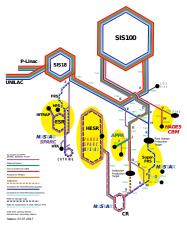


The Space-Charge Limit of SIS100

Adrian Oeftiger

GSI Accelerator Seminar 23 June 2022

Abstract


As the key synchrotron of FAIR, SIS100 should be operated at the "space charge limit" for light- and heavy-ion beams. While delivering maximum intensities, the beam losses due to space-charge-induced resonance crossing should not exceed a few percent during a full cycle. The one-second-long injection plateau poses the most critical challenge in terms of beam dynamics – in particular for the U²⁸⁺ beams. Based on the recent progress on cold bench measurements of the SIS100 dipole and quadrupole magnets, as well as the newly established GPU-accelerated SIS100 tracking simulation suite, we are now in position to realistically model and explore the space charge limit of SIS100.

This talk presents the recently published extensive results on SIS100 performance at the space charge limit. We discuss the magnet field error model and the correspondingly driven betatron resonances. A key aspect is the comparison of 3D space charge models, validating the fast approximative solver results with fully self-consistent computations, for the first time for long-term conditions. We identify the achievable maximum beam intensity from simulations covering the full duration of the injection plateau. We conclude with discussing several countermeasures to increase the space charge limit: beta-beat compensation, double-harmonic rf bunch flattening, and finally the promising novel technique of space charge compensation with electron lenses.

Motivation

Overview:

SIS100: deliver high-intensity beams

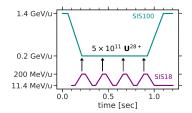
FAIR

GSI

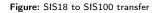
Figure: FAIR complex

FAIR GmbH | GSI GmbH

Adrian Oeftiger


Motivation

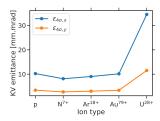
Overview:

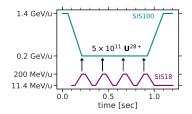

- SIS100: deliver high-intensity beams
- crucial for performance: maintain beam quality during 1-sec injection plateau

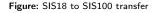
uranium U²⁸⁺ beam most critical:

- largest beam size vs. transverse aperture
- space-charge induced losses
 - \rightsquigarrow dynamic vacuum issues

r: s ř




Figure: scaled beam sizes at 18 Tm


Adrian Oeftiger

Motivation

Overview:

- SIS100: deliver high-intensity beams
- crucial for performance: maintain beam quality during 1-sec injection plateau
- uranium U²⁸⁺ beam most critical:
 - largest beam size vs. transverse aperturespace-charge induced losses
 - \rightsquigarrow dynamic vacuum issues
- challenge: efficient numerical model for injection plateau

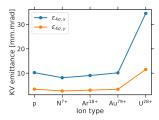


Figure: scaled beam sizes at 18 Tm

Contents

Key ingredients of study:

- 1. detailed model for magnetic field errors from cold bench measurements
- 2. full tracking model of machine lattice
- 3. detailed space charge models
 - self-consistent 3D PIC solver (particle-in-cell)
 - fast (approximative) frozen field maps
 - \Rightarrow parallelised on multi-core CPU and GPU architectures

Contents

Structure:

- A. The Model
- B. Betatron Resonances:
 - Intrinsic from Space Charge
 - External from Field Errors
- C. Space-Charge Limit
- D. Mitigation Measures

A. The Model

Space Charge Modelling

Simulation model:

track macro-particles (m.p.) through accelerator lattice & space charge kicks

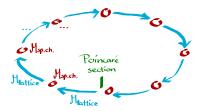


Figure: sketch of simulation model

Space Charge Modelling

Simulation model:

track macro-particles (m.p.) through accelerator lattice & space charge kicks

- nonlinear 3D space charge (SC) models:
 - *self-consistent:* PIC solves Poisson equation for m.p. distribution
 - *fixed frozen:* constant field map independent of m.p. dynamics
 - (adaptive frozen: frozen field map scaled with m.p. distribution momenta)



Figure: sketch of simulation model

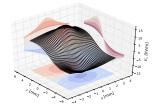


Figure: horizontal space charge field

Space Charge Modelling

Simulation model:

- track macro-particles (m.p.) through accelerator lattice & space charge kicks
- nonlinear 3D space charge (SC) models:
 - self-consistent: PIC solves Poisson equation for m.p. distribution
 - fixed frequence constant field man independent of min-dynamics

Maximum SC Tune Shift

$$\Delta Q_{y}^{\text{SC}} = -\frac{Ze}{4\pi\epsilon_{0}m_{0}c^{2}} \frac{\lambda_{\max}}{\beta^{2}\gamma^{3}} \frac{1}{2\pi} \oint ds \frac{\beta_{y}(s)}{\sigma_{y}(s)(\sigma_{x}(s) + \sigma_{y}(s))}$$

Figure: sketch of simulation model

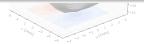


Figure: horizontal space charge field

Beam Parameters

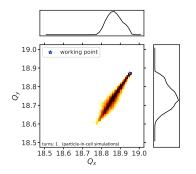


Figure: space charge tune footprint

Table: Considered Parameters for $^{238}\mathrm{U}^{28+}$ Accumulation at SIS100 Injection Energy

Parameter	Value	
Hor. norm. rms emittance ϵ_x	5.9 mm mrad	
Vert. norm. rms emittance ϵ_y	2.5 mm mrad	
Rms bunch length σ_z	13.2 m	
Bunch intensity N of U_{238}^{28+} ions	0.625×10^{11}	
Max. space charge ΔQ_{y}^{SC}	-0.30	
Rms chromatic $Q'_{x,y} \cdot \sigma_{\Delta p/p_0}$	0.01	
Synchrotron tune Q_s	4.5×10^{-3}	
Kinetic energy	$E_{\rm kin}$ = 200 MeV/u	
Relativistic β factor	0.568	
Revolution frequency f_{rev}	157 kHz	

B. Betatron Resonances

Only Space Charge

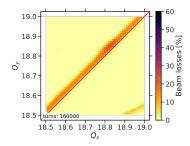


Figure: tune diagram of beam loss

Cold, error-free, symmetric SIS100 lattice:

- perfect dipole and quadrupole magnets
- symmetry of S = 6 maintained
 - (no warm / normalconducting quadrupoles)
- space charge \rightarrow only source for resonances
- simulated for 160'000 turns = 1 second
- ⇒ mainly Montague resonance visible
- ⇒ absence of low-order structure resonances!

Only Space Charge

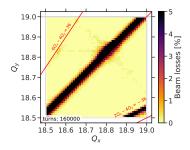


Figure: tune diagram of beam loss

Cold, error-free, symmetric SIS100 lattice:

- perfect dipole and quadrupole magnets
- symmetry of S = 6 maintained
 - (no warm / normalconducting quadrupoles)
- space charge \rightarrow only source for resonances
- simulated for 160'000 turns = 1 second
- ⇒ mainly Montague resonance visible
- ⇒ absence of low-order structure resonances!

Montague Resonance

Montague resonance $2Q_x - 2Q_y = 0$:

- 4th-order resonance
- intrinsically driven by space charge
- transverse emittance exchange for anisotropic beams
- ⇒ stopband always present around $Q_x \approx Q_y$ for SIS100 beams
- Space charge model predictions:
 - "adaptive frozen" resolves full exchange but predicts too large stopband extent
 - + "fixed frozen" resolves stopband edges well!

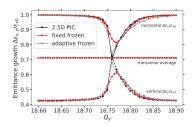
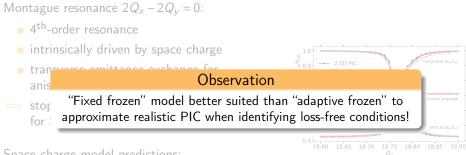



Figure: emittance exchange

Montague Resonance

Space charge model predictions:

- "adaptive frozen" resolves full exchange but predicts too large stopband extent
- + "fixed frozen" resolves stopband edges well!

Figure: emittance exchange

Warm Quadrupoles

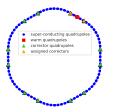


Figure: SIS100 quadrupole survey [courtesy D. Rabusov]

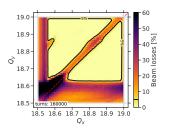


Figure: corrected warm quadrupoles

Adrian Oeftiger

Real SIS100 lattice:

- 2 cold quadrupoles replaced by warm / normalconducting quadrupoles (radiation hardened, required in extraction region)
- breaking of S = 6 symmetry
- ⇒ gradient error
- ⇒ externally driven half-integer resonance

Warm Quadrupoles

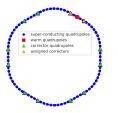


Figure: SIS100 quadrupole survey [courtesy D. Rabusov]

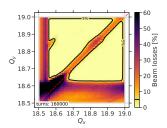


Figure: corrected warm quadrupoles

Real SIS100 lattice:

- 2 cold quadrupoles replaced by warm / normalconducting quadrupoles (radiation hardened, required in extraction region)
- breaking of S = 6 symmetry
- \Rightarrow gradient error
- \implies externally driven half-integer resonance
- \Rightarrow can be minimised by quadrupole correctors

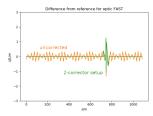
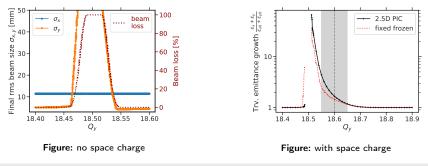


Figure: β-beat around SIS100 [courtesy D. Ondreka]

FAIR GmbH | GSI GmbH


Adrian Oeftiger

23 June 2022

Half-integer stopband:

- without space charge, without $\Delta p/p_0$: $\delta Q_{\text{stopband}} = 0.023$
- without space charge, with $\Delta p/p_0$: $\delta Q_{\text{stopband}} \sim 0.1$
- with space charge: $\delta Q_{\text{stopband}} \sim 0.25$
- \Rightarrow fixed frozen SC model reproduces stopband edges from PIC

FAIR GmbH | GSI GmbH

Adrian Oeftiger

Field Error Model

Figure: dipole magnets

Multipole components in guadrupole magnets Figure: quadrupole magnets

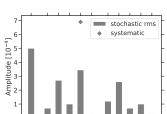
b3 b4 b5 b6 b7

Field error model extracted from cold bench measurements of magnet units:

- stochastic amplitudes drive non-systematic resonances
- random number sequence \rightarrow multipole errors for every dipole and quadrupole magnet

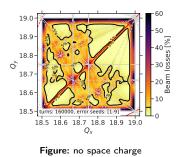
quadrupole model displayed here corresponds to PRAB paper version (based on stamped FoS), see GSI-2021-00450 report / for model based on series production and its comparison

b2


FAIR GmbH | GSI GmbH

Adrian Oeftiger

a3 a4 a5 a6 a7



Full Model with Space Charge

Linear and nonlinear resonances driven by magnet field errors. Resonance condition without space charge:

$$mQ_x + nQ_y = p$$
 for $m, n, p \in \mathbb{Z}$

Full Model with Space Charge

Linear and nonlinear resonances driven by magnet field errors. Resonance condition without space charge:

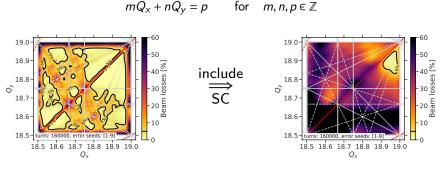


Figure: no space charge

Figure: with fixed frozen space charge

11/21

→ SC broadens existing resonance stopbands

Validation with Self-consistent PIC

Self-consistent PIC simulations:

- have already validated isolated (1) space-charge-driven (Montague) and
 (2) gradient-error-driven stopband predictions from fixed frozen SC (FFSC)
- now validate full error model FFSC predictions for beam loss

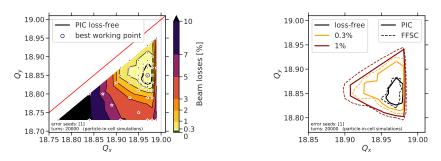
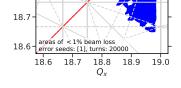


Figure: self-consistent PIC simulations

Figure: comparison between SC models

note: PIC simulations take 2 days (on NVIDIA V100 GPU) vs. FFSC simulations with 7 min (on 16 CPU cores, HPC AMD)


	FAIR GmbH GSI GmbH	Adrian Oeftiger	23 June 2022	12/
--	----------------------	-----------------	--------------	-----

Major resonances confining low-loss area:

- top left: Montague resonance
- right: integer resonance $Q_X = 19$
- bottom: higher-order resonances

Simulations with reduced field error model:

identify sextupole and octupole orders n = 3,4 as main limitation towards low Q_y

field error order: all $n \leq 7$

= 2, 3

n = 2.3.4

n = 2.3.4.6

Figure: low-loss tune areas vs. multipole order

19.0

18.9

o² 18.8-

C. Space-Charge Limit

Space-Charge Limit

Keeping all beam parameters identical, increasing N:

- dynamic definition of space-charge limit: reached when loss-free working point area vanishes
- \Rightarrow U $^{28+}$ space-charge limit at 120% of nominal bunch intensity N_0

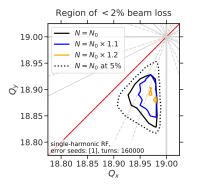
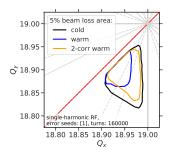


Figure: low-loss area for increasing N

FAIR GmbH | GSI GmbH

Adrian Oeftiger

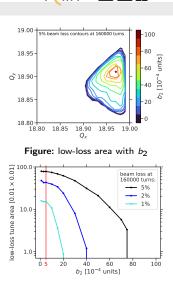

23 June 2022

D. Mitigation Measures

Correction of β -beat

Two sources of β -beat (gradient error):

- warm quadrupoles: uncorrected = 2%
 - \rightarrow significant effect on low-loss area size
 - ⇒ important to control


Figure: low-loss area with warm quadrupoles

Correction of β -beat

Two sources of β -beat (gradient error):

- warm quadrupoles: uncorrected = 2%
 - \rightarrow significant effect on low-loss area size
 - \implies important to control
- distributed b₂: ≈ 0.5% (according to field error model)
 - \implies below $b_2 = 10$ units: no significant effect on low-loss area size

r: s ř

Figure: size of low-loss area vs. b2

Double-harmonic RF

By adding h = 20 harmonic at half base RF voltage in bunch lengthening mode,

$$V_{h=20} = V_{h=10}/2$$

obtain flattened bunches with reduced line charge density at 80% of nominal λ_{max} .

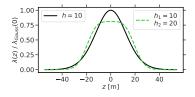


Figure: line densities

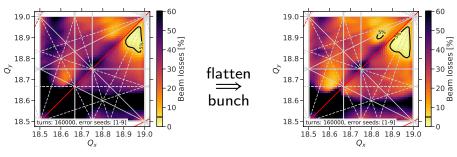


Figure: single-harmonic RF

Figure: double-harmonic RF

Observations:

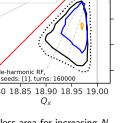
- black half-integer stopband shrinks by $\approx 20\%$
- Iow-loss area opens up

FAIR GmbH | GSI GmbH

Adrian Oeftiger

23 June 2022

SC Limit with Double-harmonic RF


Increasing *N* for double-harmonic RF:

find space-charge limit at 150% of nominal intensity N_0

Adrian Oeftiger

18.80 double-harmonic RF. error seeds: [1], turns: 160000 18.80 18.85 18.90 18.95 19.00 Q_Y

Figure: low-loss area for increasing N

Region of < 2% beam loss

 $N = N_0$

 $= N_0 \times 1.2$ $N = N_0 \times 1.5$

 $= N_0$ at 5%

19.00

18.95

o² 18.90

18.85-

Pulsed Electron Lenses

Pulsed electron lenses:

- short insertion with co-propagating electron beam
- transversely homogeneous distribution
- longitudinally modulated to match ion bunch profile

→ compensate longitudinal dependency of space charge (ideal: half compensation of linear space charge tune shift, $\Delta Q_{\text{elens}} = \Delta Q_{\text{KV}}/2$)

⇒ installing 3 such electron lenses shrinks stopbands!

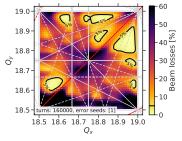


Figure: tune diagram at nominal N

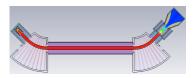
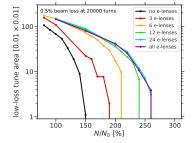


Figure: e-lens model for SIS18

Pulsed Electron Lenses


Pulsed electron lenses:

- short insertion with co-propagating electron beam
- transversely homogeneous distribution
- longitudinally modulated to match ion bunch profile

→ compensate longitudinal dependency of space charge (ideal: half compensation of linear space charge tune shift, $\Delta Q_{\text{elens}} = \Delta Q_{\text{KV}}/2$)

- ⇒ installing 3 such electron lenses shrinks stopbands!
- \implies space-charge limit increased significantly!

Adrian Oeftiger

Figure: low-loss area for increasing *N* [preliminary, unpublished results]

Conclusion

F<mark>ÁİR</mark> 🖬 🖬 🖬

Summary:

- validated fixed frozen SC model predictions by long-term PIC simulations
- identified **optimal tune area** around $(Q_x, Q_y) = (18.95, 18.87)$ for nominal SIS100 operation under strong space charge conditions
 - → rigid constraints: Montague resonance (top left), integer resonance (right)
 - → soft constraint: higher-order resonances (bottom)
- explored space-charge limit:
 - nominal SIS100: +20% intensity
 - double-harmonic RF: +50% intensity
 - 3 pulsed electron lenses: +80..90% intensity

Conclusion

F<mark>AİR cesit</mark>

Summary:

- validated fixed frozen SC model predictions by long-term PIC simulations
- identified **optimal tune area** around $(Q_x, Q_y) = (18.95, 18.87)$ for nominal SIS100 operation under strong space charge conditions
 - ---- rigid constraints: Montague resonance (top left), integer resonance (right)
 - \rightarrow soft constraint: higher-order resonances (bottom)
- explored space-charge limit:
 - nominal SIS100: +20% intensity
 - double-harmonic RF: +50% intensity
 - 3 pulsed electron lenses: +80..90% intensity

Take-home message:

- fast and reliable simulation tool & model established
 - \implies identify low-loss accelerator settings
- nominal FAIR intensity → feasibility confirmed

... the new GPU cluster ...

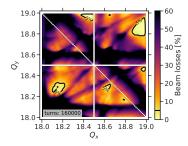


Figure: GPU simulation results for latest magnet field error model

Thanks to GSI's new high-performance GPU cluster in Green Cube:

- 400 GPU cards of today's most performant model (AMD Radeon Instinct MI100)
- even faster simulations, larger tune scans in shorter times
- following up magnet series production and doublet assembly

Thank you for your attention!

Acknowledgements:

GSI: O. Boine-Frankenheim, V. Chetvertkova, V. Kornilov, D. Rabusov, S. Sorge, D. Ondreka, A. Bleile, V. Maroussov, C. Roux, K. Sugita

CERN: R. de Maria, G. Iadarola, M. Schwinzerl

Grand Overview Tune Diagrams

FAIR GmbH | GSI GmbH

Adrian Oeftiger

23 June 2022

Emittance Growth at Low-loss Area

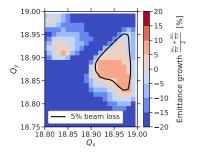
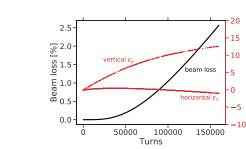


Figure: with space charge, emittance growth

FAIR GmbH | GSI GmbH

Adrian Oeftiger


23 June 2022

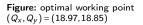
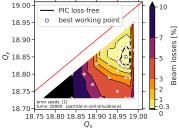
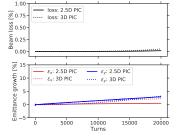
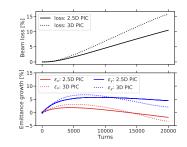

PIC Results for Best Working Point

Figure: tune diagram with self-consistent PIC simulations


Adrian Oeftiger

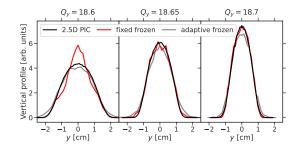
Emittance growth [%]




23 June 2022

Comparison 2.5D to 3D PIC

Figure: good working point $(Q_X, Q_Y) = (18.97, 18.85)$


Figure: lossy working point $(Q_x, Q_y) = (18.84, 18.73)$

Adaptive Frozen SC Model

