Present status and future plans of SHE researches at RIKEN

RIKEN Nishina Center

Hiromitsu Haba

CONTENTS

- **1. Production and decay studies of RIs for SHE chemistry**
 - (a) ${}^{248}Cm({}^{19}F,5n){}^{262}Db$ (Z = 105)
 - (b) ${}^{248}Cm({}^{23}Na,5;4n){}^{266,267}Bh (Z = 107)$
- 248Cm(48 Ca,xn) $^{296-x}$ Lv (Z = 116)
- **3. Future plans of SHE researches at RIKEN**

1. Production and decay studies of RIs for SHE chemistry

Coupling SHE chemistry to recoil separators

Breakthroughs in SHE chemistry

- Chemical and physical experiments under low background condition
- Stable and high gas-jet transport efficiency
- New chemical reactions

Development of a gas-jet transport system coupled to GARIS

- ¹⁶⁹Tm(⁴⁰Ar,3*n*)²⁰⁶Fr; ²⁰⁸Pb(⁴⁰Ar,3*n*)²⁴⁵Fm [JNRS 8, 55 (2007); EPJD 45, 81 (2007)]
- ²³⁸U(²²Ne,5*n*)²⁵⁵No [JNRS 9, 27 (2008)]

Production and decay studies of RIs for chemical studies

- ²⁴⁸Cm(¹⁸O,5*n*)²⁶¹Rf^{*a*,*b*} [Chem. Lett. **38**, 426 (2009); PRC **83**, 034602 (2011)]
- ²⁴⁸Cm(²²Ne,5*n*)²⁶⁵Sg^{*a,b*} [PRC 85, 024611 (2012)] → Sg(CO)₆ chemistry (Julia's talk)
- ²⁴⁸Cm(¹⁹F,5*n*)²⁶²Db [PRC 89, 024618 (2014)]
- ²⁴⁸Cm(²³Na,5;4*n*)^{266,267}Bh [in progress]

Experimental setup

Production of ^{262,263}Db and ^{266,267}Bh using the GARIS gas-jet system

Nuclide	^{262,263} Db (<i>Z</i> =105)	^{266,267} Bh (<i>Z</i> =107)
Half-life	34 s, 27 s ¹⁾	1.7 s, 17 s ²⁾
Reaction	²⁴⁸ Cm(¹⁹ F,5;4 <i>n</i>)	²⁴⁸ Cm(²³ Na,5;4 <i>n</i>)
Cross section (nb)	1.5 ³⁾ , ?	0.05 ⁴⁾ ?
Beam energy (MeV)	103, 97.4	130.6
Beam intensity (pµA)	4	3
²⁴⁸ Cm ₂ O ₃ thickness (μg/cm ²)	230/290/330	290
Magnetic rigidity (Tm)	1.73–2.09	2.12
GARIS He (Pa)	32	33
RTC Mylar window (μm)	0.5	0.7
Honeycomb grid (%)	84	78
Gas-jet He (kPa)	47	80
Chamber depth (mm)	20	20
He flow rate (L/min)	2.0	5.0
KCl generator (°C)	620	620
Step interval of MANON (s)	15.5	5.0, 15.0

1) Firestone and Shirley, *Table of Isotopes*, 8th ed. (Wiley, New York, 1996).

2) Wilk et al., PRL 85, 2697 (2000). 3) Nagame et al., JNRS 3, 85 (2002). 4) Morita et al., JSPS 78, 064201 (2009).

(a) ²⁴⁸Cm(¹⁹F,5*n*)²⁶²Db

(Wiley, New York, 1996).

Search for correlations

 $E_{\alpha} = 8.0-9.0 \text{ MeV}; E_{SF} \ge 30 \text{ MeV}$ $\Delta T \le 58.5 \text{ s}$

	Observed	Random
α-α	75	< 2.9
α-SF	2	< 0.6

²⁴⁸Cm(¹⁹F,5*n*)²⁶²Db → ²⁵⁸Lr: 76 ²⁴⁸Cm(¹⁹F,6*n*)²⁶¹Db → ²⁵⁷Lr: 1 ²⁴⁸Cm(¹⁹F,4*n*)²⁶³Db → ²⁵⁹Lr: 0

Single SF events: 123

Table of Isotopes, 8th ed.

<u>α energy and half-life of ²⁶²Db</u>

Single SF events

Excitation functions for ²⁴⁸Cm(¹⁹F,xn)^{267-x}Db

- New decay data of ²⁶²Db and ²⁵⁸Lr
 b_{SF}(²⁶²Db) = 52%; b_{EC}(²⁵⁸Lr) = 2.6%
- Nagame *et al.*, JNRS **3**, 85 (2002). $\sigma = 1.5 \pm 0.4$ nb at 103 MeV for ²⁴⁸Cm(¹⁹F,5*n*)²⁶²Db

Droducto	Cross sections [nb]		
PIOUUCIS	103.1 MeV	97.4 MeV	
²⁶¹ Db (6 <i>n</i>)	0.28 ^{+0.65} _{-0.23}	< 0.10	
²⁶² Db (5 <i>n</i>)	2.1±0.7	0.23 ^{+0.18} 0.11	
²⁶³ Db (4 <i>n</i>)	< 0.064	< 0.13	

HIVAP calculation

Reisdorf and Schädel, ZPA **343**, 47 (1992). Nishio *et al.*, PRL **93**, 162701 (2004). Nishio *et al.*, PRC **82**, 024611 (2010). (b) ²⁴⁸Cm(²³Na,5;4*n*)^{266,267}Bh

<u>α-particle spectrum</u>

Search for correlations

 $E_{\alpha} = 7.5 - 10.0 \text{ MeV}; E_{SF} \ge 30 \text{ MeV}$ $\Delta T \le 340 \text{ s} [= 10 T_{1/2} (^{262}\text{Db})]$

No. of the observed correlations

	Observed	Random
α-α-α	1	< 0.01
α-α	5	< 1.4
α-SF	5	< 0.05

Tentative assignments

²⁴⁸Cm(²³Na,5*n*)²⁶⁶Bh: 4
²⁴⁸Cm(²³Na,4*n*)²⁶⁷Bh: 4
Not assigned: 3 (accidental?)

Single SF events No. of single SF events: 7

<u>α-particle energies of ^{266,267}Bh</u>

- The α energies of ²⁶⁶Bh spread widely in the range of E_{α} = 8.72–9.77 MeV.
- The α spectrum of ²⁶⁷Bh shows peaks at 8.84 MeV ($I_{\alpha} = ~70\%$) and 8.72 MeV ($I_{\alpha} = ~30\%$).

References

[1] ²⁴⁹Bk(²²Ne,5;4*n*)^{266,267}Bh (*N* = 1, 5): Wilk *et al.*, PRL **85**, 2697 (2000). [2] ²⁴⁹Bk(²²Ne,4*n*)²⁶⁷Bh (*N* = 6): Eichler *et al.*, Nature **407**, 63 (2000). [3] ²⁴⁸Cm(²³Na,5;4*n*)^{266,267}Bh (*N* = 20, 5): Morita *et al.*, JPSJ **78**, 064201 (2009). [4] ²⁰⁹Bi(⁷⁰Zn,*n*)²⁷⁸113 → ²⁶⁶Bh (*N* = 3):

Morita et al., JPSJ 81, 103201 (2012).

Half-lives of ^{266,267}Bh

Nuclida		This work		Refs. [1–4]	
Nuclide	Ν	T _{1/2} [s]	Ν	<i>T</i> _{1/2} [s]	
²⁶⁶ Bh	3	7.3 ^{+10.0} –2.7	8	1.20 ^{+0.66} 0.31	
²⁶⁷ Bh	4	16.5 ^{+16.5} _{-5.5}	11	13.7 ^{+5.9} 3.2	

- The lifetimes of ²⁶⁶Bh measured recently at RIKEN are longer than those in the literatures.
- The longer-lived ²⁶⁶Bh would be good for chemistry studies of Bh.
- The half-life of ²⁶⁷Bh agrees with that in the literatures.

References

266Rh $\tau = 1.73 \, s$ This work (N = 8)Morita (2012) Qin (2006) Wilk (2000) 267 Rh $\tau = 19.7 \, s$ (N = 11)This work Eichler (2000) Wilk (2000) 10⁻⁵ 10-3 **10**¹ **10**⁻¹ 10^{3}

Time (s)

 $[1]^{249}Bk(^{22}Ne,5;4n)^{266,267}Bh (N = 1, 5): Wilk et al., PRL 85, 2697 (2000).$

 $[2]^{249}$ Bk $(^{22}$ Ne,4n $)^{267}$ Bh (N = 6): Eichler *et al.*, Nature **407**, 63 (2000).

 $[3]^{243}$ Am $(^{26}$ Mg $,3n)^{266}$ Bh (N = 4): Qin *et al.*, Nucl. Phys. Rev. **23**, 400 (2006).

 $[4]^{209}\text{Bi}(^{70}\text{Zn},n)^{278}\text{113} \rightarrow {}^{266}\text{Bh} (N = 3): \text{Morita } et al., \text{JPSJ } 81, 103201 (2012).$

Excitation functions for ²⁴⁸Cm(²³Na,xn)^{271-x}Bh

Deactions	Cross sections	Doootions*	Cross sections*
Reactions	at 130.6 MeV	Reactions	at 117/123 MeV
²⁴⁸ Cm(²³ Na,5 <i>n</i>) ²⁶⁶ Bh	53 ⁺⁴² ₋₂₅ pb	²⁴⁹ Bk(²² Ne,5 <i>n</i>) ²⁶⁶ Bh	-/25–250 pb
²⁴⁸ Cm(²³ Na,4 <i>n</i>) ²⁶⁷ Bh	33 ⁺²⁶ –16 pb	²⁴⁹ Bk(²² Ne,4 <i>n</i>) ²⁶⁷ Bh	58 ⁺³³ -15/96 ⁺⁵⁵ -25
*Wilk <i>et al.</i> , PRL 85 , 2697 (2000).			

Assumptions

- $T_{1/2}(^{266}Bh) = 7.3 s$
- $T_{1/2}(^{267}Bh) = 16.5 s$
- GARIS transmission: 15%
- Gas-jet transport time: 2.7 s

HIVAP calculation

Reisdorf and Schädel, ZPA **343**, 47 (1992). Nishio *et al.*, PRL **93**, 162701 (2004). Nishio *et al.*, PRC **82**, 024611 (2010).

2. Toward syntheses of the heaviest elements

Synthesis of the heavier elements by hot fusion reactions

²⁴⁸Cm(⁴⁸Ca,*xn*)^{296-*x*}Lv as the first step

Refs. DGFRS: Oganessian *et al.*, Phys. Rev. C **63**, 011301 (2000). Oganessian *et al.*, Phys. Rev. C **70**, 064609 (2004). SHIP: Hofmann *et al.*, Eur. Phys. J. A **48**, 62 (2012).

Experimental conditions

Reaction	²⁴⁸ Cm(⁴⁸ Ca <i>,xn</i>) ^{296–x} Lv
Period	Dec. 1, 2013 – Dec. 12, 2013
Beam energy	250 MeV in the middle of the target
Beam intensity	ave. 0.8 pµA
Beam integral	4.3×10^{18}
Target thickness	$0.29 \text{ mg cm}^{-2} \ ^{248}\text{Cm}_{2}\text{O}_{3}$
Target backing	0.90 mg cm ⁻² Ti
Magnetic rigidity	2.17 Tm
He pressure in GARIS	73 Pa
GARIS eff.	36%
PSD + SSD eff.	94%

<u>α-particle energies of ^{292,293}Lv and their daughters</u>

	Chain 1	Chain 3	Chain 4	Ref.*
2921	$E_{a} = 10.79 \text{ MeV}$	$(E_{\alpha} = 2.77 \text{ MeV})$	E_{α} = 10.66 MeV	$E_{\alpha} = 10.66 \pm 0.07 \text{ MeV}$
LV	$\tau = 32 \text{ ms}$	<i>τ</i> = 2.0 ms	$\tau = 4.1 \text{ ms}$	$T_{1/2} = 18^{+16}_{-6}$ ms
288 – I	E_{α} = 9.89 MeV	E_{α} = 9.99 MeV	$(E_{\alpha} = 0.83 \text{ MeV})$	$E_{\alpha} = 9.95 \pm 0.07 \text{ MeV}$
ГІ	<i>t</i> = 0.548 s	<i>t</i> = 0.243 s	$\tau = 0.0090 \text{ s}$	$T_{1/2} = 0.80^{+0.32}_{-0.18}$ ms
284 C n	$E_{\rm SF}$ = 232 MeV	<i>E</i> _{SF} = 182 MeV	E_{α} = 9.09 MeV	
Cn	τ = 65 ms	τ = 832 ms	<i>τ</i> = 282 ms	$T_{1/2} = 101^{+41}_{-22} \mathrm{ms}$
²⁸⁰ De			E _{SF} = 163 MeV	
05			τ = 9.6 ms	

* Oganessian et al., PRC **70**, 064609 (2004).

-				
	Chain 2	Chain 5	Ref.*	
2931	$E_{a} = 10.47 \text{ MeV}$	$(E_{\alpha} = 7.76 \text{ MeV})$	$E_{\alpha} = 10.53 \pm 0.06 \text{ MeV}$	
LV	τ = 253 ms	$\tau = 32 \text{ ms}$	$T_{1/2} = 53^{+62}_{-19}$ ms	
289 — 1	E_{α} = 9.89 MeV	$E_{\alpha} = 9.72 \text{ MeV}$	$E_{\alpha} = 9.82 \pm 0.06 \text{ MeV}$	
ГІ	τ = 3.97 s	<i>t</i> = 0.666 s	$T_{1/2} = 2.7^{+1.4}_{-0.7}$ s	
285 Cm	$(E_{\alpha} = 2.46 \text{ MeV})$	$(E_{\alpha} = 1.64 \text{ MeV})$	$E_{\alpha} = 9.16 \pm 0.06 \text{ MeV}$	
Ch	τ = 7.76 s	τ = 7.56 s	$T_{1/2} = 34^{+17}_{-9} \text{ s}$	
281	E _{SF} = 195 MeV	$E_{\rm SF}$ = 221 MeV		
DS	τ = 19.8 s	<i>t</i> = 4.63 s	$T_{1/2} = 9.6^{+5.0}_{-2.5}$ s	
* Oganessian et al PBC 70 064609 (2004)				

Lifetimes of ^{292,293}Lv

Time (s)

Excitation functions for ²⁴⁸Cm(⁴⁸Ca,xn)^{296-x}Lv

DGFRS: Oganessian et al., Phys. Rev. C 63, 011301 (2000).
Oganessian et al., Phys. Rev. C 70, 064609 (2004).
SHIP: Hofmann et al., Eur. Phys. J. A 48, 62 (2012).
Theoretical calculation: Zagrebaev, Nucl. Phys. A 734, 164 (2004).

3. Future plans of SHE researches at RIKEN

Chemistry using preseparated ²⁶¹Rf^{*a*}, ²⁶²Db, and ²⁶⁵Sg^{*a*,*b*}

- ²⁴⁸Cm(²³Na,xn)^{271-x}Bh (in progress)
- Aqueous chemistry of Sg and Bh by solvent extraction with LS
- Gas chemistry by direct complexation without aerosols
 Organometallic compounds of SHEs

Syntheses of the heaviest SHEs

- ²⁴⁸Cm(⁴⁸Ca,xn)^{296-x}Lv (in progress)
- ²⁴⁸Cm(⁵⁰Ti,xn)^{298-x}118 (scheduled in 2015)
 ⁵⁰Ti-MIVOC with Cp*⁵⁰TiMe₃ from Univ. Strasbourg (Aug., 2014–)
 9 mg of ²⁴⁸Cm from ORNL (Jan., 2015)
 Commissioning of GARIS II (in progress)

High precision mass measurement of SHE nuclei ($\delta m/m \approx 0.5$ ppm)

• GARIS II + RF-Carpet + MRTOF Spectrograph (Aug., 2014–)

Collaborators for the GARIS gas-jet experiment

Nishina Center for Accelerator-Based Science, RIKEN

M. Huang, D. Kaji, J. Kanaya, Y. Komori, K. Morimoto, K. Morita, M. Murakami, M. Takeyama, K. Tanaka, Y. Wakabayashi, S. Yamaki, and A. Yoneda

Osaka Univ.

Y. Kasamatsu, K. Nakamura, A. Shinohara, and T. Yokokita

Tohoku Univ.

H. Kikunaga

Niigata Univ. R. Aono, H. Kudo, K. Ooe, and S. Tsuto

Advanced Science Research Center, JAEA K. Nishio, A. Toyoshima, and K. Tsukada

Kyushu Univ. T. Tanaka

Collaborators for the ²⁴⁸Cm + ⁴⁸Ca experiment

RIKEN
K. Morita, K. Morimoto, D. Kaji, Y. Wakabayashi,
H. Hasebe, M. Huang, J. Kanaya, A. Yoneda,
A. Yoshida, and K. Katori

- Yamagata Univ. M. Takeyama, F. Tokanai, and T. Yoshida
- Saitama Univ. S. Yamaki and T. Yamaguchi
- Tokyo Univ. Sci. K. Tanaka
- Niigata Univ. M. Murakami
- IMP Z. Gan and L. Ma
- **GSI** H. Geissel, S. Hofmann, and Y. Maurer
- Kyushu Univ. K. Fujita, Y. Narikiyo, T. Tanaka, and S. Yamamoto
- JAEA M. Asai

RIKEN

