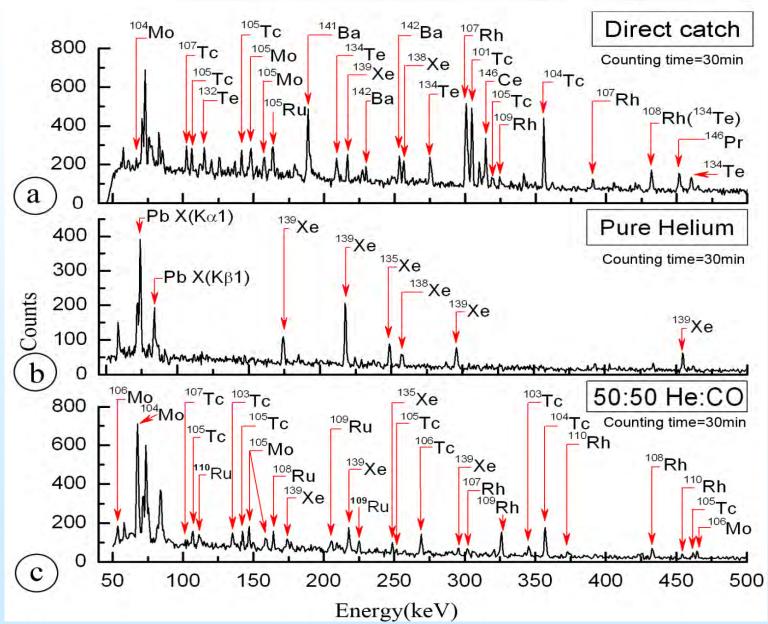

Formation of Mo/W carbonyls by laser-ablation method

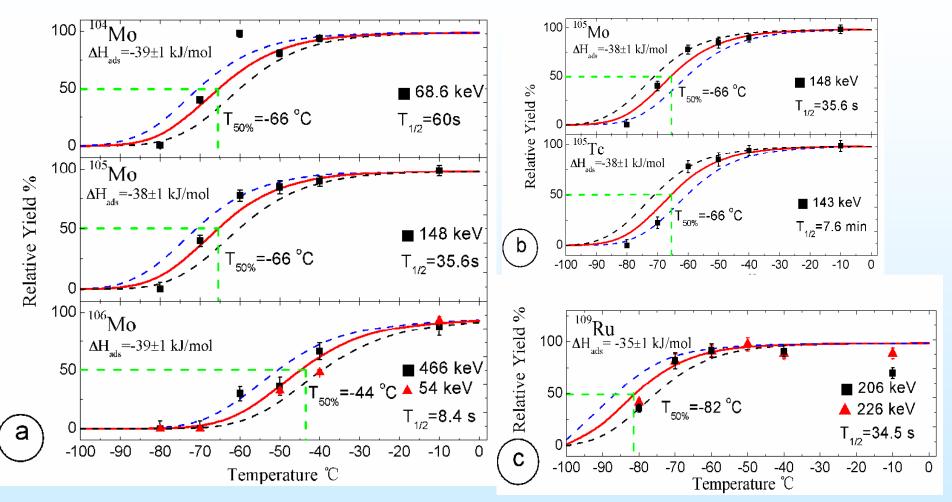
Qin Zhi, Wang Yang, Fan Fangli

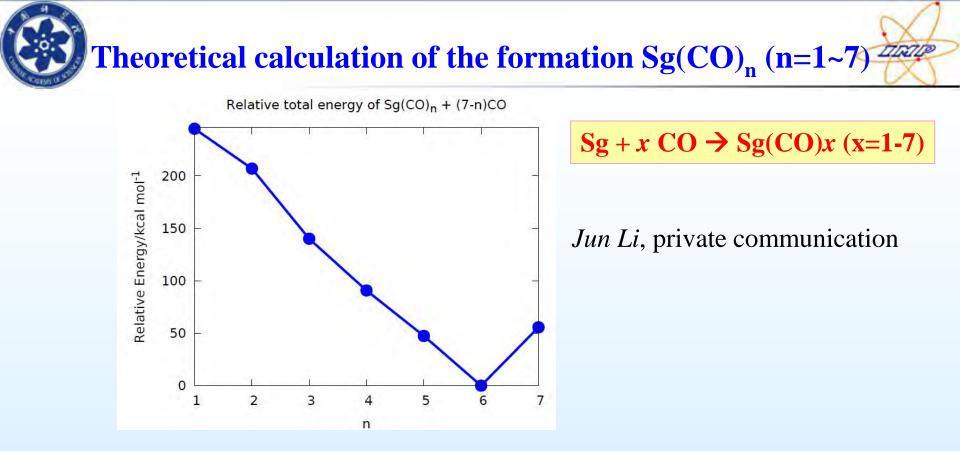
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, P.R. China

TASCA 2014, GSI, Germany


Gas-phase chemistry of Mo, Ru metal carbonyls Radiochimca acta 102(2014)69-76,

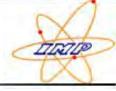
Institute of Modern Physics, Chinese Academy of Sciences





 $T_{50\%}$ values for ¹⁰⁵Mo and ¹⁰⁵Tc are identical. ¹⁰⁵Tc was formed in the charcoal filter by β -decay of the transported precursor ¹⁰⁵Mo.

Conclusion

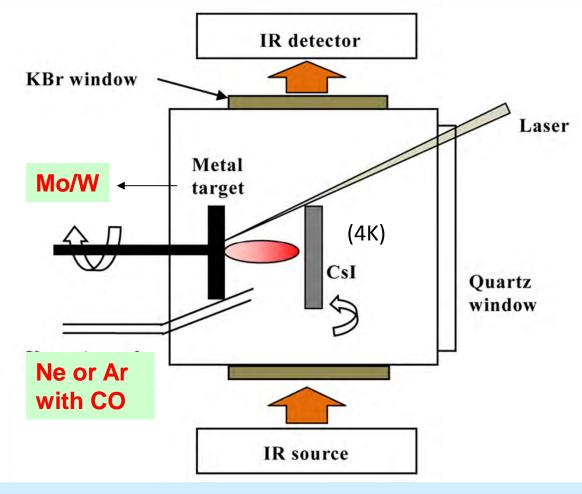

(1)This reaction is exothermic in thermodynamics and don not need potential barrier in dynamics.

(2)the generation of Sg(CO)*x* is *a* spontaneous cold atomic reaction.

(3)The stablity of Sg(CO)6 is the most high.

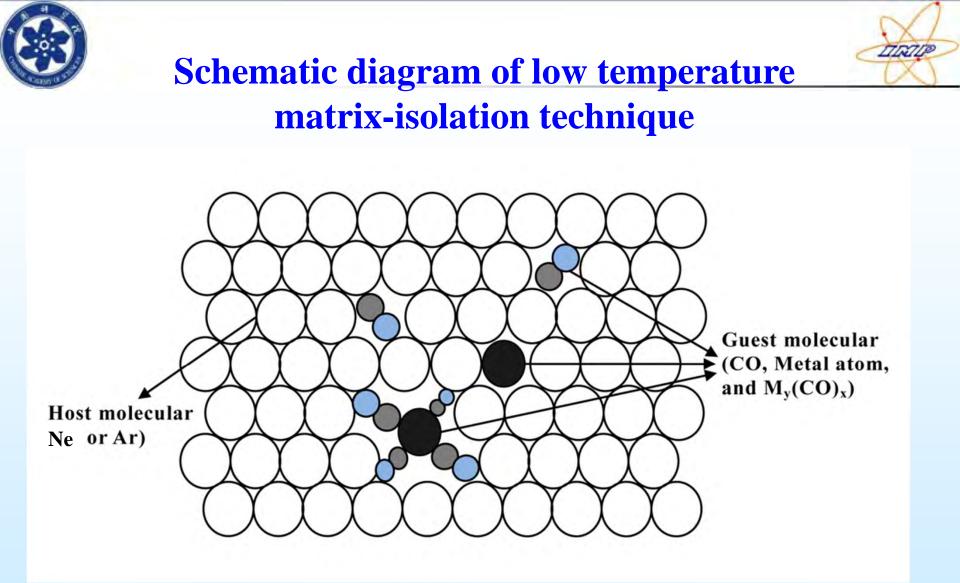
(1) Is it a hot-atom chemistry?

(2) Which kind of chemical compound is formed under our experiment condition?


Laser-ablation matrix-isolation @ infrared spectroscopy

<u>Mingfei Zhou</u>, Lester Andrews and Charles W. Bauschlicher, Jr. Spectroscopic and Theoretical Investigations of Vibrational Frequencies in Binary Unsaturated Transition-Metal Carbonyl Cations, Neutrals, and Anions Chem. Rev. 2001, 101, 1931-1961

Prof. Mingfei Zhou, Department of Chemistry, Laser Chemistry Institute, Fudan University, Shanghai 200433, P. R. China


Experimental set-up at Fudan University

Laser irradiate rotating metal Then laser-ablated targets. metal atoms will be codeposited with CO (0.1-50%) in excess Ar onto a 4-5 K CsI cryogenic window for 30 min. And then Infrared spectra were recorded. The samples matrix will be annealed different at temperatures.

TIRTO

Laser-ablation matrix-isolation @ infrared spectroscopy

Comparison of gas phase Ne and Ar Matrix Frequencies (cm⁻¹) for Group 6 Carbonyls

	Мо			W		
	g as ^e	Ned	Ar	gase	Ned	Ar
M(CO) M(CO) ₂		1881.2	1862.6 ^e		1859.9	1848.8°
		1895.2	1891.9°		1884.5	
M(CO) ₃	1891	1886.1	1869		1882.4	1865 ^c
M(CO) ₄						
	1972	1965.7	1951 ^c	1957	1954.0	1939
	1911	1908.9	1895°	1909	1909.0	1894 ^c
M(CO)₅	1990	1984.5	1973°	1980	1975.9	1963 ^c
	1942	1944.6	1933°	1942	1941.1	193 <i>2</i> °
M(CO) ₆	2003	2000.6	1992°	1998	1995.3	1986
	598.6	2000.0	587	588.5	1775.5	1700

Lester Andrews, Mingfei Zhou, and Gennady L. Gutsev, J. Phys. Chem. A,2003. 107:990-999

Reaction Mechanisms

Mo and W atoms react with CO on codeposition with excess neon and on annealing the solid to form all of the mononuclear carbonyls M(CO)n (n = 1-6). Once formed, the MCO species readily add CO to produce the dicarbonyls, reaction 2. The yield of $M(CO)_3$ is small implying a slow reaction 3, but once formed, $M(CO)_3$ reacts rapidly with CO to form $M(CO)_{4,5,6}$. Because the saturated $M(CO)_6$ complexes have singlet ground states, fast reaction 4 suggests singlet states for the unsaturated $M(CO)_{3,4,5}$ intermediates.

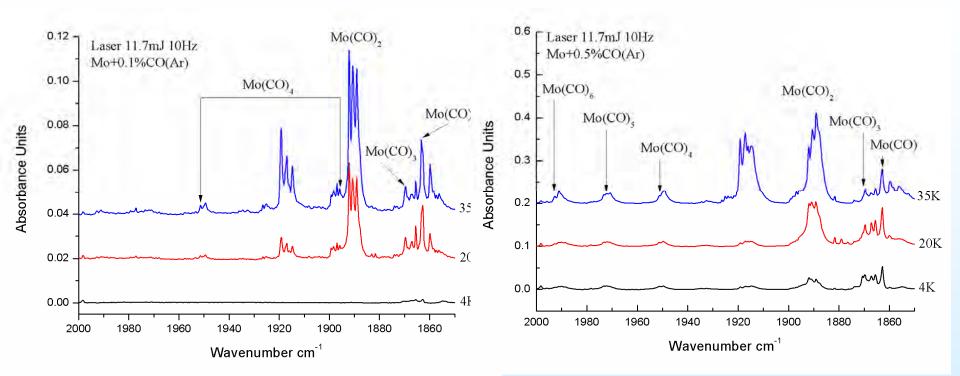
$$Mo(^{7}S_{3}) + CO(^{1}\Sigma^{+}) \rightarrow MoCO(^{5}\Pi)$$
(1a)

TRAD

$$W(^{5}D_{0}) + CO(^{1}\Sigma^{+}) \rightarrow WCO(^{5}\Pi)$$
(1b)

$$MCO({}^{5}\Pi) + CO({}^{1}\Sigma^{+}) \rightarrow M(CO)_{2}({}^{5}A_{2})$$
(2)

 $M(CO)_2 ({}^{5}A_2) + CO ({}^{1}\Sigma^{+}) \rightarrow M(CO)_3 (singlet)$ (3)


$$M(CO)_{3} \text{ (singlet)} + 1,2,3CO (^{1}\Sigma^{+}) \rightarrow M(CO)_{4,5,6} \text{ (singlet)}$$

$$(4)$$

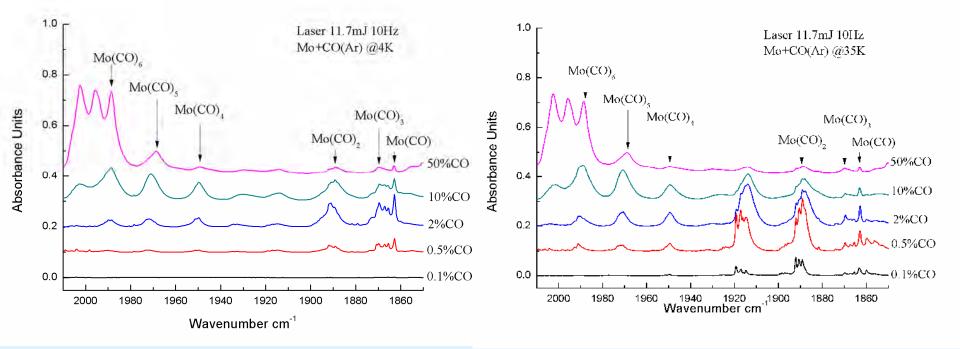
Lester Andrews, Mingfei Zhou, and Gennady L. Gutsev, J. Phys. Chem. A,2003. 107:990-999


TRIP

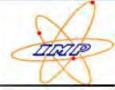


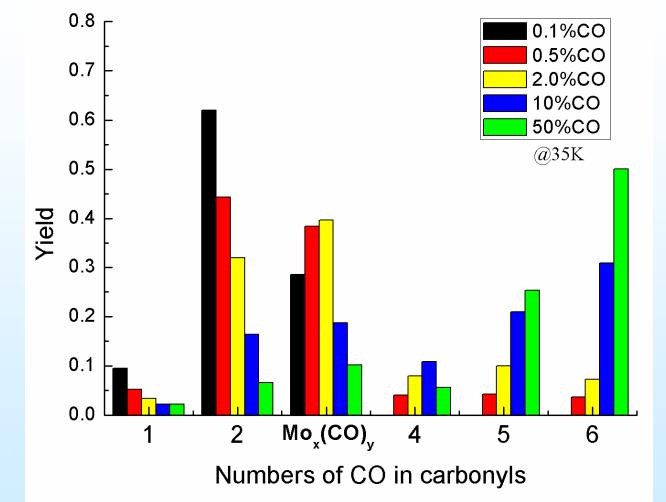
Infrared spectra of Mo-carbonyls as the function of temperature

For 0.1%CO in argon, no carbonyls was found at 4k. After annealing to 20 K, MoCO,Mo(CO)₂ and Mo(CO)₄ were observed. So this is not a "hot atom reaction " For 0.5%CO, MoCO and Mo(CO)₂ were found at 4k due to the more CO in the experiment. After annealing to 35 K, Mo(CO)₆ carbonyls appeared.



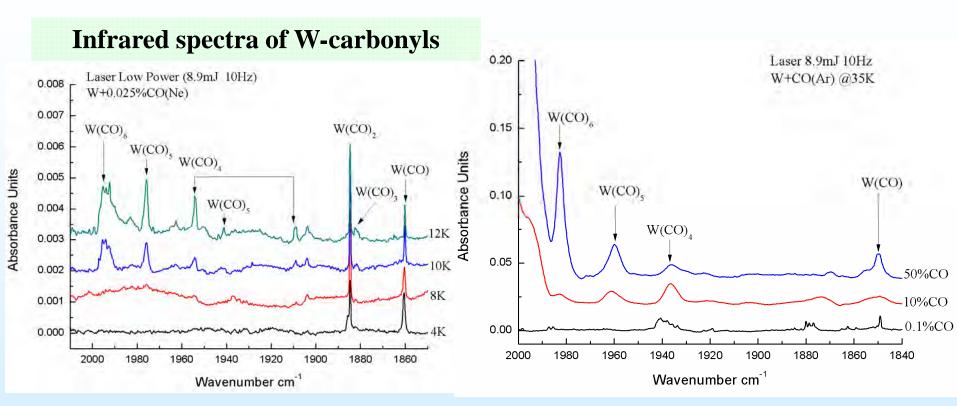
Infrared spectra of Mo-carbonyls as the function of temperature When the concentration of CO was 10%, all of the mononuclear carbonyls M(CO)n (n=1-6) were found at 4k. For 50% CO, the saturated $Mo(CO)_6$ was the main products.



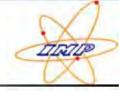


Infrared spectra of Mo-carbonyls for different concentration CO

With the increase of CO concentration under the same temperature, mononuclear carbonyls M(CO)n (n=1-6) formed more easily and the saturated $Mo(CO)_6$ was the final stable products.



Yields of Mo-carbonyls with different (CO) numbers in various CO concentration


TRIP

For 0.025% CO in neon, only WCO and $W(CO)_2$ were observed. But these unsaturated carbonyls readily add CO to produce stable saturated Mo(CO)₆ when increase the annealing temperature.

- 1. The formation of Mo/W-carbonyls is a "cold-atom reaction"
- 2. In excess CO and inert gas mixture, the free Mo/W atoms will form $Mo/W(CO)_6$ directly and saturated hexacarbonyl complex is the main products.

group	VB	VI	VII	VIII		
Element and carbonyls	V(CO) ₆	Cr(CO) ₆	$Mn(CO)_5?$	Fe(CO) ₅	$\operatorname{Co}_2(\operatorname{CO})_8$	Ni(CO) ₅
			$Mn_2(CO)_{10}$	$\operatorname{Fe}_2(\operatorname{CO})_9$		
				Fe ₃ (CO) ₁₂	Co ₄ (CO) ₁₂	
		Mo(CO) ₆	$Tc(CO)_5?$	Ru(CO) ₅	Rh ₂ (CO) ₃	
			$Tc_2(CO)_{10}$	Ru ₂ (CO) ₉	Rh ₄ (CO) ₁₂	
		W(CO) ₆	$\operatorname{Re(CO)}_5$?	Os(CO) ₅	$\operatorname{Ir}_4(\operatorname{CO})_{12}$	
			$\operatorname{Re}_2(\operatorname{CO})_{10}$	$Os_2(CO)_9$		
		Sg(CO) ₆	Bh	Hs	Mt	

1. Laser-ablation matrix-isolation infrared spectroscopic investigation

2、Tc,Ru and Rh carbonyls study using new ²⁵²Cf source

Commences of the second