

SHELS - Separator for Heavy ELement Spectroscopy

A. Popeko, FLNR JINR for GABRIELA-collaboraton

A.V. Yeremin, M.L. Chelnokov, V.I. Chepigin, A.V. Isaev, I.V. Izosimov, D.E. Katrasev, A.N. Kuznetsov, A.A. Kuznetsova, O.N. Malyshev, A.G. Popeko, E.A. Sokol, A.I. Svirikhin,

FLNR, JINR, Dubna, Russia

- K. Hauschild, A. Lopez-Martens, K. Rezunkina CSNSM, IN2P3-CNRS, F-91405 Orsay Campus, France
- O. Dorvaux, B. Gall, F. Dechery, H. Faure, Z. Asfari IPHC, IN2P3-CNRS, F-67037 Strasbourg, France
- J. Rubert
 - LPSC Grenoble, France
- J. Piot GANIL, France

rance

D. Tonev, E. Stefanova, P. Detistov

Institute for nuclear research and nuclear energy, Sofia, Bulgaria

B. Andel

Comenius University of Bratislava, Slovakia

- S. Hofmann, J. Maurer, S. Heinz GSI. Darmstadt, Germany
- D. Pantelica, C. Nita

IFIN-HH, Bucharest, Romania

S. Mullins, P. Jones, S. Ntshangase, iThemba LABS, South Africa

J. Gehlot

IUAC, New Dehli, India

Electrostatic separator VASSILISSA 1987 – 2004 – 2012

GABRIELA-Collaboration

(Gamma Alpha Beta Recoil Investigations with the ELectromagnetic Analyser)

- The joint JINR IN2P3 (France) project entitled "Study of nuclear structure and nuclear reaction mechanism of heavy and superheavy elements: Gamma and electron spectroscopy of very heavy nuclei with Z ≈ 104" started in year 2004.
- The scientific aims of the collaboration were approved by the Scientific Council of IN2P3 in December 2003 and by the Scientific Council of JINR in January 2004.
- The collaboration, which includes groups from CSNSM Orsay and IPHC Strasbourg for IN2P3 and for JINR, a group from the FLNR Laboratory, has led 5 experimental campaigns since 2004.

http://flerovlab.jinr.ru/flnr/vassilissa.html http://www.csnsm.in2p3.fr/-GABRIELA-?lang=en

GABRIELA@VASSILISSA

Spectroscopy of transfermium elements:

- Alpha spectroscopy Q_α values and partial half lives, identification of new nuclides using α-α correlation method
- Spontaneous fission TKE, prompt neutron multiplicity, partial half lives
- **>** Beta and gamma spectroscopy E_{γ} , E_{β} (conversion electrons), isomeric states at mother and daughter nuclei
- Correlation analysis prompt and delayed α, β, γ correlations, assignment of isomeric states.

The goals of modernisation:

- Study of heavy neutron rich isotopes, which can be produced in asymmetric combinations
- Study of isotopes, which can be produced in symmetric combinations
- Problem I: low transmission for asymmetric combinations
- Problem II: insufficient electric rigidity

Analyzed reactions

Magnetic rigidities of compound nuclei (T×m)

Electric rigidities of compound nuclei (MV)

Velocity filter SHELS (Separator for Heavy ELement Spectroscopy)

SHELS + GABRIELA

Movable plates of electrostatic deflectors

Determination of the transmission efficiency May - July 2013 $^{22}Ne + ^{198}Pt \rightarrow ^{220}Ra^*$

Determination of the transmission efficiency

November 2013

 $^{50}\text{Ti} + ^{164}\text{Dy} \rightarrow ^{214}\text{Ra}^*$

Test experiments year 2013

Reaction	E _{beam1/2} MeV	Target thickness	Transmission					
	boaminz	mg/cm ²	Old	New	Calc.			
May - July 2013								
²² Ne(¹⁹⁷ Au,5n) ²¹⁴ Ac	120	Met – 0.35	0.03	0.035 - 0.05 dete	0.14 Bigger ector size			
²² Ne(¹⁹⁸ Pt,6n) ²¹⁴ Ra	115 -125	Met – 0.3	0.03	0.035 - 0.05 dete	0.14 Bigger ector size			
²² Ne(²³⁸ U,5n) ²⁵⁵ No	115	U ₃ O ₈ – 0.35	0. 01	0.02 for n	0.09 netallic U			
November 2013								
⁵⁰ Ti(¹⁵⁴ Sm,6n) ¹⁹⁸ Po	240	Sm ₂ O ₃ – 0.3	0.3 (for ⁴⁸ C	0.4 a+ ¹⁷⁶ Yb)	0.45			
⁵⁰ Ti(¹⁶⁴ Dy,5n) ²⁰⁹ Ra	240	$Dy_2O_3 - 0.3$		0.4	0.45			
⁵⁰ Ti(²⁰⁸ Pb,2n) ²⁵⁶ Rf	237	PbS – 0.36	0.25 (for ⁴⁸ C	0.2 a+ ²⁰⁸ Pb)	0.4			

First research experiment with accelerated ⁵⁰Ti beam at FLNR U400 cyclotron

April 2014 ⁵⁰Ti beam intensity – 3x10¹² pps. Modernized VASSILISSA separator and neutron detector at the focal plane.

> ${}^{50}\text{Ti} + {}^{208}\text{Pb} = 2n + {}^{256}\text{Rf}$ more than 1500 events detected.

TKE spectra for ²⁵⁶Rf isotope

Neutron multiplicity measured for spontanerous fission of ²⁵⁶Rf isotope.

Tests of γ detection at the target position

Beam intensity about 20 pnA

Counting rate without target 2 kHz

Counting rate with ²⁰⁸Pb target (C backing foil) 3 kHz

Counting rate with ¹⁶⁴Dy target (Ti backing foil) 3.5 kHz

•Total counting rate at the focal plane at beam intensity 0.6 pµA – 700 Hz.

Double sided strip detectors

Factor of 2 in detection efficiency

Present status : Tests of new 128x128 strip DSSD

Left panel – double sided strip detector 128x128 strips, 100x100 mm² size. Right panel – 242 Pu alpha spectrum. Energy resolution obtained is about 15 keV.

Calculated transmission efficiency of SHELS

Reaction	E _{p1/2} MeV	Target thickness mg/cm ²	Transmission
²² Ne(²³⁸ U,5n) ²⁵⁵ No	115	$U_{3}O_{8} - 0.2$	0.06 (now –0.02)
²² Ne(²³⁸ U,5n) ²⁵⁵ No	115	Met – 0.2	0.09
²² Ne(¹⁹⁷ Au,5n) ²¹⁴ Ac	110	Met – 0.2	0.14
⁴⁰ Ar(¹⁸¹ Ta,4n) ²¹⁷ Pa	182	Met – 0.3	0.28
⁴⁰ Ar(¹⁶² Dy,7n) ¹⁹⁵ Po	198	DyO ₂ -0.3	0.28
²⁴² Pu(²² Ne,5n) ²⁵⁹ Rf	120	PuO ₂ -0.2	0.07
⁴⁸ Ca(²⁰⁸ Pb,2n) ²⁵⁴ No	216	Met – 0.4	0.42

Estimated counting rates

Reaction	Cross section	Transmission %	ERs counting rate per day
²⁴² Pu(²² Ne,5n) ²⁵⁹ Rf	3.0 nb	7	115
²⁴⁴ Pu(²² Ne,5n) ²⁶¹ Rf	5.0 nb	7	190
²⁴⁸ Cm(¹⁸ O,5n) ²⁶¹ Rf	13 nb	4	270
²⁴³ Am(²² Ne,5n) ²⁶⁰ Db	2.0 nb	7	70
²⁴³ Am(²² Ne,4n) ²⁶¹ Db	1.5 nb	7	55
²⁴⁸ Cm(²² Ne,5n) ²⁶⁵ Sg	0.3 nb	6	10
²⁰⁸ Pb(⁵⁴ Cr,1n) ²⁶¹ Sg	0.5 nb	50	90

GABRIELA 2015: Gamma detection efficiency estimations for new detector set up Clover detector

tick of the second seco

 Preliminary GEANT4 detector arrangement including a Clover and 4 EUROGAM phase-I. These surround the 10x10 cm² implantation detector (in blue) and its PCB (green).
Right : A first estimate of the achievable singles efficiency as a function of photon energy f or a distributed source.

New insights into the ²⁴³Am+⁴⁸Ca reaction

29744

293117

Cross section ~ 8 pb Target thickness ~ 10^{18} at/cm² Beam intensity ~ 5×10^{12} pps If ε ~ 40 % 1 event per day.

Conclusion:

The separator SHELS is prepared for experiments!