

Studies of Flerovium Homologs with Macrocyclic Extractants

John D. Despotopulos^{1,2}, Kelly N. Kmak³, Narek Gharibyan¹, Roger A. Henderson¹, William Kerlin², Kenton J. Moody¹, Ralf Sudowe², Dawn A. Shaughnessy¹

> ¹Lawrence Livermore National Laboratory, Chemical Sciences Division, Livermore, California 94551, USA ²University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA ²University of California Berkeley, Berkeley, California 94720, USA

> > TASCA14, Darmstadt, Germany, 10/21/2014

LLNL-PRES-662093

Lawrence Livermore National Laboratory

Chemical properties of the heaviest elements are determined through systematic studies of chemical groups

			Some perfo	e che orme	mical d on (expe Grou	erime os 4-8	ents h 3, 12	ave k _	been									
1			Depe	endin	g on t	the c	hemi	cal sy	vstem	۱,								_1	8
1 H	2	i	inver	sions	in gr	oup 1	trend	s hav	e be	en n			13	14	15	5 16	5 17	7 ²	le
з Li	⁴ Be		relati	ivistic	effe	cts	isacti	mues	5 11 01				5 B	⁶ C	7 N	8 0	۹ F	10 N) le
11 Na	¹² Mg	3	4	5	6	7	8	9	1	0 1	1 1	2	13 Al	¹⁴ Si	15 P	16 S	17 C	18 I A	r.
19 K	²⁰ Ca	21 So	22 C T	23 V	24 C	r <mark>N</mark>	In F	e C	0 N	li C	u Z) n	Ga	³² Ge	33 As	34 Se	35 B	r K	ŝ
³⁷ Rb	³⁸ Sr	39 Y	40 Z	r N	b <mark>4</mark> 2 b M	0 43	c R	u R	h P	d A	48 g C	3 d	49 In	⁵⁰ Sn	51 Sk	52 Te	53 •	54 X	e
55 Cs	56 Ba	57-7 La	⁷¹ 72	73 f Ta	a 74 N	75 / R	e 0	s Ir	78 P	t A	9 80 .u H) la	81 TI	82 Pb	⁸³ Bi	84 Pc	85 A	t R	s In
87 Fr	⁸⁸ Ra	89-1 A	03 10-	4 10 f D	5 10 b S	3 10 α Β	7 10 h H	8 S				12			?				
					<u> </u>			N	11 11 11 11 11 11 11 11	s R	g	'n	113 	FI	115 	116 LV	/ 11]	7 11 	8 -
		Г	F7	50	50	00	01	00			05			_		<u> </u>	70		7
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb		Dv F	Holl	Ēr	Ťm	Yb	Lu	
			89 Ac	⁹⁰ Th	91 Pa	92 	⁹³ Nn	94 P 11	95 Am	96 Cm	97 Bk	9 (98 9 Cf F	9 S F	100 -m	¹⁰¹ Md	102 No	103 r	
			, .0										/ -	-0 1					

 Predictions of Fl chemistry indicate it could be a metal or inert gas

۲

Two gas-phase experiments (GSI and PSI/FLNR) show contradictory results

Automated radiochemistry is being developed for heavy elements and other applications

Accelerator target chamber

Accelerator - Chemistry Interface

Automated chemistry system

Isotope Production and Integration of Automated Systems

Carrier-Free Isotope Production at LLNL Center for Accelerator Mass Spectrometry (CAMS)

²¹²Pb Generator

- ²³²U solution with all daughters in secular equilibrium.
- Added to AG 50w x 8 cation exchange column in 1 M HCI.
- Retains all radionuclides above ²¹²Pb in decay chain.

AG 50w x 8 generator

Elution	Solution				
²¹² Pb	2.0 M HCI				
²¹² Bi	0.5 M HCI				

Macrocyclic Extractants

- Crown complexes unusually stable
 - Binding of cations by electrostatic ion-dipole interaction between cations and the negatively charged ring (oxygen, sulfur, etc.) donor atoms.
- Macrocyclic ligands are known to extract Pb based on cavity size, ionic radius, and complexation

Eichrom's Pb Resin, Hexathia-18-Crown-6, and Tetrathia-12-Crown-4

Eichrom's Pb Resin extractant: di-t-butylcyclohexano-18-crown-6

- 0.75M di-t-butylcyclohexano-18-crown-6
- Isodecanol solvent
- Available as free resin
- Available as 2mL pre-packed cartridges

Hexathia-18-crown-6 Tetrathia-12-crown-4

- Sulfur analog of 18-crown-6 and 12-crown-4.
- Thia-crown ethers should extract softer metals, such as Pb/Hg.
- Little known extraction studies.
- Synthesized in-house (HT18C6)

Batch Study Results

- All results are presented as k', the number free column volumes to reach peak maximum for a given elution.
- k' can be determined from D_w and a resin multiplication factor:

Resin	Correction Factor (F)				
Pb	0.55				

Batch Study

Batch Results

Figure. The batch uptake (k') of ²¹²Pb²⁺, ¹¹³Sn⁴⁺ and ¹⁹⁷Hg²⁺ as a function of hydrochloric acid media on Pb resin (50-100 µm) with a 3 hour equilibration time.

Kinetics Study

Kinetics Results

Figure. (A) Kinetics of ²¹²Pb in1 M HCl media and **(B)** ¹¹³Sn in 4 M HCl media **(C)** ¹⁹⁷Hg in 0.4 M HCl media on Pb resin (50-100 µm) with a varying equilibration

Kinetics Results

Figure. (A) Kinetics of ²¹²Pb in1 M HCl media and **(B)** ¹¹³Sn in 4 M HCl media **(C)** ¹⁹⁷Hg in 0.4 M HCl media on Pb resin (50-100 µm) with a varying equilibration

Kinetics Results

Figure. (A) Kinetics of ²¹²Pb in1 M HCl media and **(B)** ¹¹³Sn in 4 M HCl media **(C)** ¹⁹⁷Hg in 0.4 M HCl media on Pb resin (50-100 µm) with a varying equilibration

times.

Column Study

Front end count

2 mL pre-packed column, 2 mL/min flow (2 mmHg)

Fraction	[HCI]	Number of Fractions (1 mL each)						
Load	0.4 +10 μL H ₂ O ₂	1						
Elute Sn	Load + 0.4	8						
Elute Pb	8	9						
Elute Hg	Conc.	11						

Table Column elution fractions

Note: ¹¹³Sn fractions counted 24hrs later to allow for secular equilibrium of ¹¹³In

1 mL 0.4 M HCl with 10 cps ²¹²Pb/¹¹³Sn /¹⁹⁷Hg

Back end count

16

Column Study Results

Figure. Separation of Sn(IV), Pb(II) and Hg(II) with 2 mL pre-packed Pb resin (50-100 μ m) on vacuum box with 2 mL/min flow rate.

17

Thiacrown Liquid-Liquid Studies

¹⁹⁷Hg Extraction by Hexathia-18-Crown-6

Figure. ¹⁹⁷Hg extraction by ~0.003 M hexathia-18-crown-6 in dichloromethane.

¹⁹⁷Hg, ²¹²Pb, and ¹¹³Sn Extraction by Tetrathia-12-Crown-4 and Hexathia-18-Crown-6

Figure. ¹⁹⁷Hg, ²¹²Pb, and ¹¹³Sn extraction by ~0.0001 M hexathia-18-crown-6 (Left) and ~0.0001 M tetrathia-12-crown-4 (Right) in dichloromethane.

Conclusions Pb Resin

- Pb, Sn, and Hg can be fully separated with the Eichrom Pb resin.
 - Pb and Sn can be separated on the second time scale.
 - Hg has very slow sorption and desorption kinetics and therefore cannot be effectively separated from Pb/Sn without long wait times between elution.
 - Not effective for a transactinide chemical system, if Hglike character is desired.

Conclusions Thiacrowns

- Hg kinetics on both TT12C4 and HT18C6 is much faster than the analogous crown ether.
- Extraction is presumably Hg coordinating with the sulfur ring atoms (not in the cavity).
- Pb/Sn show no extraction most-likely due to the fact that the un-substituted thiacrown ethers have charge density oriented perpendicular to the ring verses into the center of the cavity like normal crown ethers.
- Adding a substituent like potentially di-benzohexathia-18crown-6, etc. can force the charge density to mimic that of a normal crown ether (toward the cavity) and thus should show far increased extraction of Pb as well as Hg.

Future Work

- Continue to investigate the thiacrown ethers.
- Synthesize thiacrowns with substituents that will force the charge density to mimic that of the traditional crown ether, to see if (as expected) it will extract Pb when this condition is met.
- Investigate the kinetics more completely, initial studies indicate the thiacrowns vastly increase the extraction kinetics for Hg and one would expect the same should occur for other soft-metals like Pb once the proper thiacrown for the extraction is found.
- Due to the low solubility of thiacrown ethers in most organic solvents, work on incorporating them into a resin of some form.

Acknowledgements

- LLNL Heavy Element and UNLV Radiochemistry Group.
- This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 11-ERD-011.

