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Mean-field calculations with regularized pseudopotentials
Motivation

Motivation (in a nutshell )

▸ Effective interactions (pseudopotentials) and/or functionals are the key
ingredient for mean-field and beyond-mean-field calculations.

▸ To be usable in beyond-mean-field calculations, a functional must be
strictly derived from an effective interaction.

M. Anguiano et al., NPA 696 (2001)
J. Dobaczewski et al., PRC 76, 054315 (2007)

D. Lacroix et al., PRC 79, 044318 (2009)

▸ A two-body interaction (whatever it is) can not give a satisfying
description of infinite nuclear matter (e.g. m∗/m ∼ 0.4 /).

D. Davesne et al., PRC 97, 044304 (2018)

▸ A two-body density dependent interaction is fine for mean-field
calculations but leads to formal questions and calculation’s problems
which may (or may not?) be overcome.

May
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⎩

M. Bender et al., PRC 79, 044319 (2009)
T.R. Rodríguez, J.L. Egido, PRC 81, 064323 (2010)
G. Hupin et al., PRC 84, 014309 (2011)
W. Satuła, J. Dobaczewski, PRC 90, 054303 (2014)

May not {
T. Duguet et al., PRC 79, 044320 (2009)
L. Robledo, JPG 37, 064020 (2010)
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Mean-field calculations with regularized pseudopotentials
Two-body and three-body pseudopotentials

Choice for the effective interaction

Radical solution: no density dependent term

V = V2−body +V3−body and E = ⟨Φ∣ (T +V ) ∣Φ⟩
= EH + EF + EP .

▸ 2-body part: zero-range, finite-range ?
⇒ Finite-range (Coulomb has to be treated exactly anyway...)

▸ 3-body part: zero-range, finite-range ?

Zero-range: not fully satisfying,
Finite-range: too much time-consuming,

⇒ something between.
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Two-body and three-body pseudopotentials

Two-body pseudopotential

Finite-range two-body pseudopotentials1

▸ General idea:

take a Skyrme interaction and replace δ(r) with ga(r) = e
−

r2
a2

(a
√
π)3

▸ Pseudopotential at “NLO”
v = ṽ0(r1, r2; r3, r4) (W01σq +B01qP̂σ −H01σP̂q −M0P̂σP̂q)

+ ṽ1(r1, r2; r3, r4) (W11σq +B11qP̂σ −H11σP̂q −M1P̂σP̂q)

+ ṽ2(r1, r2; r3, r4) (W21σq +B21qP̂σ −H21σP̂q −M2P̂σP̂q)

with ṽ0(r1, r2; r3, r4) = δ(r1 − r3)δ(r2 − r4)ga(r1 − r2)

ṽ1(r1, r2; r3, r4) = δ(r1 − r3)δ(r2 − r4)ga(r1 − r2)
1
2
[k∗212 + k234]

ṽ2(r1, r2; r3, r4) = δ(r1 − r3)δ(r2 − r4)ga(r1 − r2)k∗12 ⋅ k34

▸ Thanks to the finite range: P̂σP̂q ≡ −P̂x /≡ ± 1
▸ Can be generalized at N2LO, N3LO, ...

1Cf Jacek’s presentation from yesterday
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Two-body and three-body pseudopotentials

Two-body pseudopotential

Finite-range two-body local pseudopotentials

▸ The conditions

W1 = −W2 , B1 = −B2 , H1 = −H2 , M1 = −M2

(and same for higher order terms) make the pseudopotential local

▸ These are severe restrictions on the flexibility of the functional

▸ ... but this greatly simplifies the implementation in computer codes
▸ ... and limits the number of free parameters

▸ Use of a standard two-body zero-range spin-orbit interaction
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Two-body and three-body pseudopotentials

Semi-regularized three-body pseudopotential

Options for terms beyond two-body
▸ Contact LO 3- and 4-body terms: SLyMR0 interaction

J. Sadoudi et al., Phys. Scr. T154 (2013) 014013, B. Bally et al., PRL 113, 162501 (2014)

▸ Contact LO and NLO 3-body terms: SLyMR1 interaction
J. Sadoudi et al., PRC 88 (2013) 064326, R. Jodon, Phys. PhD Thesis, tel-01158085

See recent preprint arXiv:2301.02420 “The shape of gold”,
by B. Bally, G. Giacolone and M. Bender.
Works pretty well in some limited regions of the nuclear chart (e.g. for
gold2).

▸ Finite-range 2-body + zero-range 3-body ⇒ pathological pairing.
▸ Semi-regularized three-body interaction: symmetrized version of

V3(x1, x2, x3; x4, x5, x6) =W3

locality
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
δ(r14)δ(r25)δ(r36) δq1q4δq2q5δq3q6

× δs1s4 (δs2s5δs3s6 + δs2s6δs3s5)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1
σ
23+Pσ

23

ga(r12)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
finite
range

δ(r23)
´¹¹¹¹¹¸¹¹¹¹¹¶
zero
range

with x ≡ rsq and rij = rj − ri .

2If I was working for gold, I wouldn’t be a physicist.
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Mean-field calculations with regularized pseudopotentials
Two-body and three-body pseudopotentials

Semi-regularized three-body pseudopotential

EDF from the semi-regularized three-body term

▸ Normal part

E =
W3

8 ∫
d3r1 d3r2 ga(r12){ρ0(r2)ρ20(r1) − ρ0(r1)ρ21(r2) +

1
3
ρ0(r2)s20(r1) −

1
3
ρ0(r2)s21(r1)

−

1
4
[ρ0(r1) + ρ0(r2)][ρ0(r2, r1)ρ0(r1, r2) + ρ1(r2, r1)ρ1(r1, r2)

+ s0(r2, r1) ⋅ s0(r1, r2) + s1(r2, r1) ⋅ s1(r1, r2)]

+

1
2
[ρ1(r1) + ρ1(r2)][ρ0(r2, r1)ρ1(r1, r2) + s0(r2, r1) ⋅ s1(r1, r2)]

−

1
6
[s0(r1) + s0(r2)] ⋅ [s0(r2, r1)ρ0(r1, r2) + s1(r2, r1)ρ1(r1, r2)]

+

1
6
[s1(r1) + s1(r2)] ⋅ [s0(r2, r1)ρ1(r1, r2) + s1(r2, r1)ρ0(r1, r2)]} .

▸ Pairing part

EP =
W3

8 ∫
d3r1 d3r2 ga(r12)∑

q
{[ρq(r1) + ρq(r2)][ρ̃∗q̄ (r1, r2)ρ̃q̄(r1, r2) + s̃∗q̄ (r1, r2) ⋅ s̃q̄(r1, r2)]

+

1
3
[sq(r1) − sq(r2)] ⋅ [ρ̃∗q̄ (r1, r2)s̃q̄(r1, r2) + s̃∗q̄ (r1, r2)ρ̃q̄(r1, r2)]} .
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Two-body and three-body pseudopotentials

Semi-regularized three-body pseudopotential

EDF from the semi-regularized three-body term

▸ Pairing part

EP =
W3

8 ∫
d3r1 d3r2 ga(r12)

×∑
q
{[ρq(r1) + ρq(r2)][ρ̃∗q̄(r1, r2)ρ̃q̄(r1, r2) + s̃∗q̄(r1, r2) ⋅ s̃q̄(r1, r2)]

+ 1
3
[sq(r1) − sq(r2)] ⋅ [ρ̃∗q̄(r1, r2)s̃q̄(r1, r2) + s̃∗q̄(r1, r2)ρ̃q̄(r1, r2)]} .

Does not depend on the local pairing densities ! No cut-off needed !
(as long as we don’t mix protons and neutrons.)
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Two-body and three-body pseudopotentials

Semi-regularized three-body pseudopotential

Finite-range Gogny pseudopotentials
▸ Gaussian form factors + zero-range DD term = D1S

VD1S(x1, x2; x3, x4) = [ ∑
j=1,2

e
−

r212
µ2

j (Wj1
σ
1

q +Bj Pσ1q −Hj1
σPq −Mj PσPq)

+ t3 (1σ + Pσ)1qρα0 (r1)δ(r12)

+ i W0 1
q (δσ1σ3σσ2σ4 + σσ1σ3δσ2σ4) ⋅ (k∗12 × k34)]

J.F. Berger et al., CPC 63 (1991) 365

▸ Gaussian form factors + finite-range DD term = D2

VD2(x1, x2; x3, x4) = [ ∑
j=1,2

e
−

r212
µ2

j (Wj1
σ
1

q +Bj Pσ1q −Hj1
σPq −Mj PσPq)

+ e
−

r212
µ2
3

(µ3
√
π)3

ρα0 (r1) + ρα0 (r2)
2

(W31
σ
1

q +B3Pσ1q −H31
σPq −M3PσPq)

+ i W0 1
q (δσ1σ3σσ2σ4 + σσ1σ3δσ2σ4) ⋅ (k∗12 × k34)]

F. Chappert et al., PRC 91, 034312 (2015)
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Two-body and three-body pseudopotentials

Semi-regularized three-body pseudopotential

Finite-range Gogny pseudopotentials

Density dependent part of D2 effective interaction

e
−

r212
µ2
3

(µ3
√
π)3

ρα0 (r1) + ρα0 (r2)
2

(W31
σ
1

q +B3Pσ1q −H31
σPq −M3PσPq)

and three-body semi-regularized pseudopotential

W3 δ(r14)δ(r25)δ(r36)δq1q4δq2q5δq3q6δs1s4 (δs2s5δs3s6 + δs2s6δs3s5) ga(r12) δ(r23)

lead to similar terms in the functional i.e.

ρα(r1)ρ(r1, r2)ρ(r2, r1) and ρα(r1)ρ̃(r1, r2)ρ̃(r2, r1)

with α = 1
3 (Gogny D2) or α = 1 (semi-regularized).

⇒ doable in deformed (axial) calculations.
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Two-body and three-body pseudopotentials

Semi-regularized three-body pseudopotential

Overview of the fits of the parameters

Many parameters to fit... Two-body up to N3LO, spin-orbit, three-body.

Minimization of a penalty function built from:
▸ Infinite nuclear matter properties (ρsat, E/A, K∞, m∗/m, J , L)
▸ Neutron matter equation of state
▸ Simple constraints on pairing strengths (strong enough scalar pairing and
weak enough vector pairing)

▸ Binding energies of spherical nuclei
▸ Single particle energies in 208Pb
▸ Charge radii
▸ Finite-size instabilities taken care using constraints on charge density
profiles

The result is not a final set of parameters but a proof of principle that such an
interaction can give a reasonable description of nuclei.
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Results

Infinite nuclear matter

Properties of infinite nuclear matter
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Results

Nuclei

Semi-magic nuclei: binding energy residuals

Comparison with Gogny interactions is not a beauty pageant
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Results

Nuclei

Semi-magic nuclei: charge radii
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Spherical nuclei: binding energy residuals
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Set of 214 nuclei with Z ⩾ 20 predicted as (quasi-)spherical by D1S
www-phynu.cea.fr/science_en_ligne/carte_potentiels_microscopiques/carte_potentiel_nucleaire_eng.htm

or google it...
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Average neutron and proton gaps
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Charge and isovector densities
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Single particle energies in 208Pb
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D1S : rms = 3.76 ; D2 : rms =  3.51 ; N3LO : rms =  3.40
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Effective mass probably to low near the nucleus surface...
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Neutron droplets
S. Gandolfi et al. PRL 106, 012501 (2011)
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Impressively catastrophic !
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Pairing in symmetric and neutron matter

▸ Symmetric matter
Gogny D1S Gogny D2 RegMR3

2-body ∑q ρ̃q ρ̃q ∑q ρ̃q ρ̃q ∑q ρ̃q ρ̃q
attractive attractive attractive

3-body or d.d. – ρα0 ∑q ρ̃q ρ̃q ∑q ρq̄ ρ̃q ρ̃q
– repulsive repulsive

▸ Neutron matter
Gogny D1S Gogny D2 RegMR3

2-body ρ̃nρ̃n ρ̃nρ̃n ρ̃nρ̃n
attractive attractive attractive

3-body or d.d. – ραn ρ̃nρ̃n –
– repulsive –
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Conclusion and outlooks

First density independent effective interaction which gives
▸ reasonable results at the SR approximation;
▸ no finite-size instabilities in the T = 1 channel;
▸ strong enough pairing in nuclei;
▸ possibility to do MR calculations without ambiguity.

Outlooks:
▸ Implementation in 3D codes for SR and MR calculations;
▸ Minor improvements for the effective mass, slope of the symmetry energy
and incompressibility;

▸ Average gaps in neutron matter too strong...
Might be corrected (?) using a slightly modified NLO 3-body term.
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Thanks

Thank you for your attention

▸ Main collaborators on this project:
Ph. da Costa, J. Dobaczewski, M. Kortelainen.

▸ Other colleagues involved:
Y. Gao, T. Haverinen, A. Idini, D. Lacroix, M. Martini, A. de Pace,
F. Raimondi.
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