Nuclear DFT as an effective theory

" Start And And Start

Jacek Dobaczewski University of York & University of Warsaw Hirschegg 2023 - Effective field theories for nuclei and nuclear matter Hirschegg, Austria, 15–21 January 2023

391

Jacek Dobaczewski

UNIVERSITY of York

In collaboration with

- Jérémy Bonnard, Markus Kortelainen, Gauthier Danneaux
- Gianluca Salvioni, Carlo Barbieri, Gillis Carlsson, Andrea Idini, Alessandro Pastore
- Karim Bennaceur, Francesco Raimondi

Jacek Dobaczewski

Outline

- 1. Effective theory by Lepage
- 2. Introduction to DFT
- 3. LDA vs. generator functionals
- 4. *Ab-initio*-derived Skyrme functional
- 5. Regularized finite-range pseudopotentials as functional generators
- 6. Gogny-equivalent regularized NⁿLO density functional
- 7. Density-independent N²LO density functional
- 8. Density-dependent N³LO density functional
- 9. Conclusions

Jacek Dobaczewski

Hydrogen atom perturbed near the center

Relative errors in the Swave binding energies are plotted versus: (i) the binding energy for the Coulomb theory (ii) the Coulomb theory augmented with a delta function in first-order perturbation theory (iii) the non-perturbative effective theory through a², and (iv) the effective theory through a⁴.

Jacek Dobaczewski

What is DFT?

Density Functional Theory:

A variational method that uses observables as variational parameters.

 $egin{array}{rcl} \delta \langle \hat{H} & - & \lambda \hat{Q}
angle = 0 \ & \Downarrow \ E & = & E(Q) \end{array}$

Levy–Lieb constrained variation Phys. Rev. A26, 1200 (1982), Int. J. Quantum Chem. 24, 243 (1983)

for $E(\lambda) \equiv \langle \hat{H} \rangle$ and $Q(\lambda) \equiv \langle \hat{Q} \rangle$

Jacek Dobaczewski UNIVERSITY

Which DFT?

$$\delta \langle \hat{H} - \lambda \hat{Q}
angle = 0 \implies E = E(Q)$$

$$\delta \langle \hat{H} - \sum_k \lambda_k \hat{Q}_k
angle = 0 \implies E = E(Q_k)$$

$$\delta \langle \hat{H} - \int \! \mathrm{d} q \, \lambda(q) \hat{Q}(q)
angle = 0 \implies E = E[Q(q)]$$

$$egin{aligned} \delta \langle \hat{H} - \int & \mathrm{d}ec{r} \,\lambda(ec{r}) \hat{
ho}(ec{r})
angle = 0 \implies E = E[
ho(ec{r})] \ & \mathrm{for} \quad \hat{
ho}(ec{r}) \ = \ \sum_{i=1}^A \delta(ec{r} - ec{r_i}) \end{aligned}$$

$$\delta \langle \hat{H} - \int \!\!\!\int \!\!\!\mathrm{d}ec{r} \mathrm{d}ec{r}' \,\lambda(ec{r},ec{r}') \hat{
ho}(ec{r},ec{r}')
angle = 0 \implies E = E[
ho(ec{r},ec{r}')]$$

UNIVERSITY of York

Jacek Dobaczewski

$\begin{array}{c} LDA \\ E^{dir} = \int d^{3}r \\ E^{dir} = \int d^{3}r \\ E^{exc} = \int d^{3}r \\ E^{pair} = \int d^{3}r \\ \mathcal{H}^{pain} \\ \mathcal{H}^{pain} \end{array} \begin{pmatrix} \rho(r), \tilde{\rho}(r) \\ \rho(r), \tilde{\rho}(r) \end{pmatrix} \\ \begin{array}{c} E^{dir} = \int d^{3}r_{1}d^{3}r_{2} \rho(r_{1}) \\ E^{exc} = \int d^{3}r_{1}d^{3}r_{2} \rho(r_{1}, r_{2}) \\ \mathcal{O}(r_{1} - r_{2}) \\ \mathcal{O}(r_{1} - r_{2}) \\ \mathcal{O}(r_{2}, r_{1}) \\ \mathcal{O}(r_{1} - r_{2}) \\ \mathcal{O}(r_{1} - r_{2}) \\ \mathcal{O}(r_{2}, r_{1}) \\ \mathcal{O}(r_{2}, r_{1}) \\ \mathcal{O}(r_{2}, r_{2}) \\ \mathcal{O}(r_{2}, r_{2$

	LDA	Generator
E	-	-
(Q)RPA, ATDHF(B)	-	•
AMP, PNP, GCM	×	-
1B spectroscopic observables	-	-
MB spectroscopic observables	×	-
Odd & odd-odd nuclei	×	•

Jacek Dobaczewski

UNIVERSITY of fork

Heavy deformed **π11/2**⁻ odd-Z nuclei

Spectroscopic quadrupole moment Q (eb)

Heavy deformed **π11/2**⁻ odd-Z nuclei

AMP rotational band

Jacek Dobaczewski

UNIVERSITY of

*Ab-initio-*derived Skyrme functional

Jacek Dobaczewski

Ab-initio-derived Skyrme functional

Jacek Dobaczewski

UNIVERSITY of York

UK Research and Innovation

Science & Technology Facilities Council

Regularized finite-range pseudopotentials as functional generators

Jacek Dobaczewski

Regularized finite-range pseudopotentials

We regularize the zero-range delta interaction using the Gaussian function,

$$\delta(ec{r}) = \lim_{a o 0} g_a(ec{r}) = \lim_{a o 0} rac{e^{-rac{ec{r}^2}{a^2}}}{\left(a\sqrt{\pi}
ight)^3}.$$

Then, the resulting central two-body regularized pseudopotential reads,

$$V(ec{r_1}ec{r_2};ec{r'_1}ec{r'_2}) = \sum\limits_{i=1}^4 \hat{P}_i \hat{O}_i(ec{k}\,',ec{k}) \delta(ec{r_1}-ec{r'_1}) \delta(ec{r_2}-ec{r'_2}) g_a(ec{r_1}-ec{r_2}),$$

where $\vec{k} = \frac{1}{2i}(\vec{\nabla}_1 - \vec{\nabla}_2)$ and $\vec{k}' = \frac{1}{2i}(\vec{\nabla}_1' - \vec{\nabla}_2')$ are the standard relativemomentum operators, and the Wigner, Bartlett, Heisenberg, and Majorana terms are given by the standard spin and isospin exchange operators, $\hat{P}_1 \equiv 1, \ \hat{P}_2 \equiv \hat{P}_{\sigma}, \ \hat{P}_3 \equiv -\hat{P}_{\tau}, \ \hat{P}_4 \equiv -\hat{P}_{\sigma}\hat{P}_{\tau}.$

To give a specific example, up to the second-order, that is, up to the next-to-leading-order (NLO) expansion, operators $\hat{O}_i(\vec{k}\,',\vec{k})$ read

$$\hat{O}_i(ec{k}\,',ec{k}) = T_0^{(i)} + rac{1}{2} T_1^{(i)} \left(ec{k'}^{*\,2} + ec{k}^2
ight) + T_2^{(i)} ec{k'}^{*\,\cdot\,ec{k}},$$

where $T_k^{(i)}$ are the channel-dependent coupling constants.

Jacek Dobaczewski UNIVERSITY of York

^{16/34} Regularized finite-range pseudopotentials, the general case

 $V(ec{r_1}ec{r_2};ec{r_1'}ec{r_2}';ec{r_1'}ec{r_2'}) = \sum_{i=1}^4 \hat{P}_i \hat{O}_i(ec{k}\,',ec{k}) \delta(ec{r_1}-ec{r_1}\,') \delta(ec{r_2}-ec{r_2}\,') g_a(ec{r_1}-ec{r_2}),$

$$\hat{O}_i(ec{k}\,',ec{k}) \;=\; \sum_{nj} T_j^{(ni)} \hat{O}_j^{(n)}(ec{k}\,',ec{k})$$

Differential operators $\hat{O}_{j}^{(n)}(k',k)$ are scalar polynomial functions of two vectors, so owing to the Generalized Cayley-Hamilton theorem, they must be polynomials of three elementary scalars: k^2 , k'^2 , and $k' \cdot k$, or

$$\hat{T}_1 \;=\; rac{1}{2}(k'^{*2}+k^2), \quad \hat{T}_2 = k'^* \cdot k, \quad \hat{T}_3 = rac{1}{2}(k'^{*2}-k^2),$$

with the condition that only even powers of \hat{T}_3 can appear. In terms of \hat{T}_1 , \hat{T}_2 , and \hat{T}_3 , we now can define the following differential operators:

Gogny-equivalent regularized NⁿLO density functional

Jacek Dobaczewski

Regularized pseudopotentials vs. Gogny

Jacek Dobaczewski

UNIVERSITY of York

Coupling constants of the regularized pseudopotentials

Order of expansion 2n

Jacek Dobaczewski

UK Research and Innovation

39, 125103 (2012) Ċ K. Bennaceur, F. Raimondi, J. Phys. J.D.

Density-independent N²LO density functional with pairing

Jacek Dobaczewski

Ground-state energies at a = 1.15 fm

Jacek Dobaczewski

UK Research

and Innovation

Science & Technology Facilities Council

Ground-state energies at a = 1.15 fm

Jacek Dobaczewski

UK Research and Innovation

G: Nucl. Part. Phys. 44 (2017) 045106

Bennaceur et al., J. Phys.

Single-particle energies in ²⁰⁸Pb

Jacek Dobaczewski

UK Research and Innovation

44 (2017) 045106 G: Nucl. Part. Phys. Bennaceur et al., J. Phys. X.

Density-dependent N³LO density functional with pairing

Jacek Dobaczewski

Deformation energies at m*/m = 0.85

UNIVERSITY of York

UK Research and Innovation

47 (2020) 105101

Nucl. Part. Phys.

Ü

Phys.

Bennaceur et al.,

Single-particle energies at m*/m = 0.70 & 0.85

Jacek Dobaczewski

UK Research and Innovation

(2020) 105101

47

Phys.

Part.

Nucl.

Ü

J. Phys.

Bennaceur et al.,

 \mathbf{M}

Conclusions

- 1. Nuclear density functionals are presently used in two forms:
 - Local-Density-Approximation (LDA) form does not allow for meaningful symmetry-restoration or multi-reference applications..
 - Generator-based form does.
 - In practice, hybrid forms are used.
- 2. Most current ab initio derivations of nuclear density functionals lead to an LDA form.
- **3.** The separation of scales between the variability of density and range of the generators allows us to apply the ideas of effective theory to nuclear DFT.
- 4. A series of regularized higher-order pseudopotentials realises the effective-theory expansion..
- 5. Three-body generators are mandatory, see Bennaceur's talk on semi-contact interaction.

Jacek Dobaczewski

Thank you

Jacek Dobaczewski

