Recent progress on IMSRG calculations with 3-body operators

Matthias Heinz

European Research Council Established by the European Commissio

with Jan Hoppe, Takayuki Miyagi, Alexander Tichai, Ragnar Stroberg, Kai Hebeler, Achim Schwenk

Setting the stage...

Ab initio ingredients:

- Hamiltonian with 2B and 3B forces
- Systematically improvable many-body method

IMSRG:

- Polynomially scaling many-body method
- Open-shell systems via MR-IMSRG and VS-IMSRG
- Standard: truncate at IMSRG(2) level

Stroberg et al., PRL 126 (2021)

The problem: 2⁺ energy of calcium-48

- Success: Description of 2⁺ energies across isotopic chain
- Failure: Overprediction of closed-shell structure at calcium-48
- Can improvements in the IMSRG bring this down into better agreement with experiment and other theories?

The problem: 2⁺ energy of calcium-48

- Success: Description of 2⁺ energies across isotopic chain
- Failure: Overprediction of closed-shell structure at calcium-48
- Can improvements in the IMSRG bring this down into better agreement with experiment and other theories?

The IMSRG

• IMSRG generates unitary transformation of Hamiltonian

$$\frac{dH}{ds} = [\eta, H]$$

• Normal order with respect to $|\Phi\rangle$ approximately handles induced many-body forces

Tsukiyama et al., PRL **106** (2011) Hergert et al., Phys. Rep. 621 (2016)

initial Htransformed H

Hergert et al., Phys. Rep. **621** (2016)

The IMSRG

• IMSRG generates unitary transformation of Hamiltonian

$$\frac{dH}{ds} = [\eta, H]$$

• Normal order with respect to $|\Phi\rangle$ approximately handles induced many-body forces

Truncation necessary!

- More refined = **IMSRG(3)** ($N^7 N^9$)

Tsukiyama et al., PRL **106** (2011) Hergert et al., Phys. Rep. 621 (2016)

Standard = IMSRG(2) (2-particle excitations, scales like $(o + u)^6 \equiv N^6$) Heinz et al., PRC **103** (2021)

- Systematic expansion to exact result in some limit
- Probe many-body uncertainty by varying many-body truncation
- **IMSRG(3)** is a key ingredient here!

- Systematic expansion to exact result in some limit
- Probe many-body uncertainty by varying many-body truncation
- **IMSRG(3)** is a key ingredient here!

sion (ab	initio picture)
C(3)	Heinz et al., PRC 103 (2021)
RG(2)IMSRG(3)SDCCSDT	exact
	computational cost

The IMSRG(3) difference

The IMSRG(3) difference

Hirschegg 2023 - Jan. 16, 2023

Matthias Heinz (TU Darmstadt)

The IMSRG(3) difference

Hirschegg 2023 - Jan. 16, 2023

IMSRG(3) error ~150 keV

The technical details...

- Hamiltonian: EM 1.8/2.0
- NAT basis: $e_{\text{max}}^{\text{NAT}} = 16, E_{3\text{max}}^{\text{NAT}} = 22$
- Truncate to smaller e_{max} for IMSRG
- NO2B initial Hamiltonian
- Capture induced 3B interactions via IMSRG(3): $e_{max,3b}$, E_{3max}
- Employ IMSRG(3)-N' truncation

The technical details...

- Hamiltonian: EM 1.8/2.0
- NAT basis: $e_{\text{max}}^{\text{NAT}} = 16, E_{3\text{max}}^{\text{NAT}} = 22$
- Truncate to smaller e_{max} for IMSRG
- **NO2B** initial Hamiltonian
- Capture induced 3B interactions via IMSRG(3): $e_{max,3b}$, E_{3max}
- Employ IMSRG(3)-N' truncation

Pragmatic approach:

Work with converged IMSRG(2) and try to capture 3B effects at minimal computational cost

Goal: Converge 3B w.r.t. *e*_{max,3b}, *E*_{3max}

IMSRG(2) as a solid NO2B base

• NAT basis = efficient computational basis

> Tichai et al., PRL 99 (2019) Hoppe et al., PRC **103** (2021) Novario et al., PRC **102** (2020)

• New treatment of 3N forces in NO2B approximation allow large/no E_{3max} cut

> Miyagi et al., PRC **105** (2022) Hebeler et al., arXiv:2211.16262

(MeV)

Matthias Heinz (TU Darmstadt)

Matthias Heinz (TU Darmstadt)

• IMSRG(2) converged at $e_{\text{max}} = 10$

• Nice convergence in $E_{3\max}$

e_{max,3b} seems converged to ~100 keV

• Apparent consistency with Λ -CCSD(T)

Calcium-48: Not so easy...

- Slow convergence in $e_{max,3b}$ and E_{3max}
- $E_{3\max} \sim 3e_{\max,3b}$ seems to be required
 - Direction of IMSRG(3) corrections consistent with Λ -CCSD(T)

The VS-IMSRG

Hagino et al., Found. Chem. 22 (2020)

Matthias Heinz (TU Darmstadt)

Stroberg et al., PRL **118** (2017) Stroberg et al., ARNPS 69 (2019)

The VS-IMSRG

Hagino et al., Found. Chem. 22 (2020)

Matthias Heinz (TU Darmstadt)

Stroberg et al., PRL **118** (2017) Stroberg et al., ARNPS 69 (2019)

The VS-IMSRG

Hagino et al., Found. Chem. **22** (2020)

Stroberg et al., PRL **118** (2017) Stroberg et al., ARNPS 69 (2019)

Decouple core, valence, and outside spaces

 Obtain nucleus-dependent ab initio shell model Hamiltonian

• Can use existing shell model machinery

2⁺ energies of calcium-48

• VS-IMSRG(2) overestimates 2⁺ energy

• Does VS-IMSRG(3) solve the problem?

Matthias Heinz (TU Darmstadt)

VS-IMSRG(3) convergence: calcium-48

But slow convergence in *e*_{max,3b}

Corrections improve description of 2^+ energy

VS-IMSRG(3) convergence: calcium-48

Corrections improve description of 2^+ energy

But slow convergence in *e*_{max,3b}

 $e_{\max,3b}$, $E_{3\max}$ seem to be inefficient.

Investigate improved bases for 3-body operators Novario et al., PRC **102** (2020)

Hirschegg 2023 - Jan. 16, 2023

Conclusions and outlook

- Approaching realistic IMSRG(3) calculations of medium-mass nuclei
- Small corrections for ground-state energies; Larger corrections for 2^+ energies

- Further optimization needed (basis, numerical implementation)
- Impact of IMSRG(3) in **neutron-rich isotopes**?

14

Acknowledgments

Thanks to:

- Jan Hoppe, Takayuki Miyagi, Alex Tichai, Ragnar Stroberg, Kai Hebeler, Achim Schwenk
- TU Darmstadt "STRONGINT" group
- ORNL Nuclear Theory
- ... and all of you for your attention

Studienstiftung des deutschen Volkes

European Research Council

Established by the European Commission

