

Electromagnetic observables from first principles

Sonia Bacca

Johannes Gutenberg Universität Mainz

January 17th, 2023

Hirschegg 2023: Effective field theories for nuclei and nuclear matter

Ab initio nuclear theory

• Start from neutrons and protons as building blocks (centre of mass coordinates, spins, isospins)

 Solve the non-relativistic quantum mechanical problem of A-interacting nucleons

 $H|\psi_i\rangle = E_i|\psi_i\rangle$

 $H = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$

using interactions from chiral effective field theory

• Find numerical solutions with no approximations or controllable approximations

Coupling to the electromagnetic field

Cross
Section
$$\sigma_{ew} \sim R(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Em operator

The n p \leftrightarrow d γ reaction

B. Acharya and SB, Phys. Lett. B 827, 137011 (2022)

Semilocal NN forces up to 5th order from Reinert, Krebs, Epelbaum, Eur. Phys. J. A 54 (2018) 86 and fixed em operator: two-body + two-body (one-pion exchange level)

Uncertainty quantifications with tools developed by the Buqeye collaboration

• Express observable as

$$y(\nu) = y_{ref}(\nu) \sum_{n=0}^{\infty} c_n(\nu) (Q/\Lambda)^n$$
$$\delta y_k(\nu) = y_{ref}(\nu) \sum_{n=k+1}^{\infty} c_n(\nu) (Q/\Lambda)^n$$

- Calibrate a Gaussian process emulator using physics-based info on $c_n(\nu)$ as "prior"
- Calculate "Bayesian posterior" for $c_{n>k}(\nu)$, obtaining statistically interpretable truncation error, amounting to 0.2% at the highest order.

Dipole Strength functions

Experimental extractions

Stable Nuclei

We have data on ~180 stable nuclei Giant dipole resonances

Unstable Nuclei

From Coulomb excitation experiments

Experimental extractions

Stable Nuclei

We have data on ~180 stable nuclei Giant dipole resonances

Do we see the emergence of collective motions from first principle calculations?

Unstable Nuclei

Leistenschneider et al.

Fewer data, pigmy dipole resonances

The continuum problem

$$R(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Depending on E_f , many channels may be involved

Integral Transforms

$$R(\omega) = \oint_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Exact knowledge limited in energy and mass number

Integral Transforms

$$R(\omega) = \oint_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Exact knowledge limited in energy and mass number

Reduce the continuum problem to a bound-state-like equation

IGU

Integral Transforms

Reduce the continuum problem to a bound-state-like equation

JG U

Sonia Bacca

0 20

σ(*ω*) [mb]

- ±

 ω [MeV]

4He Photo-absorption cross section

Acharya, SB, Bonaiti, Li Muli, J.E. Sobczyk, Front. Phys.10:1066035 (2023).

With local chiral potentials from Phys. Rev. C 90, 054323 and hyper-spherical harmonics

. ..

Simone Li Muli

 $\delta_{\mathcal{O}}^{\chi \text{EFT}} = \max\left\{ \left(\frac{Q}{\Lambda}\right)^{k+1} \left|\mathcal{O}_{\nu_{0}}\right|, \left(\frac{Q}{\Lambda}\right)^{k} \left|\mathcal{O}_{\nu_{0}+1} - \mathcal{O}_{\nu_{0}}\right|, \dots, \left(\frac{Q}{\Lambda}\right) \left|\mathcal{O}_{\nu_{0}+k} - \mathcal{O}_{\nu_{0}+k-1}\right| \right\}$

 ω [MeV]

 $|\psi_{0}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{A})\rangle = e^{T}|\phi_{0}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{A})\rangle$ $T = \sum T_{(A)}$

cluster expansion

$$|\psi_0(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A)\rangle = e^T |\phi_0(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A)\rangle$$
 T

$$\Gamma = \sum T_{(A)}$$

cluster expansion

SB et al., Phys. Rev. Lett. 111, 122502 (2013)

$$(\bar{H} - E_0 - \sigma + i\Gamma)|\tilde{\Psi}_R\rangle = \bar{\Theta}|\Phi_0\rangle$$

$$|\psi_{0}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{A})\rangle = e^{T}|\phi_{0}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{A})\rangle \qquad T = \sum_{A}^{A}$$

 $\sum T_{(A)}$

$$(\bar{H} - E_0 - \sigma + i\Gamma)|\tilde{\Psi}_R\rangle = \bar{\Theta}|\Phi_0\rangle \longrightarrow \begin{cases} \bar{\Theta} = e^{-T}\Theta e^T \\ |\tilde{\Psi}_R\rangle = \hat{R}|\Phi_0\rangle \end{cases}$$

$$|\psi_{0}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{A})\rangle = e^{T}|\phi_{0}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{A})\rangle \qquad T = \sum_{A}$$

 $T_{(A)}$

cluster expansion T_1 T_2 T_3 a,b,... i,j,... CCSD CCSDT $\oint \left\{ \begin{array}{l} \bar{H} = e^{-T} H e^{T} \\ \bar{\Theta} = e^{-T} \Theta e^{T} \\ |\tilde{\Psi}_{R}\rangle = \hat{R} |\Phi_{0}\rangle \end{array} \right.$ SB et al., Phys. Rev. Lett. 111, 122502 (2013) $(\bar{H} - E_0 - \sigma + i\Gamma) |\tilde{\Psi}_R\rangle = \bar{\Theta} |\Phi_0\rangle$ $\mathcal{R}(z) = r_0(z) + \sum_{ai} r_i^a(z) a_a^{\dagger} a_i + \frac{1}{4} \sum_{abij} r_{ij}^{ab}(z) a_a^{\dagger} a_b^{\dagger} a_j a_i + \dots$

Benchmarked implementation at CCSD with hyperspherical harmonics obtaining a few % error

Addressing medium-mass nuclei

SB et al., PRC 90, 064619 (2014)

See Sobczyk's talk for applications with 3NF and other em operators

Nuclear Equation of State (EOS)

$$E(\rho, \delta) = E(\rho, 0) + S(\rho)\delta^{2} + \mathcal{O}(\delta^{4})$$

$$S(\rho) = S_{0}^{-} + \frac{L}{3\rho_{0}}(\rho - \rho_{0}) + \frac{K_{sym}}{18\rho_{0}^{2}}(\rho - \rho_{0})^{2} + \dots$$

$$\rho = \rho_n + \rho_p, \quad \delta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$$

Symmetry energy at saturation density

Slope parameter, related to pressure of pure neutron matter at saturation density

Constraining the nuclear EOS is one of the fundamental goals of nuclear physics

Multi-messenger astrophysics

Laboratory measurements on finite nuclei

- Neutron-skin thickness
- Electric dipole polarizability

Sum Rules

$$m_n = \int_0^\infty d\omega \,\,\omega^n R(\omega) = \langle \Psi_0 | \hat{\Theta}^\dagger (\hat{H} - E_0)^n \hat{\Theta} | \Psi_0 \rangle$$

The electric-dipole polarizability is an inverse-energy weighted sum rule of the dipole response function

$$\alpha_D = 2 \ \alpha \ m_{-1} = 2 \ \alpha \ \langle \Psi_0 | \Theta^{\dagger} \frac{1}{(H - E_0)} \Theta | \Psi_0 \rangle$$

Sum Rules

$$m_n = \int_0^\infty d\omega \,\,\omega^n R(\omega) = \langle \Psi_0 | \hat{\Theta}^\dagger (\hat{H} - E_0)^n \hat{\Theta} | \Psi_0 \rangle$$

The electric-dipole polarizability is an inverse-energy weighted sum rule of the dipole response function

$$\alpha_D = 2 \ \alpha \ m_{-1} = 2 \ \alpha \ \langle \Psi_0 | \Theta^{\dagger} \frac{1}{(H - E_0)} \Theta | \Psi_0 \rangle$$

Can be obtained from the Lorentz Integral Transform in the limit of $\Gamma \rightarrow 0$

The ⁴⁸Ca nucleus

M. Miorelli, SB et al., PRC 98, 014324 (2018)

3p-3h correlations are important and improve the comparison with experiment

M. Miorelli, SB et al., PRC 98, 014324 (2018)

3p-3h correlations are important and improve the comparison with experiment

 Simonis, Bacca, Hagen, EPJA 55, 241 (2019)

 CCSD-T1
 $0.13 \le R_{skin} \le 0.16 \text{ fm}$
 $1.92 \le \alpha_D \le 2.38 \text{ fm}^3$

Lattimer (2023)

The ⁴⁰Ca nucleus

Fearick, von Neumann-Cosel, SB et al, in preparation (2023)

• Constraints on symmetry energy: $S_0 = 27 - 33 \text{ MeV} \quad L = 41 - 49 \text{ MeV}$

The ⁴⁰Ca nucleus

Fearick, von Neumann-Cosel, SB et al, in preparation (2023)

• Constraints on symmetry energy: $S_0 = 27 - 33 \text{ MeV} \quad L = 41 - 49 \text{ MeV}$ N2LO_{sat} well in agreement with experiment in mass range A= 40-48

The ⁶⁸Ni nucleus

S.Kaufmann, J. Simonis, SB et al., PRL 104 (2020) 132505

Halo nuclei

Halo nuclei

Halo nuclei

What's next

• Two-particle attached technique (lead by F. Bonaiti)

• Develop two-particle removed (¹⁴N), one-particle removed (³⁹K) techniques

Conclusions

• Remarkable progress in first principle calculations of electromagnetic properties and more work is ahead of us

Thanks to all my collaborators:

B. Acharya, F. Bonaiti, S. Li Muli, W. Jiang, J.E.Sobczyk, G. Hagen, G. Jansen, T. Papenbrock, J. Simonis, A. Schwenk et al.

Conclusions

• Remarkable progress in first principle calculations of electromagnetic properties and more work is ahead of us

Thanks to all my collaborators:

B. Acharya, F. Bonaiti, S. Li Muli, W. Jiang, J.E.Sobczyk, G. Hagen, G. Jansen, T. Papenbrock, J. Simonis, A. Schwenk et al.

Thanks for your attention!

Backup

Inversion of the LIT

The inversion is performed numerically with a regularization procedure (ill-posed problem)

Ansatz
$$R(\omega) = \sum_{i}^{I_{\max}} c_i \chi_i(\omega, \alpha) \implies L(\sigma, \Gamma) = \sum_{i}^{I_{\max}} c_i \mathcal{L}[\chi_i(\omega, \alpha)]$$

The inversion is performed numerically with a regularization procedure (ill-posed problem)

Ansatz
$$R(\omega) = \sum_{i}^{I_{\max}} c_{i}\chi_{i}(\omega, \alpha) \implies L(\sigma, \Gamma) = \sum_{i}^{I_{\max}} c_{i}\mathcal{L}[\chi_{i}(\omega, \alpha)]$$
fit
fit
$$\int_{0.4}^{0.5} 0.4 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{0.3} 0.3 - 0 - \Gamma = 10 \text{ MeV}$$
fit
$$\int_{0.4}^{$$

The inversion is performed numerically with a regularization procedure (ill-posed problem)

Ansatz
$$R(\omega) = \sum_{i}^{I_{\max}} c_{i}\chi_{i}(\omega, \alpha) \implies L(\sigma, \Gamma) = \sum_{i}^{I_{\max}} c_{i}\mathcal{L}[\chi_{i}(\omega, \alpha)]$$
fit
$$\int_{0.1}^{0.5} \int_{0.4}^{0.3} \int_{0.2}^{0.4} \int_{0.1}^{0.5} \int_{0.4}^{0.5} \int_{0.4}^{0.5$$

Message: Inversions are stable if the LIT is calculated precisely enough

Validation in 4He

Dipole response function

Comparison of CCSD with exact hyperspherical harmonics with NN forces at N³LO

S.B. et al., Phys. Rev. Lett. 111, 122502 (2013)

