

Group VI Metal Hexacarbonyl Complexes: production, decomposition, modeling

Ilya Usoltsev (on behalf of the Carbonyl collaboration)

Paul Scherrer Institute and University of Bern

TASCA'14, GSI, Darmstadt, 2014

Carbonyl collaboration

M. Asai, H. Brand, Ch.E. Düllmann, R. Eichler, J. Even,
F. Fangli, H. Haba, W. Hartmann, M. Huang, E. Jäger,
D. Kaji, J. Kanaya, Y. Kaneya, J. Khuyagbaatar, B. Kindler,
J.V. Kratz, J. Krier, Y. Kudou, N. Kurz, B. Lommel,
S. Miyashita, K. Morimoto, K. Morita, M. Murakami, Y. Nagame,
H. Nitsche, A. Di Nitto, K. Ooe, T.K. Sato, M. Schädel,
J. Steiner, T. Sumita, M. Takeyama, K. Tanaka, A. Toyoshima,
K. Tsukada, A. Türler, I. Usoltsev, Y. Wakabayashi, Y. Wang,
N. Wiehl, S. Yamaki, A. Yakushev, Q. Zhi.

Introduction

Motivation

- The hexacarbonyl complex of Sg was synthesized.*
- It was predicted to be slightly more stable then the complex of its lighter homologue - W(CO)₆.**
- In our work we aimed at designing an experimental setup for testing this prediction.
- *J. Even, et al., Science 2014, 345, 1491.
- **C.S. Nash, B.E. Bursten, J. Am. Chem. Soc. 1999, 121, 10830.

Introduction

Stability...

 \dots of transition metal carbonyl complexes can be expressed in terms of M-CO first bond dissociation energies (FBDE)*.

$M(CO)_6$	Calculated, kJ/mol	Experiment, kJ/mol
$Mo(CO)_6$	171	169
$W(CO)_6$	198	192
$Sg(CO)_6$	205/212	not available

FBDE in turn determines the decomposition behavior of the given complex. Thus by investigating its decomposition, stability of $Sg(CO)_6$ can be addressed.

*C.S. Nash, B.E. Bursten, J. Am. Chem. Soc. 1999, 121, 10830.

Experimental

'Ms.Piggy'...

 $\ldots~^{252} \rm Cf$ spontaneous fission fragment source, located at University of Bern, allows for production:

Rh 107 21.7 m 10.12 700, 100	Rh 108	Rh 109 80 s 17 23, 20, 1 327, 426, 178 291, 113 9	Rh 110	Rh 111 11 s 275,412 231		Rh(CO).
Ru 106 3716 a gr 104 a	Ru 107 3,8 m 0° 3,2 194, 845, 463	Ru 108 4.5 m	Ru 109 34.5 s 17 2 3, 4 2 1926, 226 1929, 359	Ru 110 11.6 b 11.6 b 11.2 vie. 154		Ru(CO) ₅
Tc 105 7.6 m	Tc 106 36 s 276, 2239 1009, 2759	To 107 21.2 s 1 48 1 403, 177 106	Tc 108 5.17 s 7.242 406, 708 733 1554	Tc 109 114 4 150, (29, 96 (9	+ CO/He	Tc(CO) ₅
Mo 104	Mo 105 35.6 s # 49 85.77, 148 361, 250	Mo 106 67.5	Mo 107 3.5 s	Mo 108 1,110 5 2006, 301, 101		Mo(CO) ₆

Experimental

Setup

The following equipment was implemented at 'Ms.Piggy':

Experimental

Decomposition column

Decomposition process

 $Mo(CO)_6 \longrightarrow Mo + 6 CO$

Decomposition curves...

...are strongly influenced by **the CO content**, **decomposition surface** and the gas flow rate.

Decomposition curves...

...are strongly influenced by the CO content, decomposition surface and **the gas flow rate**.

$Mo(CO)_6$ and $W(CO)_6$

Hexacarbonyl complexes were produced in the following fusion-evaporation reactions at GARIS (RIKEN, Japan) and detected with COMPACT:

^{*nat*}Zn(²⁴Mg,xn)^{87–88}Mo ¹⁴⁴Sm(²⁴Mg,xn)^{163–164}W

Significant difference in decomposition behavior was observed:

Analysis

Simulation approach

Implementation of the I.Zvara's Monte-Carlo model of gas adsorption chromatography, coupled to Monte-Carlo simulation of a single-step decomposition reaction, with the following assumptions:

Decomposition...

- …happens only on the surface.
- ...is irreversible.
- ... is a first order kinetics process.
- ...activation enthalpy $(\Delta H^+) = FBDE$.

Analysis

$$Mo(CO)_6 \rightleftharpoons Mo(CO)_{6(ads)} \longrightarrow Mo(CO)_{6-x} + xCO$$

Simulation

t_{ads} is given by I.Zvara's model:

$$t_{ads} = \frac{1}{\nu_{\beta}} \exp{\frac{-\Delta H_{ads}}{RT}}$$

t_r is calculated from Eyring equation:

$$k = rac{k_b T}{h} \exp rac{\Delta S^+}{R} \exp rac{-\Delta H^+}{RT}$$
 $t_r = rac{1}{k}$

By using the least squares fitting of the experimental results with the simulated curves,

 ΔS^+ was found to be 105 J/K/mol.

Results for Mo and W carbonyls

Prediction

Available theoretical and experimental data were used for simulating the decomposition behavior of Sg carbonyl.

Results for $Sg(CO)_6$

Prediction

Available theoretical and experimental data were used for simulating the decomposition behavior of Sg carbonyl.

Results for $Sg(CO)_6$

Prediction

For a given ΔS^+ of 105 J/K/mol.

$Mo(CO)_6$ production yield...

\ldots is strongly influenced by the ${\bf CO}$ concentration and by the gas flow rate.

$Mo(CO)_6$ production yield...

\ldots is strongly influenced by the CO concentration and by the ${\bf gas}\ {\bf flow}\ {\bf rate}.$

Transport time

Retention time of $Sg(CO)_6$ in a 10 m Teflon capillary is strongly influenced by the temperature and by the gas flow rate.

-∆H _{ads} , kJ/mol	T,°C	P, bar	Gas flow, I/min	Retention time, s
54	25	0.7	1.0	70
54	25	0.7	2.0	35
54	25	0.5	2.0	25
54	50	0.5	2.0	5
54	100	0.5	2.0	<1
50	25	0.5	2.0	5
50	15	0.5	2.0	10

Detrimental effect of oxygen

Few percent of O_2 in the carrier gas bring the production yield of $Mo(CO)_6$ to zero. This effect is expected to be even more pronounced with Sg.

Compound	ΔH° , kJ/mol	
MoO ₂	-589	
MoO ₃	-745	
WO ₂	-590	
WO ₃	-843	
*SgO ₃	-874, -951	

*B. Eichler, A. Türler, and H. Gäggeler, J. Phys. Chem. A, vol. 103, pp. 9296–9306, 1999.

CO₂ Oxydation of CO to CO₂ in the *decomposition column* is inevitable if oxygen is present in the carrier gas.

Conclusions

- We suggested a fast and efficient approach for testing the stability of the group VI carbonyl complexes.
- Experimental results were successfully reproduced by the model both for Mo(CO)₆ and W(CO)₆.
- Suggested simulation can be used for designing and evaluating data of the future decomposition experiments with Sg(CO)₆.
- In order to maximize the yield of the Sg carbonyl complex CO concentration and the carrier gas flow rate must be kept as high as possible.
- Oxygen must be constantly monitored and removed from the system efficiently.
- The transport efficiency could be improved drastically by heating up a capillary between RTC and detection unit.

Acknowledgements

We thank the ion source and accelerator staff at the RIKEN Nishina Center for Accelerator-Based Science for providing intense and stable ion beams. The present work is partially supported by the Reimei Research Program (Japan Atomic Energy Agency), the German Federal Ministry for Education and Research contract No. 06MZ7164, the Helmholtz association contract-No.VH-NG-723, the Swiss National Science Foundation contract No. 200020-144511, and the Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, Heavy Element Chemistry Program of the U.S. Department of Energy at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231, and the National Natural Science Foundation of China (Grant No. 11079006).