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Precision nuclear theory
The quantification of precision in ab initio nuclear modelling:  
Computations of 208Pb and the emergence of nuclear saturation in Δ-full 𝛘EFT



Precision

It is natural to strive for accuracy in theoretical  
modelling; but actual predictive power is  
rather associated with precision.

“The concept of tension in science relies on  
statements of uncertainties”

This presentation is about progress to 
quantify precision in nuclear theory



Outline
▸ Uncertainty Quantification for ab initio methods: 


▸ efforts and challenges

▸ highlight Bayesian linear methods; importance resampling



Recent UQ progress
Breakthroughs in

• effective field theory

• many-body methods

• Bayesian approaches

• emulator technology

• statistical learning

NN-scattering

I. Svensson et al PRC (2022)

S. B. S. Miller et al. 
(2022, arXiv)
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Few-nucleon systems

S. Wesolowski et al PRC (2021)
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T. Djärv et al PRC (2022)

in preparation

Predicting oxygens

68%-90% credibility regions

History matching

B. Hu et al Nature Physics (2022)

B. Hu et al Nature Physics (2022)

P. Maris et al arXiv (2022)

Truncation errors

S. R. Stroberg et al PRL (2021)

Bayesian linear regression



UQ FOR AB INITIO METHODS



▸ Data = 𝓓,  
Future data = 𝓕


▸ Ultimate goal:  
                


▸ Model checking / validation:  
                
                


▸ Experimental observations:  
where errors are random variables, e.g., 


▸ Often assume Gaussian errors: 

p(ℱ |𝒟, …everything we know/assume)

p(𝒟val |𝒟, …)
p(𝒟 |𝒟, …)

z + δz
Var[δzi] = σ2

exp,i

p(δz | I) = 𝒩(0,Σ)

Some terminology



▸ Theoretical modelling:  
with model parameters 𝛂


▸ Theoretical errors can have different origin; The inclusion of 
relevant errors is a prerequisite for precision theory: 




▸ Hard-to-compute models: 😡(𝛂)


▸ … might be emulated / designed at low fidelity 
😡 😀  + 


▸ Note: there might be an 𝛂-dependence in the errors.

y(α) + δy

δy = δyth,source1 + δyth,source2 + …

y

y → ỹ δỹ

Theoretical models



▸ Apply Bayes’ theorem

Learning from data via Bayes

▸ The prior encodes our knowledge about parameter values before analyzing the data


▸ The likelihood is the probability of observing the data given a set of parameters


▸ The marginal likelihood (or model evidence) provides normalization of the posterior.


▸ The posterior is the inferred probability density for the parameters.

Posterior
Likelihood Prior

Marginal likelihood

p(α |𝒟, I) =
p(𝒟 |α, I) ⋅ p(α | I)

p(𝒟 | I)

{y(α) : α ∼ p(α |𝒟, I)}

▸ Predictions for “future” data, modeled with y(𝜶), are described by the 
posterior predictive distribution (ppd)

▸ We will also introduce full ppd:s {y(α) + δy : α ∼ p(α |𝒟, I), δy ∼ p(δy)}



Low-energy 
constants = 
Parameters

A. Ekström, et al. Phys. Rev C 97, 024332 (2018)
W. Jiang, et al. Phys Rev C 102, 054301 (2020)

parameters inferred from data. 
— parametric uncertainty


EFT expansion truncated 
— model/truncation error


many-body solver relies on 
approximations:  
— many-body error

Ab initio modeling of nuclear systems using chiral EFT
EFT promises a connection with QCDχ

Weinberg, van Kolck, Kaiser, Bernard,  
Meißner, Epelbaum, Machleidt, Entem, …


Ĥ |ψi⟩ = Ei |ψi⟩

Ĥ(α) = ̂T + ̂V(α)



Challenge #1: Getting to know your errors
▸ EFT truncation errors


▸ Approach: study order-by-order results and learn the PDF for expansion coefficients  

,     

(see Dick’s talk)


▸ Challenges: Cutoff dependence, expansion parameter, irregular convergence, 
correlation structure (e.g., are EFT errors for E(A), rp(A) correlated?),

yk = yref

k

∑
n=0

cnQn δyk = yref

∞

∑
n=k+1

cnQn

T. Djärv et al PRC (2022)



Challenge #1: Getting to know your errors
▸ EFT truncation errors


▸ Approach: study order-by-order results and learn the expansion coefficients 
(see Dick’s talk)


▸ Challenges: Cutoff dependence, irregular convergence, correlation 
structure (e.g., are EFT errors for E(A), rp(A) correlated?)


▸ Many-body errors


▸ Approach: Convergence studies; Method comparisons; 


▸ Note: We can incorporate “uncertain” extrapolation, 


▸ Challenges: Some approximations might be very difficult to relax; Non-
variational observables/approaches


▸ Emulator errors


▸ Approach: Cross-validation, EC offers rapid convergence with 


▸ Challenges: Outliers. EC convergence (Sarkar and Lee)

𝔼[δyMB] ≠ 0

Nsub

W. Jiang et al (2212.13216)



Challenge #2: A PDF is more than just a mean and a variance
▸ A PDFs is not uniquely defined by its mean and variance! Consider also 

covariances (dependencies) and functional forms.


▸ Marginalization over nuisance parameters (such as the EFT breakdown 
scale) tends to introduce heavier tails.


▸ Still, Bayesian linear methods (only means and variances) can be very 
useful


▸ Easier to claim non-implausibility than 
to quantify likelihood 

   versus    


▸ Define implausibility measure  
(using only means and variances)


▸ Idea of History Matching:  
Iteratively remove regions with 

ΘNI(α) p(𝓓 |α, I) ≡ ℒ(α)

ΘNI(α) = 0



Challenge #3: Sampling without tears
▸ MCMC sampling is costly; 


▸ might appear unsurmountable when involving costly models


▸ Random walks suffer from correlated samples  wasted CPU-h


▸ If possible, try Hamiltonian Monte Carlo (see Andreas’ talk)


▸ Bayesian updating: 


▸ Importance resampling  
[Jiang and Forssén (2210.02507), Rubin (1988), Smith and Gelfand (1971)]

⇒

p(α |𝒟1, 𝒟2, I) ≈ Np(𝒟2 |α, I)p(α |𝒟1, I)

{αi} ∼ π(α) {α*i } ∼ p(α |𝒟, I)qi ∝
p(αi |𝒟, I)

π(αi)



EMERGENCE OF NUCLEAR SATURATION



Emergence of nuclear saturation within Δ − χEFT

▸  with explicit  isobar. 


▸ Extensive error model  
(EFT truncation, method convergence, finite-size errors).


▸ Iterative history-matching for global parameter search. Study ab initio 
model performance, and provide a large (>106) number of non-
implausible samples.


▸ Implausibility criterion involves only  observables.


▸ Bayesian posterior predictive distributions for nuclear matter 
properties.


▸ Importance resampling with two different data sets:  
  and  


▸ Relies on sub-space projected coupled cluster (SP-CCD) emulators for 
infinite nuclear matter systems at different densities.

χEFT Δ

A ≤ 4

𝒟A=2,3,4 𝒟A=2,3,4,16



History-matching: iterative parameter volume reduction
History matching: 
 
I. Vernon, et al. (Bayesian Anal., 
2010) 


I. Vernon, et al. (BMC Systems 
Biology, 2018)


B. Hu et al. (Nature Phys., 2022)

I2
M(α) ≡ max

zi∈𝒵

𝔼 [ f̃i(α)] − zi
2

Var [ f̃i(α) − zi]

IM(α) > cM



Infinite nuclear matter: computational approach

‣ Discrete momentum basis states 
  


‣ Cubic lattice in momentum space, 



‣ , with 


‣ Results should converge with 
increasing 

ψk(x) ∝ eikx

(kx, ky, kz)

kn =
2πn
L

n = 0, ± 1, ± 2,… ± nmax

nmax

‣ Periodic boundary conditions 
  ψk(x + L) = ψk(x)

‣ The box size (L) and the nucleon 
number (N) controls the density ( )


‣ Computational challenge ( ):


‣ PNM: 1458 orbits with 66 neutrons


‣ SNM: 2916 orbits with 132 nucleons 

ρ

nmax = 4



SPCC nuclear-matter emulators (1-dim example)

|Ψ(α⊚)⟩ = eT(α⊚)) |Φ0⟩ ≈
Nsub

∑
i=1

c⋆
i |Ψi⟩



Small-batch voting

4

In order to construct the sub-space projected target
Hamiltonian H(~↵}) we solve for the left and right CC
ground-states for a set of Nsub training Hamiltonians
H(~↵1), · · · , H(~↵Nsub), and subsequently project H(~↵})
and the identity matrix onto this sub-space giving,

he 0|H(~↵})| i= h�0|(1 + ⇤0)eXH(~↵})|�0i, (4)

he 0| i= h�0|(1 + ⇤0)eX |�0i, (5)

where eX = e
�T 0

+T . With Eqs. (4) and (5) one can easily
acquire the ground-state energy for the nuclear matter
system by solving a Nsub ⇥ Nsub generalized eigenvalue
problem. Note that the Nsub subspace vectors should not
be linear dependent to avoid numerical instability when
solving the generalized eigenvalue problem.

Another important aspect of the SPCC method is to
select an appropriate set of training points ~↵ to construct
the subspace. Recall that�NNLO has 17 di↵erent LECs,
thus we are trying to pick a series of LECs from a 17-
dimensional hyperspace. To ensure the selected vectors
are a good representation of the hyperspace, we first ap-
ply history matching to restrict the LECs ranges and
then use Latin hypercube sampling within this domain
to generate both the training points ~↵1, · · · , ~↵Nsub and
the target LECs ~↵}. This choice of ~↵ is reasonable since
the SPCC emulator is expected to be more accurate when
the target point is close to the training points. More de-
tails about the history matching procedure can be found
in Sec. II E. The training vectors used in this work are
shown in Fig. 1. It can be seen that the subspace train-
ing vectors still cover a very broad LECs range after five
waves of history matching iteration.

B. Emulators for a single LEC

Fig. 2 shows the calculated energy per neutron (E/N)
and energy per nucleon (E/A) for PNM and SNM, re-
spectively. The SPCC predictions using three or five
subspace vectors are compared with full space CCD re-
sults for a wide range of the low-energy constant C1S0

(the remaining LECs are kept fixed). As we can see, us-
ing Nsub = 5 training points chosen in a small region,
the SPCC method already accurately reproduces the full
space CCD calculations over a large range for the C1S0

LEC. As expected, if we reduce the number of training
points to Nsub = 3, the SPCC predictions of SNM start
to deviate more from the exact solutions in the case of
large exptrapolations, while the predictions for PNM still
remain precise over the whole range considered. For this
test case we used only 14 (28) neutrons (nucleons) for
PNM and SNM, respectively.

C. Small-batch voting

When building the SPCC emulator for symmetric nu-
clear matter and pure neutron matter calculations using

132 nucleons and 66 neutrons, respectively, one su↵ers
from a persistent spurious state problem. We find that
there are multiple eigenstates of the Nsub ⇥ Nsub ma-
trix that have much lower eigenvalues than the corre-
sponding full-space CCD result. The interpretation of
these spurious states is not clear, but we consider them
to be unphysical and would like to remove them from
the spectrum. The exact reason for the appearance of
these states is not yet fully understood, but is a conse-
quence of several factors: (i) the SPCC Hamiltonian is by
construction non-Hermitian and the variational theorem
does not apply; (ii) for increasing number of nucleons
(132 nucleons and 66 neutrons in our case) the level den-
sity increases which more easily leads to the occurence
of these states, and (iii) the approximate treatment of
the left-state might not be appropriate for certain LEC
combinations for which the interaction become less per-
turbative.

Recall that CC theory fulfills a bivariational theorem
and the physical solution is a stationary point with re-
spect to variations of the CC amplitudes. Whether the
bivariational property of CC theory also holds for the
SPCC remains to be shown, but it is reasonable to as-
sume that it holds as long as the subspace is su�ciently
large. In this section we will show how we can use the
bivariational property to e�ciently identify the physical
solution within the SPCC spectrum using a method we
call small-batch voting.

FIG. 3. (Color online) Relative errors between SPCC pre-
dictions and exact CCD calculations for PNM (top) and
SNM(bottom). (a), (b): without small-batch voting. (c),
(d): with small-batch voting.

Fig. 3(a)(b) illustrates the relative errors (ESPCC �
ECCD)/|ECCD| between emulator predictions and exact
CCD calculations with 66 (132) neutrons (nucleons). The
emulator predictions are chosen as the SPCC state with

SPCC
SPCC with  

small-batch voting



 non-implausible samples
1.6 × 106

Correlation study
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FIG. 4. (Color online) Predicted mean (blue lines) and 95%
confidence interval (light blue regions) for energy per neu-
tron/particle using GP and compared with predictions of
quadratic spline. The hyperparameters of the GP are given
by l = 0.25 fm�3 and � = 100. The black diamonds denote
the training data (SPCC calculations with �NNLOGO(394)
interaction) of the GP.

symmetric nuclear matter around the saturation point.
Ideally one would like to include the density ⇢ parame-
ter in the eigenvector continuation scheme and build an
emulator that works for di↵erent LECs and at arbitrary
densities. However, changing the density leads to di↵er-
ent discretizations of the momentum space lattice and
one would therefore need to work out matrix elements
connecting di↵erent reference states and lattices.

Fortunately, we are not completely ignorant about the
properties of the EOS of nuclear matter. The E(⇢)/N
(E(⇢)/A) should be continuous smooth curve when ⇢

changes. Namely, the energies per nucleon at di↵er-
ent densities are correlated and we do not need many
points to obtain su�cient information about the EOS.
In this work, we construct SPCC emulators for both
PNM and SNM at five di↵erent densities ranging from
0.12 to 0.20 fm�3. We choose to study this density re-
gion simply because the empirical saturation density is
around 0.16 fm�3 [11, 95]. The nuclear matter EOS is
then obtained at di↵erent densities within this range by
using Gaussian processes (GP) [96] as the interpolation
method. We choose the radial basis function (RBF) as
the correlation function to ensure the smoothness of the
EOS. The hyperparameter (correlation length l) of the
GP is learned from a validation data set which contains
50 interaction samples that are generated by the same
history matching process mentioned in Sec. II C. The

PNM and SNM correlation lengths studied from the val-
idation set are 0.297 fm�3 and 0.259 fm�3, respectively.
We take a more conservative value l = 0.25 fm�3 for both
PNM and SNM in this work so that we do not overesti-
mate the correlation between di↵erent densities.

Figure 4 shows the GP predictions for the EOS of PNM
and SNM (using the �NNLOGO(394) interaction [43])
compared to the results obtained using spline interpola-
tion. We observe that the performance of both meth-
ods is equally good within the interpolation region. The
major advantage of using GP instead of simple poly-
nomial interpolation is that it is infinitely di↵erentiable
under the RBF kernel thus observables such as L and
K can easily be evaluated. For a given interaction
that has a saturation point within the density range
⇢ 2 [0.12, 0.20] fm�3 we can thereby extract all satura-
tion properties from the specified Gaussian process and
its derivative (first and second).

E. History matching

In this work we use an iterative history matching ap-
proach [44, 60–62] with selected experimental data to
study and reduce the huge parameter space of our �EFT
interaction model. For each wave of history matching we
need to establish a quantitative criterion that determines
if a parametrization ~↵ yields acceptable (or at least not
implausible) model predictions when confronted with the
selected set of observations Z. We introduce the individ-
ual implausibility measure

I
2

i (~↵) =
|Mi(~↵)� zi|2

Var (Mi(~↵)� zi)
, (7)

which includes the squared di↵erence between the model
prediction Mi(~↵) and the observation zi for observable
i from the target set Z. The total variance in the de-
nominator of Eq. (7) assumes independent errors and is
therefore a sum of variances that in our case includes ex-
perimental, model, method, and emulator errors. Unless
di↵erently specified we use the maximum of the individ-
ual implausibility measures to define the constraint

IM (~↵) ⌘ max
zi2Z

Ii(~↵)  cI , (8)

where the default choice is cI ⌘ 3.0 inspired by Pukel-
heim’s three-sigma rule [97].

History matching proceeds by reducing the parame-
ter space iteratively. In each wave one removes regions
that are deemed implausible by failing the constraint in
Eq. (8) . A visualization of this process is shown in
Fig. 5. We first use a space-filling design such as Latin
Hypercube Sampling to generate well-spaced interaction
samples in the input parameter domain. Then we use
fast modeling or emulation to compute the implausibil-
ity measures and apply the maximum implausibility con-
straint. The remaining non-implausible interaction sam-
ples are kept and defines the non-implausible region for



Bayesian machine-learning error model(s)

z = ỹ(α) + δyEFT + δymethod + δỹem + δyexp

εκ(ρ) | c̄2
κ, lκ, ∼ GP[μκ(ρ), c̄2

κRκ(ρ, ρ′￼; lκ)],

11

with the former then used as reference scale. For the
emulator error we found lemu,PNM = 0.38 fm�1 for PNM
and lemu,SNM = 0.25 fm�1 for SNM. We take the mean
function µemu = 0 and c̄emu = 0.02 for both PNM and
SNM. Note that the cross-covariance matrices are set to
be K12 = 0 for both method error and emulator error
assuming no correlations between PNM and SNM.

FIG. 8. (Color online) The EOS for PNM (top) and SNM
(bottom) calculated for one representative interaction with
the nuclear matter emulators (open squares) plus the mean
value of the method error (solid squares). The bands indi-
cate two standard deviations of the truncation error (green),
method error (blue) and emulator error (pink) from the GP
error models described in the text. The errors at di↵erent
densities are correlated as illustrated by three random sam-
ples shown by dashed curves. Correlations extend between
PNM and SNM (sampled error curves in the same colour).

The full posterior predictive distribution (PPD) for
nuclear matter observables, incorporating all relevant
sources of uncertainty, can be sampled according to
Eq. (9). In particular, it becomes straightforward to
sample the error terms from the corresponding covari-
ance matrices once the multitask GPs are determined.
This task is e�ciently performed using

" = Lx, (19)

with L being the Cholesky decomposition of the cross
covariance matrix K (K = LL

T) and x a standard nor-
mal random vector. Note that we emulate results at
five densities for both PNM and SNM. Thus " is a 10-
dimensional vector and the cross covariance is a 10⇥ 10
matrix. This sampling procedure is crucial for gener-
ating the PPD of nuclear matter observables. The em-
ulator predictions for the nuclear matter EOS and the
corresponding 2� (95%) credible interval for errors are

illustrated in Fig. 8. Three randomly sampled EOS pre-
dictions are also shown and one should note that the
multitask GPs guarantee that the sampled EOS of PNM
and SNM are smooth and properly correlated with each
other. From this figure it is also clear that the method
error for PNM is quite small. This can be understood
since both finite-size e↵ects and CC correlation energies
are small for PNM.

III. HISTORY MATCHING ANALYSIS

The tremendous computational speed-up gained by
our novel nuclear-matter emulators allows to perform a
detailed statistical analysis of observable predictions us-
ing the �EFT model. The results shown here represent
the interaction model described in Sec. II and are ob-
tained with the SPCC emulator for infinite nuclear mat-
ter from Sec. IIA. In this particular analysis we don’t
perform a full sampling of the error model outlined in
Sec. II F but only include the mean shift of the EOS for
SNM that is expected from triples corrections.

As a first step of this analysis we apply the history
matching procedure as described in Sec. II E with five
waves of global parameter search to iteratively reduce
the LEC domain. The history-matching is performed us-
ing neutron-proton phase shifts in S- and P -waves plus
few-body (A = 2-4) bound-state observables in the tar-
get sets. This selection of target data is representative
of what could have been considered when seeking an op-
timal interaction model. However, the aim of our ap-
proach is fundamentally di↵erent. Rather than seek-
ing a single optimum, we consider all non-implausible
parametrizations in order to make a comprehensive study
of the behaviour of our model. Furthermore, we consider
much simpler linearised probability distributions, with
just mean values and variances as specifiers, to identify
the interesting parameter domain. Finally, we simply di-
vide the parameter space into implausible or non implau-
sible. All samples from the latter domain are included in
this part of the analysis without any weighting.

In the final wave, we generated 1 ⇥ 109 samples using
using Latin hypercube sampling from the domain that
was determined at the end of wave 4. Then we confronted
the model predictions with the six A = 2-4 observables
and found 1.6⇥ 106 non-implausible ones. At this point,
we did not see any need to make another wave since there
were no signs of further reducing the parameter domain
thus the 1.6 ⇥ 106 samples are a good representative of
all non-implausible interactions.

Predictions for di↵erent few-body observables are
shown in Fig. 9. Here we compare model predictions
made with the 1⇥ 109 random samples generated at the
start of wave 5 (hashed histograms) with the results ob-
tained with the 1.6 ⇥ 106 samples that survive the im-
plausibility constraint. As we can see the predictions
with the random samples are characterized by a very
large variance. Clearly, the 17 dimensional LEC domain
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mal random vector. Note that we emulate results at
five densities for both PNM and SNM. Thus " is a 10-
dimensional vector and the cross covariance is a 10⇥ 10
matrix. This sampling procedure is crucial for gener-
ating the PPD of nuclear matter observables. The em-
ulator predictions for the nuclear matter EOS and the
corresponding 2� (95%) credible interval for errors are

illustrated in Fig. 8. Three randomly sampled EOS pre-
dictions are also shown and one should note that the
multitask GPs guarantee that the sampled EOS of PNM
and SNM are smooth and properly correlated with each
other. From this figure it is also clear that the method
error for PNM is quite small. This can be understood
since both finite-size e↵ects and CC correlation energies
are small for PNM.

III. HISTORY MATCHING ANALYSIS

The tremendous computational speed-up gained by
our novel nuclear-matter emulators allows to perform a
detailed statistical analysis of observable predictions us-
ing the �EFT model. The results shown here represent
the interaction model described in Sec. II and are ob-
tained with the SPCC emulator for infinite nuclear mat-
ter from Sec. IIA. In this particular analysis we don’t
perform a full sampling of the error model outlined in
Sec. II F but only include the mean shift of the EOS for
SNM that is expected from triples corrections.
As a first step of this analysis we apply the history

matching procedure as described in Sec. II E with five
waves of global parameter search to iteratively reduce
the LEC domain. The history-matching is performed us-
ing neutron-proton phase shifts in S- and P -waves plus
few-body (A = 2-4) bound-state observables in the tar-
get sets. This selection of target data is representative
of what could have been considered when seeking an op-
timal interaction model. However, the aim of our ap-
proach is fundamentally di↵erent. Rather than seek-
ing a single optimum, we consider all non-implausible
parametrizations in order to make a comprehensive study
of the behaviour of our model. Furthermore, we consider
much simpler linearised probability distributions, with
just mean values and variances as specifiers, to identify
the interesting parameter domain. Finally, we simply di-
vide the parameter space into implausible or non implau-
sible. All samples from the latter domain are included in
this part of the analysis without any weighting.
In the final wave, we generated 1 ⇥ 109 samples using

using Latin hypercube sampling from the domain that
was determined at the end of wave 4. Then we confronted
the model predictions with the six A = 2-4 observables
and found 1.6⇥ 106 non-implausible ones. At this point,
we did not see any need to make another wave since there
were no signs of further reducing the parameter domain
thus the 1.6 ⇥ 106 samples are a good representative of
all non-implausible interactions.
Predictions for di↵erent few-body observables are

shown in Fig. 9. Here we compare model predictions
made with the 1⇥ 109 random samples generated at the
start of wave 5 (hashed histograms) with the results ob-
tained with the 1.6 ⇥ 106 samples that survive the im-
plausibility constraint. As we can see the predictions
with the random samples are characterized by a very
large variance. Clearly, the 17 dimensional LEC domain

See C. Drischler et al (2020)



Bayesian PPD

p(E(ρ)/{A, N} |𝒟A=2,3,4,16, I)



208PB NEUTRON SKIN



2021

Trend of realistic ab initio computations

B. Hu et al (Nature Phys. 2022)


See Takayuki’s talk



Ab initio modeling of nuclei and nuclear matter with Δ − χEFT

▸  with explicit  isobar (higher breakdown scale)


▸ Extensive error model (EFT truncation, method 
convergence, finite-size errors).


▸ Iterative history-matching for global parameter 
search. Study ab initio model performance, and 
provide a finite number of non-implausible samples.


▸ Bayesian posterior predictive distributions for nuclear 
observables up to 208Pb and for infinite nuclear matter 
properties.

χEFT Δ



Trend of realistic ab initio computations
We start from a NNLO(394) chiral Hamiltonian. Order by order results provide estimates of 
the model errors. Pion-nucleon couplings are from a Roy-Steiner analysis.


Approximately solve the Schrödinger equation in HF basis using Coupled-Cluster, IMSRG, and 
MBPT methods. Comparisons and domain knowledge provide estimates of the method errors. 

3NFs are captured using the NO2B approx. Large emax & E3max spaces (14 & 28 in lead-208) 
yield near model-space convergence. For lead-208: IR extrapolation adds only ~2% to the skin 
thickness and ~6% to the energy. 
 
EC-emulators for observables with  . Validated and trusted to within 0.5%


 
Nuclear matter computed using CCD(T) with estimates of the method error from systematics. 
Conflated with estimates for the model error using a multitask Gaussian Process.

Δ

A ≤ 16

M. Hoferichter et al, Phys. Rev. Lett. 115, 192301 (2015)

W. Jiang, et al. Phys Rev C 102, 054301 (2020)
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See Takayuki’s talk



Ab initio predictions link the skin of lead-208 to nuclear forces 

History Matching

Calibration

Validation

Prediction: small skin thickness 0.14-0.20 fm 
in mild (1.5 sigma) tension with PREX.

Electroweak 
Hadronic 

Electromagnetic 
Gravitational Waves

Importance resampling

Inspect ab initio model  
and error estimates

Find 34 non-implausible 
interactions

Confronted with A=2-16 
data + NN scattering 
information

We explore 109 
different interaction 
parameterizations

B. Hu et al (Nature Phys. 2022)



Neutron skin thickness
Constraints on Nuclear Symmetry Energy Parameters

J. Lattimer (2023)

B. Hu et al (Nature Phys. 2022)
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Why does ab initio predict thin skins?
▸ Tune C1S0 while adjusting cE to maintain saturation


▸ Study the effect on various observables. Note L & δ1S0(50)



Electric and weak form factors
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B. Hu et al (Nature Phys. 2022)



▸ “The concept of tension relies on statements of uncertainties”


▸ It is natural to strive for accuracy in theoretical modelling; but actual 
predictive power is more associated with quantified precision.


▸ Opportunity: Bayesian statistical methods in combination with fast & 
accurate emulators is enabling precision nuclear theory. 


▸ We have developed a unified ab initio framework to link the physics 
of nucleon–nucleon scattering, few-nucleon systems, medium- and 
heavy-mass nuclei up to lead-208, and the nuclear-matter equation of 
state near saturation density.


▸ Challenge: Get to know your uncertainties; sampling.

Summary and outlook


