 2BC. Let us mention, though, that this transition matrix ele-
ment is the smallest of those presented in Fig. 2. We note that, for the 
other Hamiltonians employed in this work, the 2BCs and 3N were 
not fit to reproduce the triton half-life; nevertheless, the inclusion of 
2BCs for most of these cases also improves the agreement with data 
for the light nuclei considered in Fig. 2 (see Supplementary Fig. 9 
for results obtained with NNLOsat and NN-N3LO + 3Nlnl). The case 
of 10C is special because the computed Gamow–Teller transition is 
very sensitive to the structure of the Jπ = 1+ state in the 10B daughter 
nucleus. Depending on the employed interaction, this state can mix 
with a higher-lying 1+ state, greatly impacting the precise value of 
this transition. We finally note that benchmark calculations between 

the many-body methods used in this work agree to within 5% for 
the large transition in 14O. For smaller transitions discrepancies can 
be larger (see Supplementary Information for details).

Historically, the most extensive evidence for the quenching 
of Gamow–Teller β-decay strength comes from medium-mass 
nuclei14,16,27, and we now show that our calculations with these 
consistent Hamiltonians and currents largely solve the puzzle here 
as well. We use the valence-space in-medium similarity renor-
malization group (VS-IMSRG) method8 (see Methods for details) 
and compute Gamow–Teller decays for nuclei in the mass range 
between oxygen and calcium (referred to as sd-shell nuclei) and 
between calcium and vanadium (lower pf-shell nuclei), focusing on 
strong transitions. Here, we highlight the NN-N4LO + 3Nlnl interac-
tion and corresponding 2BCs.

Figure 3 shows the empirical values of the Gamow–Teller tran-
sition matrix elements versus the corresponding unquenched 
theoretical matrix elements obtained from the phenomenological 
shell model with the standard Gamow–Teller στ operator and the 
first-principles VS-IMSRG calculations. Perfect agreement between 
theory and experiment is denoted by the diagonal dashed line. The 
results from the phenomenological shell model clearly exemplify 
the state of theoretical calculations for decades13–16,27; as an example, 
in the sd-shell shell, a quenching factor of q ≈  0.8 is needed to bring 
the theory into agreement with experiment14. The VS-IMSRG cal-
culations without 2BCs (not shown) exhibit a modest improvement, 
with a corresponding quenching factor of 0.89(4) for sd-shell nuclei 
and 0.85(3) for pf-shell nuclei, pointing to the importance of con-
sistent valence-space wavefunctions and operators (Supplementary 
Fig. 10). As in 100Sn, the inclusion of 2BCs yields an additional 
quenching of the theoretical matrix elements, and the linear fit of 
our results lies close to the dashed line, meaning our theoretical pre-
dictions agree, on average, with experimental values across a large 
number of medium-mass nuclei.

Another approach often used in the investigation of Gamow–
Teller quenching is the Ikeda sum-rule: the difference between the 
total integrated β−  and β+ strengths obtained with the στ∓ operator 
yields the model-independent sum-rule 3(N – Z). We have com-
puted the Ikeda sum-rule for 14O, 48Ca and 90Zr using the coupled-
cluster method (see Methods for details). For the family of EFT 
Hamiltonians used for 100Sn we obtain a quenching factor aris-
ing from 2BCs that is consistent with our results shown in Fig. 3  
and the shell-model analyses from refs. 14–16,27. (Supplementary 
Fig. 7). We note that the comparison with experimental sum-rule 
tests using charge-exchange reactions28,29 is complicated by the 
use of a hadronic probe, which only corresponds to the leading 
weak one-body operator, and by the challenge of extracting all 
strength to high energies. Here, our developments enable future 
direct comparisons.

It is the combined proper treatment of strong nuclear correla-
tions with powerful quantum many-body solvers and the consis-
tency between 2BCs and three-nucleon forces that largely explains 
the quenching puzzle. Smaller corrections are still expected to 
arise from neglected higher-order contributions to currents and 
Hamiltonians in the EFT approach we pursued, and from neglected 
correlations in the nuclear wavefunctions. For beyond-standard-
model searches of new physics such as neutrino-less double-β-
decay, our work suggests that a complete and consistent calculation 
without a phenomenological quenching of the axial-vector coupling 
gA is called for. This Letter opens the door to ab initio calculations of 
weak interactions across the nuclear chart and in stars.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41567-019-0450-7.
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Fig. 3 | Gamow–Teller strengths in medium-mass nuclei. Comparison 
of experimental30 and theoretical Gamow–Teller matrix elements for 
medium-mass nuclei. a,b, Plots of Gamow–Teller matrix elements: sd-
shell (a) and lower pf-shell (b). Theoretical results were obtained using 
phenomenological shell-model interactions16,31 with an unquenched 
standard Gamow–Teller στ operator (open orange squares), and using the 
VS-IMSRG approach with the NN-N4LO!+!3Nlnl interaction and consistently 
evolved Gamow–Teller operator plus 2BCs (filled green diamonds). The 
linear fits show the resulting quenching factor q given in the panels, and 
shaded bands indicate one standard deviation from the average quenching 
factor. Experimental uncertainties, taken from ref. 30, are shown as vertical 
error bars.
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P. Gysbers et al., Nature Physics 15, 428 (2019) 
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Transitions
N. M. Parzuchowski, S. R. Stroberg et al., PRC 96, 034324 

S. R. Stroberg, HH, S. K. Bogner, J. D. Holt, Ann. Rev. Part. Nucl. Sci. 69, 307 (2019) 
S. R. Stroberg et al. PRC 105, 034333 (2022

• B(E2) much too small: missing collectivity due to intermediate 
3p3h, … states that are truncated in IMSRG evolution (static 
correlation)

N. M. PARZUCHOWSKI et al. PHYSICAL REVIEW C 96 , 034324 (2017)

FIG. 6. Convergence of the first 2+ excitation energy and B(E2)
(in e2 fm4) to ground state of 14C. VS- and EOM-IMSRG methods
[columns (b) and (c) respectively] are compared with NCSM [column
(a)] and experiment [78].

converged values. Hence the utility of the IMSRG:
For light nuclei such as 14C, convergence is obtainable
without extrapolation, and for heavier nuclei, we expect to
be able to identify convergence trends clearly enough to make
extrapolation procedures relatively painless compared to the
prohibitively large uncertainties one would incur when exact
methods such as NCSM are used. Of course, the effect of the
additional NO2B approximation must be fully investigated.

As a final test in the p shell, we analyze the isobaric
neighbor nucleus 14N. Here the EOM-IMSRG requires the use
of a charge-exchange formalism, i.e., ladder operators which
exchange one neutron for a proton. Figure 7 displays the 01

+

FIG. 7. Convergence of 01
+ excitation energy, B(M1) (in µ2

N ) to
ground state, and magnetic dipole moment of 14N. VS- and EOM-
IMSRG methods [columns (b) and (c) respectively] are compared
with NCSM [column (a)] and experiment [77,83].

FIG. 8. Results of EOM-IMSRG(2,2) and VS-IMSRG(2) calcu-
lations of the 21

+ excitation energy (a), and the B(E2; 21
+ → 01

+)
value (b) for several closed-shell nuclei in the sdand pf shells. Due
to experimental values that vary by several orders of magnitude, the
B(E2) values are scaled such that experiment is unity. Computations
are performed at h̄ω = 20 MeV and emax = 12. Experimental results
are taken from [78].

excitation energy for 14N, the ground-state magnetic dipole
moment, and the M1 transition strengths B(M1; 01

+ → 11
+)

and B(M1; 12
+ → 01

+). The agreement among methods is
moderate, with the exception of the transition B(M1; 01

+ →
11

+) to the ground state. We note that this relatively weak
transition, which is an analog of the Gamow-Teller β decay
of 14C, was found to result from a subtle cancellation between
various contributions [62,84], so that small errors on an
absolute scale appear large on a relative scale. Regardless,
the disagreement between VS-IMSRG and EOM-IMSRG will
be investigated in the future.

D. sd and f p shell systems

Ultimately, the power of IMSRG approaches to excited
states and effective operators will be the ability to describe
these properties in medium- to heavy-mass regions where
exact methods are not computationally tractable. In this section
we investigate the quality of these calculations for several
medium-mass nuclei, again using the electric quadrupole and
magnetic dipole operators as case studies.

1. Electric quadrupole observables

Figure 8 displays the first 2+ excitation energies and
B(E2; 21

+ → 01
+) strengths for several nuclei in the sdand

pf shells. We find excellent convergence properties, as we did
in the p shell, and we see reasonable agreement with experi-
ment for the excitation energies. However, transition strengths
are generally underpredicted by an order of magnitude. These
results are strikingly consistent between the two methods. A
tentative explanation for the diminished strength in 22O and
48Ca is provided by the lack of valence protons. In order to
describe the transition in these nuclei, valence neutrons must be
dressed consistently as quasineutrons possessing an effective
charge.

034324-8
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Calcium Isotopes

“parabola” explained 

by sd-pf configuration 
mixing in Shell model:


static correlation

HH, Front. Phys. 8, 379 (2020)



Capturing Collective Correlations: 

In-Medium Generator Coordinate 
Method

J. M. Yao, A. Belley, R. Wirth, T. Miyagi, C. G. Payne, S. R. Stroberg, HH, J. D. Holt, 
PRC 103, 014315 (2021)

J. M. Yao, B. Bally, J. Engel, R. Wirth, T. R. Rodriguez, HH, PRL 124, 232501 (2020)

J. M. Yao, J. Engel, L. J. Wang, C. F. Jiao, H. H., PRC 98, 054311 (2018)

HH, J. M. Yao, T. D. Morris, N. M. Parzuchowski, S. K. Bogner and J. Engel, J. Phys. 
Conf. Ser. 1041, 012007 (2018)



Application to deformed nuclei: AMg

The B(E2 : 0+
1 ! 2+

1 ) are nicely reproduced, even though the radii are
systematically underestimated by 6% as expected from the interaction.
The excitation energies of 2+

1 states are systematically overestimated, while the
evolution trend is reproduced excellently.

J. M. Yao FRIB/MSU MR-IMSRG for Deformed Nuclei May 12, 2019 14 / 44

H. Hergert - Hirschegg 2023 - “Effective Field Theories for Nuclei and Nuclear Matter”, Hirschegg, Austria, Jan 16, 2023

Magnesium Isotopes

• note improvement of rms radius trend from IM-GCM

• global shifts (and/or rotation around “pivot”) often associated with 
cutoff dependence of interactions

J. M. Yao, HH, in preparation
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Magnesium Isotopes

• much improved B(E2) values compared to standard GCM or VS-
IMSRG calculations: IM-GCM captures dynamical and static 
correlations!

Application to deformed nuclei: AMg

The B(E2 : 0+
1 ! 2+

1 ) are nicely reproduced, even though the radii are
systematically underestimated by 6% as expected from the interaction.
The excitation energies of 2+

1 states are systematically overestimated, while the
evolution trend is reproduced excellently.

J. M. Yao FRIB/MSU MR-IMSRG for Deformed Nuclei May 12, 2019 14 / 44

J. M. Yao, HH, in preparation
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Magnesium Isotopes

• induced 2B quadrupole operator is small (~5%), contrary to typical 
VS-IMSRG (~50%): GCM reference equips operator basis with better 
capability to capture collectivity

Application to deformed nuclei: AMg

The B(E2 : 0+
1 ! 2+

1 ) are nicely reproduced, even though the radii are
systematically underestimated by 6% as expected from the interaction.
The excitation energies of 2+

1 states are systematically overestimated, while the
evolution trend is reproduced excellently.

J. M. Yao FRIB/MSU MR-IMSRG for Deformed Nuclei May 12, 2019 14 / 44

J. M. Yao, HH, in preparation

O = O(1) →
s→∞

O(s) = O(1)(s) + O(2)(s) + …
induced contributions



H. Hergert - Hirschegg 2023 - “Effective Field Theories for Nuclei and Nuclear Matter”, Hirschegg, Austria, Jan 16, 2023

Perturbative Enhancement of IM-GCM
M. Frosini et al., EPJA  58, 64 (2022)

• s-dependence is a built-in diagnostic tool for IM-GCM (not 
available in phenomenological GCM)

• if operator and wave function offer sufficient degrees of freedom, 
evolution of observables is unitary

• need richer references and/or IMSRG(3) for certain observables

also see talk by 
T. Duguet
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IM-GCM:  Decay of 48Ca0νββ

• richer GCM state through cranking

• consistency between IM-GCM and IM-NCSM

0

1

2

3

4

5

E x
[M

eV
]

0+

2+

4+

0+

2+

4+

0+

2+

4+

0+

2+

4+

0+

2+

4+

0+

2+

4+

(β2) (β2,ω) EXP Nmax = 4 Nmax = 2 Nmax = 0

101

138

125

201

IMSRG+GCM IMSRG+NCSM48Ti

EM1.8/2.0, h̄Ω = 16 MeV

J. M. Yao et al., PRL 124,  232501 (2020); HH, Front. Phys. 8, 379 (2020) 
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Application: 0⌫�� from 48Ca to 48Ti (preliminary results)

The value from Markov-chain
Monte-Carlo extrapolation is
M0⌫ = 0.61+0.05

�0.05
The neutron-proton isoscalar pairing
fluctuation quenches ⇠17% further,
which might be canceled out partially
by the isovector pairing fluctuation.

J. M. Yao FRIB/MSU Ab initio calculation of deformed nuclei 26 / 33

 Decay of 48Ca0νββ

• NME from different methods consistent for consistent interactions 
& transition operators 
(A. Belley et al., PRL 126, 042502, S. Novario et al., PRL 126, 182502) 

• interpretation and features differ from empirical approaches (e.g., 
only weak correlation between NME and B(E2) value)

J. M. Yao et al., PRL 124,  232501 (2020); PRC 103, 014315 (2021)
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Application: 0⌫�� from 48Ca to 48Ti (preliminary results)

The value from Markov-chain
Monte-Carlo extrapolation is
M0⌫ = 0.61+0.05

�0.05
The neutron-proton isoscalar pairing
fluctuation quenches ⇠17% further,
which might be canceled out partially
by the isovector pairing fluctuation.

J. M. Yao FRIB/MSU Ab initio calculation of deformed nuclei 26 / 33

 Decay of 48Ca0νββ

• NME from different methods consistent for consistent interactions 
& transition operators 
(A. Belley et al., PRL 126, 042502, S. Novario et al., PRL 126, 182502) 

• interpretation and features differ from empirical approaches (e.g., 
only weak correlation between NME and B(E2) value)

J. M. Yao et al., PRL 124,  232501 (2020); PRC 103, 014315 (2021)

not the full  
story yet: improve IMSRG 

truncations, additional GCM 
correlations, include 


currents, … 
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Counterterm in  Operator0νββ

• Cirigliano et al.: RG 
invariance of the DBD 
transition operator 
requires contact term


• Counter term yields 
robust enhancement 


• varied EFT orders, RG 
scales, interactions


• Next: 

• more interactions


• inclusion of currents


• LEC sensitivity / UQ

R. Wirth, J. M. Yao, H. Hergert, PRL 127, 242502 (2021)
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Correlations revisited

• possible correlation with Double Gamow Teller transition,  
2+ energies (but the latter only in 76Ge)

FIGURE 1. Correlation between different observables in 76Ge using the 34 non-implausible samples of parameters of N2LO delta-
full chiral EFT with a cutoff of 394 MeV [31]. Results are compared to experiment [32, 33] (dashed black lines) where available.
The Pearson-R coefficient is given on each correlation plot to indicate the level of correlation between any two observables. The
shaded region shows the probability density of finding the data points inside this region for 1s , 2s and 3s respectively.

but that observation of the DGT transition could potentially help reduce the interaction uncertainty on the NMEs.
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(Some) Physics Goals

• Neutrinoless Double Beta Decay matrix elements for 76Ge 
and other candidates

• use VS-IMSRG for heavy lifting in parameter sensitivity 
analysis & UQ because IM-GCM is too costly

• accelerate IMSRG & IM-GCM (GPUs, factorization, …)

• increased precision for beta decays & Schiff moments 

• IM-GCM for odd nuclei

• tackle nuclei for which large multi-shell valence-spaces 
make VS-IMSRG difficult or prohibitive

• Uncertainty Quantification / Sensitivity Analysis

• need cheap surrogate models (emulators)
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Leveraging Low-Rank Structures
B. Zhu, R. Wirth, HH, PRC 104, 044002 (2021)

• principal component analysis of chiral interactions

• free-space SRG effort and storage reduced by several 
orders of magnitude (but not a major bottleneck anyway)

• no adverse affect on other (studied) observables

• next: 3N & leverage factorization in many-body calculation

EM1.8/2.0 NN+3N
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Compression with Random Projections

• tensorial (= modewise) 
Johnson-Lindenstrauss 
embeddings

• purely based on 
features of (sparse) big 
data sets - integrate with 
physics-based ideas?

• suitable for streaming 
transforms: compress on 
the fly while reading from 
disk

A. Zare, R. Wirth, C. Haselby, HH, M. Iwen, arXiv:2211.01315

EM1.8/2.0 NN+3N, MBPT(2), ctot < 10−3
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Emulating IMSRG Flows

Pearson coefficient: 

p = cov(HDMD, HIMSRG)
σDMD σIMSRG

HDMD(s) vs. HIMSRG(s)

J. Davison, J. Crawford, S. Bogner, HH, in preparation

Dynamic Mode Decomposition 
emulator “learns” all flowing 
operator coefficients from 
snapshots!

EM(500) N3LO, λ = 2.0 fm−1

E(
s)

[M
eV

]

s [MeV−1]



• pairing plus particle-hole model - 3 parameters + flow


• “naive” framework built for chiral LECs, but needs more optimization 
(more model reduction before DMD, etc.)


• (still) ambitious by trying to predict full operators, could focus on 
observables (zero-body part of evolving operators) only

H. Hergert - Hirschegg 2023 - “Effective Field Theories for Nuclei and Nuclear Matter”, Hirschegg, Austria, Jan 16, 2023

Parametric DMD
J. Davison, J. Crawford, S. Bogner, HH, in preparation
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Summary
• developing new capabilities:

• transitions (for structure, fundamental symmetry searches, …)

• (complex) deformations (cf. talk by T. Duguet)

• clustering (bridge to dynamics /reactions…)

• improve precision (see talks by T. Miyagi, M. Heinz):

• full or approximate next-order truncations: IMSRG(3) 

• alternative (?): improve operator bases 

• tackling computational cost & scalability (crucial for UQ):

• identify (and leverage) low-rank structures - model order 
reduction

• surrogate models (DMD, …)
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Postdoctoral Position @ FRIB

• focus: extensions of IMSRG Framework and applications 
(incl. fundamental symmetries)


• broad portfolio of nuclear theory research @ FRIB, great 
opportunities for collaboration


• 2 years (+ possible renewal)


• Contact me: hergert@frib.msu.edu … 


• … or apply directly at https://careers.msu.edu/en-us/job/
513047/research-associatefixed-term


• review of applications will start on Jan 30th until position is 
filled 


• Please encourage suitable candidates to apply!

mailto:hergert@frib.msu.edu
https://careers.msu.edu/en-us/job/513047/research-associatefixed-term
https://careers.msu.edu/en-us/job/513047/research-associatefixed-term
https://careers.msu.edu/en-us/job/513047/research-associatefixed-term
mailto:hergert@frib.msu.edu
https://careers.msu.edu/en-us/job/513047/research-associatefixed-term
https://careers.msu.edu/en-us/job/513047/research-associatefixed-term
https://careers.msu.edu/en-us/job/513047/research-associatefixed-term
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Transforming the Hamiltonian

• reference state: single Slater 
determinant

�
�
⇤⇤�

⇤⇤�
⇥

excitations relative 

to reference state:

normal-ordering

|Ǫ� |Ǫa
i � |Ǫab

ij � |Ǫabc
ijk �

|Ǫ
ab

c
ijk

�
|Ǫ

ab ij
�

|Ǫ
a i�

|Ǫ
�

���� ���� ����

ε�

ε�

�

�F

a,b, . . . : � > �F

i, j, . . . : � � �F

p,q, . . . : full basis



H. Hergert - Hirschegg 2023 - “Effective Field Theories for Nuclei and Nuclear Matter”, Hirschegg, Austria, Jan 16, 2023

Decoupling in A-Body Space

goal: decouple reference state  
from excitations
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Flow Equation

d
dsH(s) =

�
�(s),H(s)

�
, e.g., �(s) �

�
Hd(s),Hod(s)

�

/VK

Operators

truncated at two-body level -

matrix is never constructed  

explicitly!
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Decoupling
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Decoupling

off-diagonal couplings    
are rapidly driven to zero
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non-perturbative    
resummation of MBPT series      

(correlations)



Ê Ê Ê Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê
Ê
Ê
Ê
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ‡ ‡ ‡ ‡ ‡ ‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡

10-5 10-4 10-3 10-2 10-1 100 101
-600

-580

-560

-540

-520

s

E
@M
eV
D

40Ca
E
E+MBPTH2L

Ê Ê Ê Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê
Ê
Ê
Ê
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ‡ ‡ ‡ ‡ ‡ ‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡

10-5 10-4 10-3 10-2 10-1 100 101
-600

-580

-560

-540

-520

s

E
@M
eV
D

40Ca
E
E+MBPTH2L

Ê Ê Ê Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê
Ê
Ê
Ê
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ‡ ‡ ‡ ‡ ‡ ‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡

10-5 10-4 10-3 10-2 10-1 100 101
-600

-580

-560

-540

-520

s

E
@M
eV
D

40Ca
E
E+MBPTH2L

Ê Ê Ê Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê
Ê
Ê
Ê
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ‡ ‡ ‡ ‡ ‡ ‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡

10-5 10-4 10-3 10-2 10-1 100 101
-600

-580

-560

-540

-520

s

E
@M
eV
D

40Ca
E
E+MBPTH2L

Ê Ê Ê Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê
Ê
Ê
Ê
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ‡ ‡ ‡ ‡ ‡ ‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡

10-5 10-4 10-3 10-2 10-1 100 101
-600

-580

-560

-540

-520

s

E
@M
eV
D

40Ca
E
E+MBPTH2L

Ê Ê Ê Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê
Ê
Ê
Ê
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ‡ ‡ ‡ ‡ ‡ ‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡

10-5 10-4 10-3 10-2 10-1 100 101
-600

-580

-560

-540

-520

s

E
@M
eV
D

40Ca
E
E+MBPTH2L

Ê Ê Ê Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê
Ê
Ê
Ê
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ‡ ‡ ‡ ‡ ‡ ‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡

10-5 10-4 10-3 10-2 10-1 100 101
-600

-580

-560

-540

-520

s

E
@M
eV
D

40Ca
E
E+MBPTH2L

Ê Ê Ê Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê
Ê
Ê
Ê
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ‡ ‡ ‡ ‡ ‡ ‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡

10-5 10-4 10-3 10-2 10-1 100 101
-600

-580

-560

-540

-520

s

E
@M
eV
D

40Ca
E
E+MBPTH2L

Ê Ê Ê Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê
Ê
Ê
Ê
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ‡ ‡ ‡ ‡ ‡ ‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡

10-5 10-4 10-3 10-2 10-1 100 101
-600

-580

-560

-540

-520

s

E
@M
eV
D

40Ca
E
E+MBPTH2L

���	, � = �.� ����, ��

 = �

• absorb correlations into RG-improved Hamiltonian

• reference state is ansatz for transformed, less correlated 
eigenstate:

H. Hergert - Hirschegg 2023 - “Effective Field Theories for Nuclei and Nuclear Matter”, Hirschegg, Austria, Jan 16, 2023

Decoupling
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“standard” IMSRG: build correlations on top of 

Slater determinant (=independent-particle state)
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Correlated Reference States

! IMSRG(2) IMSRG(3) IMSRG(4) IMSRG(5)

. . . 



“standard” IMSRG: build correlations on top of 

Slater determinant (=independent-particle state)
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Correlated Reference States

! IMSRG(2) IMSRG(3) IMSRG(4) IMSRG(5)

. . . 

Collective (aka static) correlations, e.g.

due to intrinsic deformation:
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Correlated Reference States

! MR-IMSRG(2)

. . . 

MR-IMSRG: build correlations on top of 

already correlated state (e.g., from a method that


describes static correlation well)

IMSRG

reference
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Correlated Reference States

! MR-IMSRG(2)

. . . 

MR-IMSRG: build correlations on top of 

already correlated state (e.g., from a method that


describes static correlation well)

use generalized 
normal ordering with 

2B,… densities
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Factorized Interactions

• O(10) operators, O(100) particles, but O(108-1012) flow equations, 
basis dimension… there must be redundancy

• NN interaction: 5-10 SVD components (short range)

• Coulomb interaction: less well-behaved, but ~25-30 components 
sufficient (long range, no explicit scale)

VNN

VC

B. Zhu, R. Wirth, HH, PRC 104, 044002 (2021)
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Factorized Interactions

• NN interaction: free-space SRG evolution in component 
form (IMSRG not yet)
• (3N interaction added to produce realistic binding / radii)

• free-space SRG effort and storage reduced by several 
orders of magnitude

B. Zhu, R. Wirth, HH, PRC 104, 044002 (2021)
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Factorized Interactions

• implementing factorized SRG flow has no adverse affect 
on other observables / expectation values

B. Zhu, R. Wirth, HH, PRC 104, 044002 (2021)


