Neutrinoless double-beta decay from an effective field theory for heavy nuclei

Catharina Brase

Institut für Kernphysik, TU Darmstadt

Wednesday 18th January, 2023

0 uetaeta decay

- * lepton-number violation: no u-emission
 - \rightarrow insights to matter and anti-matter asymmetry
- ν : neutral and massive
 - \rightarrow Majorana ($\nu = \overline{\nu}$) or Dirac ($\nu \neq \overline{\nu}$) particles?
- Standard Model: lepton-number conservation
 → BSM physics

- * mechanism(s) governing $0\nu\beta\beta$ decay
- mass hierarchy of neutrinos

answering these questions can be hindered by uncertainty of NMEs

Motivation: experimental side

Engel and Menéndez, Rep. Prog. Phys. 80, 046301 (2017)

- phenomenological calculations for medium-mass or heavy nuclei
- top: deviation up to factor of three
- bottom translation: up to an order of magnitude in half-life
- experiment: half-life ~ required material

large NME uncertainty:

- severe consequences for planning experiments
- current uncertainty estimation: variation of model parameters

reliable uncertainty quantification \rightarrow EFT for medium-mass and heavy nuclei

Effective Field Theory for heavy nuclei

Coello Pérez and Papenbrock Phys. Rev. C 92, 014323 (2015), Coello Pérez and Papenbrock Phys. Rev. C 92, 064309 (2015), Coello Pérez, Menéndez and Schwenk, Phys. Rev. C 98, 045501 (2018)

> phonon (quadrupole excitation) and fermion (neutron or proton) degrees of freedom

$$[d_{\mu}, d_{\nu}^{\dagger}] = \delta_{\mu\nu} , \quad \{n_{\mu}, n_{\nu}^{\dagger}\} = \delta_{\mu\nu} , \quad \{p_{\mu}, p_{\nu}^{\dagger}\} = \delta_{\mu\nu}$$

* reference state: ground state (gs) of spherical even-even core $|0\rangle$

* nucleus: reference state coupled to fermions and/or phonons $|J_f M_f; j_p, j_n\rangle = \left(n^{\dagger} \otimes p^{\dagger}\right)^{(J_f)} |0\rangle, \qquad \text{gs of odd-odd nucleus}$

Effective Field Theory for heavy nuclei

Coello Pérez and Papenbrock Phys. Rev. C 92, 014323 (2015), Coello Pérez and Papenbrock Phys. Rev. C 92, 064309 (2015), Coello Pérez, Menéndez and Schwenk, Phys. Rev. C 98, 045501 (2018)

> phonon (quadrupole excitation) and fermion (neutron or proton) degrees of freedom

$$[d_{\mu}, d_{\nu}^{\dagger}] = \delta_{\mu\nu} , \quad \{n_{\mu}, n_{\nu}^{\dagger}\} = \delta_{\mu\nu} , \quad \{p_{\mu}, p_{\nu}^{\dagger}\} = \delta_{\mu\nu}$$

* reference state: ground state (gs) of spherical even-even core $|0\rangle$

- * nucleus: reference state coupled to fermions and/or phonons $|J_f M_f; j_p, j_n\rangle = \left(n^{\dagger} \otimes p^{\dagger}\right)^{(J_f)} |0\rangle, \qquad \text{gs of odd-odd nucleus}$
- * power counting: $Q^n = \left(\frac{\omega}{\Lambda}\right)^n$, n =number of phonons breakdown scale Λ at three-phonon level: $\Lambda = 3\omega \approx 2 - 3$ MeV \rightarrow quantification of theoretical uncertainties
- * low-energy constants (LECs): quenching, high-energy physics & microscopic information → fit to experimental data required

0 uetaeta not observed - how to fit low-energy constants?

- * LECs: experimental data of GT transitions available
- * correlation between DGT and $0\nu\beta\beta$ NMEs Shimizu et al., Phys. Rev. Lett. 120 14, 142502 (2018),

strategy:

- 1. DGT NMEs within EFT
- 2. correlation + DGT NMEs

 \rightarrow EFT 0 $\nu\beta\beta$ NME prediction with systematic quantified uncertainties

but first: correlation

Correlation

- * NSM, IBM and EDF results correlate very well
- QRPA results do not (see Javier's talk)

Variations of correlation

correlation		correlation coefficient r						
DGT	0 uetaeta	NSM	EDF	IBM	QRPA	NSM, EDF, IBM		
		0.83	0.91	0.88	-0.03	0.93		
$\cdot R[\text{fm}]$		0.64	0.85	0.66	-0.04	0.86		
	$\cdot \mathcal{A}^{-\frac{1}{6}}$	0.90	0.93	0.93	-0.03	0.95		

CB, Menéndez, Coello Pérez and Schwenk PRC 106 (2022) 3, 034309

Variations of correlation

correlation		correlation coefficient r						
DGT	0 uetaeta	NSM	EDF	IBM	QRPA	NSM, EDF, IBM		
		0.83	0.91	0.88	-0.03	0.93		
$\cdot R[\text{fm}]$		0.64	0.85	0.66	-0.04	0.86		
	$\cdot A^{-\frac{1}{6}}$	0.90	0.93	0.93	-0.03	0.95		

CB, Menéndez, Coello Pérez and Schwenk PRC 106 (2022) 3, 034309

Correlation - motivation of factor

CB, Menéndez, Coello Pérez and Schwenk PRC 106 (2022) 3, 034309

 $M^{0
uetaeta}_{
m NSM/IBM}$ implicit dependence on

- * harmonic oscillator length $b \sim A^{1/6}$
- * inverse radius 1/R with $R \sim A^{1/3}$

best fit accounts for implicit dependence \rightarrow $b/R \sim A^{-1/6}$

Correlation - linear fit of band

- * application of correlation \rightarrow band
- fit of three linear functions to NSM data:

$$m \cdot \left(M^{\mathbf{0}\nu\beta\beta} \cdot A^{-1/6} \right) + n = M^{\mathrm{DGT}}$$

CB, Menéndez, Coello Pérez and Schwenk PRC 106 (2022) 3, 034309

Correlation

CB, Menéndez, Coello Pérez and Schwenk PRC 106 (2022) 3, 034309

- * EDF and IBM enclosed by $fit_{\rm NSM}$
- impressive mass range across nuclear chart (close to valley of stability)

Double Gamow-Teller transitions within EFT

* effective double GT operator between even-even states

$$\hat{O}_{\mathrm{DGT}} = \left(\hat{O}_{\mathrm{GT}} \otimes \hat{O}_{\mathrm{GT}}\right)^{(0)} = \underbrace{\overline{C}_{\beta}^{2} \left(\left(\tilde{\rho} \otimes \tilde{n}\right)^{(1)} \otimes \left(\tilde{\rho} \otimes \tilde{n}\right)^{(1)}\right)^{(0)}}_{\mathrm{LO}} + \dots$$

- * define spherical-tensor annihilation operator: $\widetilde{a}_{\mu} = (-1)^{j_a + \mu} a_{-\mu}$
- * higher-order terms not considered \rightarrow uncertainty

$$\delta \sim \sum_{n=1}^{\infty} \left(\frac{\omega}{\Lambda}\right)^n = 0.5$$

Double Gamow-Teller transitions within EFT

* effective double GT operator between even-even states

$$\hat{O}_{\mathrm{DGT}} = \left(\hat{O}_{\mathrm{GT}} \otimes \hat{O}_{\mathrm{GT}}\right)^{(0)} = \underbrace{\overline{C}_{\beta}^{2} \left(\left(\tilde{\rho} \otimes \tilde{n}\right)^{(1)} \otimes \left(\tilde{\rho} \otimes \tilde{n}\right)^{(1)}\right)^{(0)}}_{\mathrm{LO}} + \dots$$

- * define spherical-tensor annihilation operator: $\widetilde{a}_{\mu} = (-1)^{j_a + \mu} a_{-\mu}$
- * higher-order terms not considered \rightarrow uncertainty

$$\delta \sim \sum_{n=1}^{\infty} \left(\frac{\omega}{\Lambda}\right)^n = 0.5$$

multifermion excitation of reference state

$$|0^{+}_{\mathrm{gs}}
angle = rac{1}{2} \left(\left(\textit{n}^{\dagger} \otimes \textit{n}^{\dagger}
ight)^{(0)} \otimes \left(\textit{p}^{\dagger} \otimes \textit{p}^{\dagger}
ight)^{(0)}
ight)^{(0)} |0
angle$$

Double Gamow-Teller transitions within EFT

* effective double GT operator between even-even states

$$\hat{O}_{\mathrm{DGT}} = \left(\hat{O}_{\mathrm{GT}} \otimes \hat{O}_{\mathrm{GT}}\right)^{(0)} = \underbrace{\overline{C}_{\beta}^{2} \left(\left(\tilde{\rho} \otimes \tilde{n}\right)^{(1)} \otimes \left(\tilde{\rho} \otimes \tilde{n}\right)^{(1)}\right)^{(0)}}_{\mathrm{LO}} + \dots$$

- * define spherical-tensor annihilation operator: $\widetilde{a}_{\mu} = (-1)^{j_a + \mu} a_{-\mu}$
- * higher-order terms not considered \rightarrow uncertainty

$$\delta \sim \sum_{n=1}^{\infty} \left(\frac{\omega}{\Lambda}\right)^n = 0.5$$

multifermion excitation of reference state

$$|0^{+}_{\mathrm{gs}}
angle = rac{1}{2} \left(\left(n^{\dagger} \otimes n^{\dagger}
ight)^{(0)} \otimes \left(p^{\dagger} \otimes p^{\dagger}
ight)^{(0)}
ight)^{(0)} |0
angle$$

★ final even-even nucleus \rightarrow reference state $|0\rangle$

LO nuclear matrix element

$$\mathcal{M}_{ ext{EFT}}^{ ext{DGT}} = \sqrt{rac{4}{3(2j_n+1)(2j_p+1)}} \overline{m{\mathcal{C}}}_{m{eta}}^2$$

LO nuclear matrix element - Low-energy constant

$$\mathcal{M}^{\mathrm{DGT}}_{\mathrm{EFT}} = \sqrt{rac{4}{3(2j_{
ho}+1)(2j_{
ho}+1)}} \overline{m{\mathcal{C}}}^2_{m{eta}}$$

https://www.nndc.bnl.gov/ensdf/,

Grewe et al., Phys. Rev. C 76, 054307 (2007), Thies et al., Phys. Rev. C 86, 014304 (2012) Frekers et al., Phys. Rev. C 94, 014614 (2016), Thies et al., Phys. Rev. C 86, 054323 (2012) Puppe et al., Phys. Rev. C 86, 044603 (2012), Puppe et al., Phys. Rev. C 84, 051305 (2011) Guess et al., Phys. Rev. C 83, 064318 (2011)

LO nuclear matrix element - Low-energy constant

$$\mathcal{M}^{\mathrm{DGT}}_{\mathrm{EFT}} = \sqrt{rac{4}{3(2j_{
ho}+1)(2j_{
ho}+1)}} \overline{m{\mathcal{C}}}^2_{m{eta}}$$

https://www.nndc.bnl.gov/ensdf/,

Grewe et al., Phys. Rev. C 76, 054307 (2007), Thies et al., Phys. Rev. C 86, 014304 (2012) Frekers et al., Phys. Rev. C 94, 014614 (2016), Thies et al., Phys. Rev. C 86, 054323 (2012) Puppe et al., Phys. Rev. C 86, 044603 (2012), Puppe et al., Phys. Rev. C 84, 051305 (2011) Guess et al., Phys. Rev. C 83, 064318 (2011)

$$\mathcal{M}_{ ext{EFT}}^{ ext{DGT}} = \sqrt{rac{4}{3(2 \emph{\textbf{\textit{j}}}_{\emph{\textbf{\textit{n}}}}+1)(2 \emph{\textbf{\textit{j}}}_{\emph{\emph{p}}}+1)}} \overline{\mathcal{C}}_{eta}^2$$

- idea: nucleon orbitals from adjacent odd-mass nuclei
- dominant orbitals: ground or low-lying single-particle excited states

*
$$j_n = \frac{1}{2}$$

* $j_p = \frac{3}{2}$ or $j_p = \frac{1}{2}$

CB, Menéndez, Coello Pérez and Schwenk PRC 106 (2022) 3, 034309

- physically motivated thresholds
 - * $E \leqslant 700$ keV (dominance)
 - * $T_{1/2} \geqslant 0.1$ ns (single particle)
- ✤ GT transition selection rules
 - * $|j_{\mathrm{n}} j_{\mathrm{p}}| \leqslant 1 \leqslant |j_{\mathrm{n}} + j_{\mathrm{p}}|$
 - * $\pi_n \cdot \pi_p = +$
- additional restrictions from
 - NSM: collective/not dominant

experimental data of odd-mass adjacent nuclei, https://www.nndc.bnl.gov/ensdf/

- * physically motivated thresholds
 - * $E \leqslant 700$ keV (dominance)
 - * $T_{1/2} \geqslant 0.1$ ns (single particle)
- * GT transition selection rules
 - * $|j_{\mathrm{n}} j_{\mathrm{p}}| \leqslant 1 \leqslant |j_{\mathrm{n}} + j_{\mathrm{p}}|$
 - * $\pi_n \cdot \pi_p = +$
- additional restrictions from
 - NSM: collective/not dominant

experimental data of odd-mass adjacent nuclei, https://www.nndc.bnl.gov/ensdf/

- physically motivated thresholds
 - $E \leqslant 700$ keV (dominance)
 - * $T_{1/2} \geqslant 0.1$ ns (single particle)
- * GT transition selection rules
 - * $|j_{\mathrm{n}} j_{\mathrm{p}}| \leqslant 1 \leqslant |j_{\mathrm{n}} + j_{\mathrm{p}}|$
 - * $\pi_n \cdot \pi_p = +$
- additional restrictions from
 - NSM: collective/not dominant

experimental data of odd-mass adjacent nuclei, https://www.nndc.bnl.gov/ensdf/

- physically motivated thresholds
 - * $E \leqslant 700$ keV (dominance)
 - * $T_{1/2} \geqslant 0.1$ ns (single particle)
- * GT transition selection rules
 - * $|j_{\mathrm{n}} j_{\mathrm{p}}| \leqslant 1 \leqslant |j_{\mathrm{n}} + j_{\mathrm{p}}|$
 - * $\pi_n \cdot \pi_p = +$
- additional restrictions from
 - NSM: collective/not dominant

experimental data of odd-mass adjacent nuclei, https://www.nndc.bnl.gov/ensdf/

Nucleon orbitals contributions

CB, Menéndez, Coello Pérez and Schwenk PRC 106 (2022) 3, 034309

- truncation uncertainty: 50%
- ✤ ⁹⁶Zr central value: average of EFT DGT NME central values
- ✤ ⁹⁶Zr uncertainty: complete uncertainty range

Nucleon orbitals contributions

CB, Menéndez, Coello Pérez and Schwenk PRC 106 (2022) 3, 034309

- truncation uncertainty: 50%
- ✤ ⁹⁶Zr central value: average of EFT DGT NME central values
- ✤ ⁹⁶Zr uncertainty: complete uncertainty range

DGT NME + correlation band $\rightarrow 0\nu\beta\beta$ NME

$0 u\beta\beta$ nuclear matrix elements

CB, Menéndez, Coello Pérez and Schwenk PRC 106 (2022) 3, 034309

- include quenching uncertainty from NSM GT transition
- * A > 48: $q_{\min} = 0.42$ and $q_{\max} = 0.65$
- * A = 48: $q_{\min} = 0.70$ and $q_{\max} = 0.80$
- * range: $0.18 \leqslant M_{\rm EFT}^{0\nu\beta\beta} \leqslant 3.40$

Predictions in comparison

CB, Menéndez, Coello Pérez and Schwenk PRC 106 (2022) 3, 034309

Menéndez et al., Nucl. Phys. A 818, 139 (2009), Horoi et al., Phys. Rev. C 101, 044315 (2020),
Iwata et al., Phys. Rev. Lett. 116, 112502 (2016), Rodríguez et al., Phys. Rev. Lett. 105, 252503 (2010),
Song et al., Phys. Rev. C 95, 024305 (2017), Šimkovic et al., Phys. Rev. C 87, 045501 (2013),
Fang et al., Phys. Rev. C 97, 045503 (2018), Hyvärinen and Suhonen, Phys. Rev. C 91, 024613 (2015),
Mustonen and Engel, Phys. Rev. C 87, 064302 (2013), Šimkovic et al., Phys. Rev. C 98, 064325 (2018),
Barea et al., Phys. Rev. C 91, 034304 (2015), Yao et al., Phys. Rev. Lett. 124, 232501 (2020),
Belley et al., Phys. Rev. Lett. 126, 042502 (2021), Novario et al., Phys. Rev. Lett. 126, 182502 (2021).

Predictions in comparison

CB, Menéndez, Coello Pérez and Schwenk PRC 106 (2022) 3, 034309

* range: $M_{\rm EFT}^{0\nu\beta\beta} \leq 3.40$ vs. $M_{\rm other}^{0\nu\beta\beta} \leq 6.5 \rightarrow {\sf EFT}$ smaller predictions * (almost) overlap: ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd and ¹³⁶Xe

combined unc. from other models larger than EFT unc.

* consistent with ab initio predictions (MR-/VS-IMSRG & CC)

 $\xrightarrow{2\nu\beta\beta}$ ¹³⁶Ba(0⁺₂) $^{136} extbf{Xe}(0^+_{
m gs})$ Jokiniemi, Romeo, CB, Kotila, Soriano, Schwenk and Menéndez

arXiv:2211.03764 in press at PLB

Motivation - ¹³⁶Xe(gs,
$$0_1^+$$
) $\xrightarrow{2\nu\beta\beta}$ ¹³⁶Ba(exc, 0_2^+)

- * test of predictions from different nuclear many body calculations
- * useful, because applying these same methods for $0
 u\beta\beta$
- ongoing search for this decay at KamLAND-Zen and nEXO
 K. Asakura, et al., Nucl. Phys. A 946 (2016) 171,
 G. Adhikari, et al, J. Phys. G: Nucl. Part. Phys. 49 015104 (2022)

* fit LECs to data from β decay or from charge-exchange reaction (GT-strength)

 \rightarrow predict $2\nu\beta\beta$ decay from gs to gs $M_{\rm EFT}^{2\nu}(0_{\rm gs}^+ \rightarrow 0_{\rm gs}^+)$ with single state dominance (SSD) approximation

$$M_{\rm GT}^{2\nu} \sim \langle f || \hat{O}_{\rm GT} || \mathbf{1}_1^+ \rangle \langle \mathbf{1}_1^+ || \hat{O}_{\rm GT} || i \rangle$$

- uncertainty associated to SSD approximation can be explicitly included Coello Pérez, Menéndez and Schwenk, PRC 98, 045501 (2018)
- subsequently decay to first excited 0⁺₂ can be predicted
 Coello Pérez, Menéndez and Schwenk, PRC 98, 045501 (2018)

$$\begin{split} \mathcal{M}_{\rm EFT}^{2\nu}(0_{\rm gs}^+ \to 0_2^+) &\approx \left(1 + \frac{D_{10_2^+}}{D_{20_2^+}} + \frac{D_{10_2^+}}{D_{30_2^+}}\right) \frac{D_{10_{\rm gs}^+}}{D_{10_2^+}} \frac{\sqrt{2}}{3} \mathcal{M}_{\rm EFT}^{2\nu}(0_{\rm gs}^+ \to 0_{\rm gs}^+) \\ \delta({\rm gs} \to 0_2^+) &= \frac{\omega}{\Lambda} \left(\frac{D_{10_2^+}}{D_{20_2^+}} + \frac{D_{10_2^+}}{D_{30_2^+}}\right) + \frac{D_{10_2^+}}{\Lambda} \phi\left(\frac{\omega}{\Lambda}, 1, \frac{D_{30_2^+} + \omega}{\omega}\right) \end{split}$$

Results

fit to GT data

- EFT works very well for gs to gs and for gs to exc(0⁺₂)
- but for ¹³⁶Xe gs to gs not consistent with experiment

Jokiniemi, Romeo, CB, Kotila, Soriano, Schwenk and Menéndez arXiv:2211.03764 in press at PLB

Results

fit to GT data

- EFT works very well for gs to gs and for gs to exc(0⁺₂)
- but for ¹³⁶Xe gs to gs not consistent with experiment

Jokiniemi, Romeo, CB, Kotila, Soriano, Schwenk and Menéndez arXiv:2211.03764 in press at PLB

fit to $\beta\beta$ -decay data

* fit directly to 2
uetaeta data \longrightarrow gs to gs agreement perfect by construction

Results

fit to GT data

- EFT works very well for gs to gs and for gs to exc(0⁺₂)
- but for ¹³⁶Xe gs to gs not consistent with experiment

Jokiniemi, Romeo, CB, Kotila, Soriano, Schwenk and Menéndez arXiv:2211.03764 in press at PLB

fit to $\beta\beta$ -decay data

* fit directly to 2
uetaeta data \longrightarrow gs to gs agreement perfect by construction

comparison

- * fit to $2\nu\beta\beta$: NMEs generally smaller
- overlap of fitting strategies: smallest for ¹³⁶Xe

half-lives!

- EFT advantage: systematic theoretical uncertainties
- QRPA only small overlap with lower limits
- NSM, IBM-2 and EFT in complete agreement with exp. lower limit
- IBM-2 and EFT consistent

Jokiniemi, Romeo, CB, Kotila, Soriano, Schwenk and Menéndez arXiv:2211.03764 in press at PLB

So I am excited about future experimental measurements

- ✤ rare decays within EFT for heavy nuclei at LO
- * in general: $0\nu\beta\beta$ EFT NMEs smaller in comparison
- * consistent with *ab initio* calculations

CB, Menéndez, Coello Pérez and Schwenk

PRC 106 (2022) 3, 034309

- ✤ rare decays within EFT for heavy nuclei at LO
- * in general: $0\nu\beta\beta$ EFT NMEs smaller in comparison
- consistent with ab initio calculations
- * half-life of ¹³⁶Xe in agreement with current lower limits

CB, Menéndez, Coello Pérez and Schwenk

PRC 106 (2022) 3, 034309

Jokiniemi, Romeo, CB, Kotila, Soriano, Schwenk and Menéndez

arXiv:2211.03764 in press at PLB

- ✤ rare decays within EFT for heavy nuclei at LO
- * in general: $0\nu\beta\beta$ EFT NMEs smaller in comparison
- consistent with ab initio calculations
- * half-life of ¹³⁶Xe in agreement with current lower limits

CB, Menéndez, Coello Pérez and Schwenk

PRC 106 (2022) 3, 034309

Jokiniemi, Romeo, CB, Kotila, Soriano, Schwenk and Menéndez

arXiv:2211.03764 in press at PLB

Thank you!!