ULTRASAT UV camera (ULTRASAT

Design and first characterization results

Francesco Zappon on behalf the DESY camera team 21st of October, 2022

HELMHOLTZ

The ULTRASAT mission

Spacecraft

- ~1000 Kg spacecraft
- Expected launch: 2025
- Mission lifetime: 3 years (with fuel capabilities for an extension up to 6 years)
- Geo-stationary orbit: continuous communication to ground station
 Payload
- UV telescope:
 - $\circ~$ operational band 220 280 nm
 - large field of view (200 deg²)
- Schmidt design: detector is in the optical path

Organizations

- Developed by Israeli industries (IAI, ELOP) with scientific lead of Weizmann Institute, and ISA with collaboration of DESY and NASA
- DESY joined in 2019 and will provide the UV camera

ULTRASAT science

Gravitational Wave counterparts

Large field of view (200 deg²) allows rapid transient follow-up (<3 min) and alerts (<30 min) of the astrophysics community.

Sebastian Gomez Follow @SGomez J This is what it looks like when astronomers use 20+ telescopes from all over the world to take ~1200 images of the same patch of the sky in search of a common goal. Unfortunately, no merging neutron stars were found #S190425z S190425z 60 LVC - HET SOUEAN LOAO Schmidt FOCAS 20 LOT DEC [deg] **KPED** LCO2 LCO1 **KMTNet** TAROT RATIR

280

260

180

200

220

RA [dea]

240

COATLI

Makes

F60A

160

BOOTES

-20

- 40

ULTRASAT science

Deep surveys and serendipitous discoveries

- 1. Stellar collisions
 - · How are heavy elements formed?
 - How do black holes form?
 - What is the expansion rate of the Universe?
- 2. Supernovae
 - How do stars explode?
 - How do they affect their environment?
- 3. Active Galactic Nuclei
 - · How is mass accreted on black holes?
 - How is the accretion disk connected to jet emission?

... and many more ...

DESY.

The UV camera

System description

Detector Assembly

- Contains:
 - o UV sensor
 - Sensor power and telemetry circuitry
 - Thermal elements (heat pipes, straps)
 - Dimensions: 135 mm \times 135 mm \times 131 mm
- Mass: 5.3 Kg

Remote Electronics

- Contains:
 - Interfaces to S/C (commands, telemetry, science data, power)
 - o FPGAs to control the entire camera
 - Main power conditioning
 - Dimensions: 296 mm × 196 mm × 97 mm
- Mass: 5.0 Kg

The UV sensor

System description

- Custom designed and fabricated by TowerJazz
 - Back-Side-Illuminated (BSI) process
 - Uses stitching to achieve large active area
- Full mosaic (90 Mpixel): 4 sensors in windmill configuration
- Rad-hard by design
- Operated at 200 K to reduce Dark Current
- Field flatteners and filter directly on top of the mosaic (~550 um)

Property	Value		
Pixel size	9.5 µm		
Sensitive area (W x H)	4738 x 4738 Pixels		
	45.011 x 45.011 mm		
Die dimensions (W x H)	47.135 x 50.080 mm		
Pad size	100 x 200 μm		
Pad pitch	150 μm		
Wafer flatness	< 100 µm		
Dark Current (25°C)	30 – 50 e/sec/pixel		
Dark Current (200K)	< 0.026 e/sec/pixel		
Operation temperature	195 – 205 K		

Thermal and mechanical challenges

Mechanical challenge

Requirements:

- 1) Focal Plane to Filter Mounting reference < 50um
- 2) Mosaic Array Plane curvature < ±10umTwo steps approach:
- Mount and correct at ambient temperature
 - Sensor P2V < 5 um
 - Mosaic < 20 um
 - Shimming < 5 um target
- Take into account shrink at operationI temperature
 - \circ Constant offset compensated by shimming at ambient temperature
- \rightarrow Clearance to filter is extremely important (e.g. at launch)!

Thermal challenge

Two parts of the same assembly to be kept isolated at different temperatures

- mosaic: 200 K
- DA frame: ambient temperature (292-298 K)

Ultem flexures:

- Thermally isolating
- Locations: Mosaic to DA frame and heat pipe to DA frame

Electronics challenges

Sensor low noise requirements

- Extremely low noise sensor's requirements
- Source-of-load to point-of-load ~ 15 cm
- Requires a lot of capacitance to compensate the impedance

DA-RE distance and EMC requirements

- Distance between RE and DA ~ 3 m: cable + flex PCB
- Noisy environment due to all other spaceraft sub-systems
- Design precautions taken at every step: connector backshells, twisted pairs, cable shielding, low switching frequencies where possible, don't operate sub-systems together

Supply	Description	Voltage, V	Current, mA	Noise, mVrms
VDDD	Digital supply	3.0 - 3.6	162	20
VDDA	Analog supply	3.0 - 3.6	280	1
VDD_RST_H	Reset supply high	2.7 - 3.6	0	1
VDD_RST_L	Reset supply low	0 - 1.3	0	1
VDD_SEL_R ST	Select and reset gate signal supply	3.0 - 4.0	0	1
VDD_SEN	SEN (low/hi gain) gate signal	3.0 - 4.0	0	1
VDD_TX	Transfer gate signal	3.0 - 4.0	0	1
VDD_SF	Pixel source follower supply	3.0 - 3.6	47.42	0.2

Status and milestones

- First packaged sensor at DESY next week
- Flight version of several parts have already been produced (heat pipes, thermal straps)
- Electronic development models have been produced
- Functional and optical tests performed on the first sensors by the end of the year
- Radiation tests at the beginning of 2023
- Delivery of the first Engineering Model of the camera to the telescope designer in 1st half of 2023
- Integration of the Flight Model of the camera ~ end of 2023
- Integration of telescope and S/C ~ 2024
- Launch ~ 2025

One sensor mounted onto an Aluminum mosaic plate

Thank you.

HELMHOLTZ