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Abstract

As the key synchrotron of FAIR, SIS100 should be operated at the “space charge limit” for
light- and heavy-ion beams. While delivering maximum intensities, the beam losses due to
space-charge-induced resonance crossing should not exceed a few percent during a full cycle.
The one-second-long injection plateau poses the most critical challenge in terms of beam
dynamics – in particular for the U28+ beams. Based on the recent progress on cold bench
measurements of the SIS100 dipole and quadrupole magnets, as well as the newly established
GPU-accelerated SIS100 tracking simulation suite, we are now in position to realistically model
and explore the space charge limit of SIS100.

This talk presents the recently published extensive results on SIS100 performance at the space
charge limit. We discuss the magnet field error model and the correspondingly driven betatron
resonances. A key aspect is the comparison of 3D space charge models, validating the fast
approximative solver results with fully self-consistent computations, for the first time for
long-term conditions. We identify the achievable maximum beam intensity from simulations
covering the full duration of the injection plateau. We conclude with discussing several
countermeasures to increase the space charge limit: beta-beat compensation, double-harmonic
rf bunch flattening, and finally the promising novel technique of space charge compensation
with electron lenses.
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Motivation

Overview:
SIS100: deliver high-intensity beams

crucial for performance: maintain beam
quality during 1-sec injection plateau

uranium U28+ beam most critical:

largest beam size vs. transverse aperture
space-charge induced losses
 dynamic vacuum issues

challenge: efficient numerical model for
injection plateau

Status: 07.07.2017
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Contents

Key ingredients of study:
1. detailed model for magnetic field errors from cold bench measurements
2. full tracking model of machine lattice
3. detailed space charge models

self-consistent 3D PIC solver (particle-in-cell)
fast (approximative) frozen field maps

=⇒ parallelised on multi-core CPU and GPU architectures

FAIR GmbH | GSI GmbH Adrian Oeftiger 23 June 2022 3/21

https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.25.054402


Contents

Structure:
A. The Model
B. Betatron Resonances:

Intrinsic from Space Charge
External from Field Errors

C. Space-Charge Limit
D. Mitigation Measures
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A. The Model



Space Charge Modelling

Simulation model:
track macro-particles (m.p.) through accelerator lattice & space charge kicks

nonlinear 3D space charge (SC) models:

self-consistent: PIC solves Poisson equation for m.p. distribution
fixed frozen: constant field map independent of m.p. dynamics
(adaptive frozen: frozen field map scaled with m.p. distribution momenta)

Figure: sketch of simulation model
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Beam Parameters
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Figure: space charge tune footprint

Table: Considered Parameters for 238U28+ Accumulation at
SIS100 Injection Energy

Parameter Value
Hor. norm. rms emittance εx 5.9mmmrad
Vert. norm. rms emittance εy 2.5mmmrad

Rms bunch length σz 13.2m
Bunch intensity N of U28+

238 ions 0.625×1011

Max. space charge ∆QSC
y −0.30

Rms chromatic Q ′
x ,y ·σ∆p/p0 0.01

Synchrotron tune Qs 4.5×10−3

Kinetic energy Ekin =200MeV/u
Relativistic β factor 0.568

Revolution frequency frev 157 kHz
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B. Betatron Resonances



Only Space Charge
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Figure: tune diagram of beam loss

Cold, error-free, symmetric SIS100 lattice:
perfect dipole and quadrupole magnets
symmetry of S = 6 maintained
(no warm / normalconducting quadrupoles)
space charge → only source for resonances
simulated for 160’000 turns = 1 second

=⇒ mainly Montague resonance visible
=⇒ absence of low-order structure resonances!
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Cold, error-free, symmetric SIS100 lattice:
perfect dipole and quadrupole magnets
symmetry of S = 6 maintained
(no warm / normalconducting quadrupoles)
space charge → only source for resonances
simulated for 160’000 turns = 1 second

=⇒ mainly Montague resonance visible
=⇒ absence of low-order structure resonances!
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Montague Resonance

Montague resonance 2Qx −2Qy = 0:

4th-order resonance
intrinsically driven by space charge
transverse emittance exchange for
anisotropic beams

=⇒ stopband always present around Qx ≈Qy

for SIS100 beams

Space charge model predictions:
− “adaptive frozen” resolves full exchange but

predicts too large stopband extent
+ “fixed frozen” resolves stopband edges well!
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Figure: emittance exchange

Observation
“Fixed frozen” model better suited than “adaptive frozen” to

approximate realistic PIC when identifying loss-free conditions!
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Warm Quadrupoles

super-conducting quadrupoles
warm quadrupoles
corrector quadrupoles
assigned correctors

Figure: SIS100 quadrupole survey
[courtesy D. Rabusov]
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Figure: corrected warm quadrupoles

Real SIS100 lattice:
2 cold quadrupoles replaced by warm /
normalconducting quadrupoles (radiation
hardened, required in extraction region)
breaking of S = 6 symmetry

=⇒ gradient error
=⇒ externally driven half-integer resonance

=⇒ can be minimised by quadrupole correctors

Figure: β-beat around SIS100 [courtesy D. Ondreka]
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Half-integer Resonance

Half-integer stopband:
without space charge, without ∆p/p0: δQstopband = 0.023
without space charge, with ∆p/p0: δQstopband ∼ 0.1
with space charge: δQstopband ∼ 0.25

=⇒ fixed frozen SC model reproduces stopband edges from PIC
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Figure: no space charge
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Field Error Model
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Figure: dipole magnets
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Figure: quadrupole magnets

Field error model extracted from cold bench measurements of magnet units:
stochastic amplitudes drive non-systematic resonances
random number sequence → multipole errors for every dipole and
quadrupole magnet

quadrupole model displayed here corresponds to PRAB paper version (based on stamped FoS),
see GSI-2021-00450 report ↗ for model based on series production and its comparison
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Full Model with Space Charge

Linear and nonlinear resonances driven by magnet field errors. Resonance
condition without space charge:

mQx +nQy = p for m,n,p ∈Z
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Figure: no space charge

include=⇒
SC
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Figure: with fixed frozen space charge

−→ SC broadens existing resonance stopbands
=⇒ optimal working point area around (Qx ,Qy )= (18.95,18.87)

[requires transverse feedback system to fight resistive wall instability!]
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Figure: with fixed frozen space charge

−→ SC broadens existing resonance stopbands
=⇒ optimal working point area around (Qx ,Qy )= (18.95,18.87)

[requires transverse feedback system to fight resistive wall instability!]
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Validation with Self-consistent PIC

Self-consistent PIC simulations:
have already validated isolated (1) space-charge-driven (Montague) and
(2) gradient-error-driven stopband predictions from fixed frozen SC (FFSC)

−→ now validate full error model FFSC predictions for beam loss
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Figure: self-consistent PIC simulations
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Figure: comparison between SC models

note: PIC simulations take 2 days (on NVIDIA V100 GPU) vs. FFSC simulations with 7 min (on 16 CPU cores, HPC AMD)
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Relevant Field Error Orders

Major resonances confining low-loss area:
top left: Montague resonance
right: integer resonance Qx = 19
bottom: higher-order resonances

Simulations with reduced field error model:
identify sextupole and octupole orders
n= 3,4 as main limitation towards low Qy
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Figure: low-loss tune areas vs. multipole
order
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C. Space-Charge Limit



Space-Charge Limit

Keeping all beam parameters identical, increasing N:
−→ dynamic definition of space-charge limit: reached when loss-free working

point area vanishes
=⇒ U28+ space-charge limit at 120% of nominal bunch intensity N0
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Figure: low-loss area for increasing N
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D. Mitigation Measures



Correction of β-beat

Two sources of β-beat (gradient error):
warm quadrupoles: uncorrected = 2%
−→ significant effect on low-loss area size
=⇒ important to control

distributed b2: ≈ 0.5%
(according to field error model)
=⇒ below b2 = 10units: no significant effect

on low-loss area size
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Figure: low-loss area with warm
quadrupoles

FAIR GmbH | GSI GmbH Adrian Oeftiger 23 June 2022 15/21



Correction of β-beat

Two sources of β-beat (gradient error):
warm quadrupoles: uncorrected = 2%
−→ significant effect on low-loss area size
=⇒ important to control

distributed b2: ≈ 0.5%
(according to field error model)
=⇒ below b2 = 10units: no significant effect

on low-loss area size

18.80 18.85 18.90 18.95 19.00
Qx

18.80

18.85

18.90

18.95

19.00

Q
y

5% beam loss contours at 160000 turns

0

20

40

60

80

100

b 2
 [1

0
4  u

ni
ts

]

Figure: low-loss area with b2

0 20 40 60 80 1005
b2 [10 4 units]

1.0

10.0

100.0

lo
w-

lo
ss

 tu
ne

 a
re

a 
[0

.0
1×

0.
01

]

beam loss at
160000 turns:

5%
2%
1%

Figure: size of low-loss area vs. b2

FAIR GmbH | GSI GmbH Adrian Oeftiger 23 June 2022 15/21



Double-harmonic RF

By adding h= 20 harmonic at half base RF
voltage in bunch lengthening mode,

Vh=20 =Vh=10/2

obtain flattened bunches with reduced line
charge density at 80% of nominal λmax.
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Figure: line densities
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Results with Double-harmonic RF
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Figure: single-harmonic RF

flatten=⇒
bunch
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Figure: double-harmonic RF

Observations:
black half-integer stopband shrinks by ≈ 20%
low-loss area opens up
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SC Limit with Double-harmonic RF

Increasing N for double-harmonic RF:
find space-charge limit at 150% of nominal
intensity N0
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Figure: low-loss area for increasing N
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Pulsed Electron Lenses

Pulsed electron lenses:
short insertion with co-propagating electron
beam
transversely homogeneous distribution
longitudinally modulated to match ion
bunch profile

−→ compensate longitudinal dependency of
space charge
(ideal: half compensation of linear space
charge tune shift, ∆Qelens =∆QKV/2)

=⇒ installing 3 such electron lenses shrinks
stopbands!

=⇒ space-charge limit increased significantly!
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Figure: tune diagram at nominal N

Figure: e-lens model for SIS18
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Figure: low-loss area for increasing N
[preliminary, unpublished results]
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Conclusion

Summary:
validated fixed frozen SC model predictions by long-term PIC simulations
identified optimal tune area around (Qx ,Qy )= (18.95,18.87) for nominal
SIS100 operation under strong space charge conditions
−→ rigid constraints: Montague resonance (top left), integer resonance (right)
−→ soft constraint: higher-order resonances (bottom)

explored space-charge limit:
nominal SIS100: +20% intensity
double-harmonic RF: +50% intensity
3 pulsed electron lenses: +80..90% intensity

Take-home message:
fast and reliable simulation tool & model established
=⇒ identify low-loss accelerator settings

nominal FAIR intensity → feasibility confirmed
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... the new GPU cluster ...
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Figure: GPU simulation results for latest
magnet field error model

Thanks to GSI’s new high-performance GPU
cluster in Green Cube:

400 GPU cards of today’s most performant
model (AMD Radeon Instinct MI100)
even faster simulations, larger tune scans in
shorter times

=⇒ following up magnet series production and
doublet assembly
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Thank you for your attention!
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Grand Overview Tune Diagrams
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Emittance Growth at Low-loss Area
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Figure: with space charge, emittance growth
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PIC Results for Best Working Point
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Figure: tune diagram with self-consistent PIC
simulations
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Figure: optimal working point
(Qx ,Qy )= (18.97,18.85)
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Comparison 2.5D to 3D PIC
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Figure: good working point (Qx ,Qy )= (18.97,18.85)
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Figure: lossy working point (Qx ,Qy )= (18.84,18.73)
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Adaptive Frozen SC Model

2 1 0 1 2
y [cm]

0

2

4

6
Ve

rti
ca

l p
ro

fil
e 

[a
rb

. u
ni

ts
]

Qy = 18.6

2 1 0 1 2
y [cm]

Qy = 18.65

2 1 0 1 2
y [cm]

Qy = 18.7

2.5D PIC fixed frozen adaptive frozen

FAIR GmbH | GSI GmbH Adrian Oeftiger 23 June 2022 26/21


