Investigation of shell structure and shape evolution in ^{102,104}Sn with IDATEN

Joochun (Jason) Park

IDATEN workshop July 6, 2022

Physics motivation

B(E2) systematics of even-even Sn isotopes still under major investigation

Lower precision (statistics) on neutrondeficient isotopes, production method challenging for reliable Coulex experiments

[in-flight \rightarrow high energy \rightarrow unsafe Coulex]

Wavefunction components away from origin \rightarrow deformation in Sn isotopes!

Physics case of ¹⁰²Sn

¹⁰²Sn: effects of 2n on core polarization of ¹⁰⁰Sn

Half-life of the 6⁺ state known with good precision

Intermediate-energy Coulex experiment performed at RIBF for B(E2) of the 2⁺

Goal: measure T_{1/2} of the intermediate 4⁺ state precisely for B(E2) systematics

Physics case of ¹⁰⁴Sn

0

¹⁰⁴Sb

Level scheme of ¹⁰⁴Sn not known through β decay spectroscopy of ¹⁰⁴Sb

-	1/2			
	Iso- tope	half life [s]	decay energy [MeV]	branching ratio
	¹⁰⁰ Sn	$T_{1/2} = 0.94_{-0.27}^{+0.54}$	$E_{\beta} = 3.4^{+0.7}_{-0.3}$	$\frac{\beta p}{\beta \gamma} < 20\%$
			$E_{\gamma} = 2.76 \pm 0.43$	
Č,	¹⁰⁴ Sb	$T_{1/2} = 0.44^{+0.15}_{-0.11}$	2	$\frac{p}{\beta \gamma} < 7\%$,
				$\frac{\beta p}{\beta \gamma} < 7\%$
	¹⁰⁵ Sb	$T_{1/2} = 1.12 \pm 0.16$	$(E_p = 0.550 \pm 0.030)$	(<u>p</u> ≈1%)
	¹⁰² Sn	$T_{1/2} = 4.6 \pm 1.4$	$E_{ymean} = 1.86 \pm 0.250$	-
	¹⁰⁰ In	$T_{1/2} = 6.3^{+1.0}_{-0.9}$		

Only $T_{1/2}$ measured at GSI, **J**^{π} unknown

T. Faestermann et al., GSI Sci. Rep. 96-1, 21 (1996)

- T_{1/2}(4⁺) through 314(start)-683(stop)
- Structure expansion of ¹⁰⁴Sb and ¹⁰⁴Sn

 1^{+}

LISE++ RIB production setting

Primary beam: ¹²⁴Xe beam, 140 pnA

Dipole magnet settings: ¹⁰³Sb [interpolation of ¹⁰⁴Te and ¹⁰²Sn]

F1 slit adjustment: -25 mm F5 slit adjustment: 30 mm

Nuclei of interest and rates:

- ¹⁰²Sn: 9.24 pps
- ¹⁰⁴Sb: 0.522 pps
- $^{104}\text{Te} \rightarrow ^{100}\text{Sn}$ alpha decay, 1.52e-2 pps [comparable to ^{100}Sn setting, $T_{1/2} \sim 20$ ns]

Overall rate on WAS3ABi: 81.2 pps

Feasibility calculations – ¹⁰²Sn

	102Sn		
Beam time (days)	5		
Production rate	9.24E+00		
implantation counts	3.99E+06		
isomeric ratio	0.25		
Half-life (ns)	366		
flight time (ns)	630		
surviving isomers after F11	302642		
	6 to 4, 88 keV	4 to 2 <i>,</i> 497 keV	2 to 0, 1472 keV
IDATEN efficiency	0.2	0.088	0.032
internal conversion coefficient	2.51	0.00751	0.000645
gammas (singles)	17245	26434	9678
gammas (coincidence)		1518	552

2.098 4+ 1 100.0000 0.105 999.00 0.0000E+00 0.1227E+02 0.000 -25.266

Ei Ji ni T_(1/2) width M1 moment Q moment NuShellX sn-snt interaction (MeV) (psec) (eV) (u_N) (e^2 fm^2) 1.580 2+ 1 2,421713 0,1883E-03 0.048 -3.80 -----B(2) Ef Jf nf BR Eg del B(1) A_p A_n 0,000 0+ 1 100,0000 1,580 999,00 0,0000E+00 0,2372E+02 0,000 21,782 Statistics for precise 0,149 -6,74 -----4+ 1 (0.6377E+03) 0.7152E-06 2,098 measurement, $T_{1/2} \simeq 0.1$ -1 ns Jf nf BR Eg del B(1) B(2) A_p A_n Ef 1,580 2+ 1 100,0000 0,518 999,00 0,0000E+00 0,2378E+02 0.000 -29.258 2.203 1 0,3615E+07 0,1262E-09 0,077 -17.38 ------6+ B(2) Ef Jf nf BR Eg del B(1) A_p A_n

6

Feasibility calculations – ¹⁰⁴Sn

Experimental isomeric ratios of odd-odd nuclei

	104Sn		
Beam time (days)	5		
Production rate	5.22E-01		
implantation counts	2.26E+05		
Beta decay correlation	0.5		
isomeric ratio	0.1	Rough esti	mate
	6 to 4, 314 keV	4 to 2, 683 keV	2 to 0, 1260 keV
IDATEN efficiency	0.14	0.068	0.038
internal conversion	0.0306	0.00318	0.000645
gammas (singles)	1532	764	428
gammas (coincidence)		104	58

Statistics slightly challenging for $T_{1/2}(4+)$, largely dependent on the isomeric ratio

Nucleus	J_m^A	Decay	R_{\exp} (%)
		mode(s)	
⁸⁸ Zr	(8+)	γ, IC	69(5)
⁹⁰ Nb	(11-)	γ , IC	16(3)
⁹⁰ Mo	(8+)	γ , IC	61(3)
⁹⁰ Rh	(7+)	$\beta, \beta p$	86(3)
⁹¹ Nb	(17/2-)	γ , IC	47(12)
⁹² Mo	(8+)	γ , IC	48(10)
⁹² Tc	(4+)	γ , IC	10(1)
⁹² Ru	(8+)	γ , IC	32(33)
⁹² Rh	(4+)	γ , IC	6.8(32)
⁹³ Tc	(17/2-)	γ , IC	54(5)
⁹³ Ru	$(21/2^+)$	γ , IC	53(2)
⁹⁴ Ru	8+	γ , IC	68(6)
⁹⁴ Pd	(19-)	γ , IC	6.8(29)
	(14+)	γ , IC	30(1)
⁹⁴ Ag	(7+)	$\beta, \beta p$	77(3)
	(21+)	β, βp, p	<3
⁹⁵ Pd	$(21/2^+)$	β	77(11)
⁹⁵ Ag	$(37/2^+)$	γ , IC	7.7(7)
	$(23/2^+)$	γ , IC	41(7)
	$(1/2^{-})$	γ , IC	2.9(8)
⁹⁶ Pd	(8+)	γ , IC	76(1)
⁹⁶ Ag	(19+)	γ , IC	1.4(8)
	(15+)	γ , IC	18.7(4)
,	(13-)	<u>γ, IC</u>	12.4(13)
	(2+)	$\beta, \beta p$	22(3)
⁹⁶ Cd	(16+)	$\beta, \beta p$	22(3)
⁹⁷ Cd	$(25/2^+)$	$\beta, \beta p$	37(3)
98Ag	(4+)	γ , IC	4.2(10)
⁹⁸ Cd	(12 ⁺)	γ , IC	10(1)
1=	(8+)	½,IC _	97(36)
⁹⁸ In	(9+)	$\beta, \beta p$	59(2)
		$\sigma(J_m^+)$	> 4 only)

JP et al., PRC 96, 044311 (2017) 7

Summary of aims

¹⁰²Sn

• $T_{1/2}$ and B(E2) of 4⁺ state below the 6⁺ isomer

¹⁰⁴Sb

- Detailed beta-decay spectroscopy: $T_{1/2}$, J^{π} of the ground state/isomer, first beta-delayed γ -ray spectroscopy
- Population and T_{1/2} measurement of the 4⁺ state in ¹⁰⁴Sn for B(E2) systematics of higher excited states in Sn isotopes