

GridKa: LK II, WLCG Tier1, and more

Matter and Universe Days 2022, Darmstadt

Matthias J. Schnepf on behalf of GridKa | 21. October 2022

Supportet Experiments

- ATLAS
- ALICE
- Auger
- BaBar
- Belle
- CMS
- Compass
- LHCb
- IceCube
- XFEL

- GridKa is a
 - Helmholtz LK II
 - WLCG Tier1
 - Belle II RAW datacenter

- GridKa is a
 - Helmholtz LK II
 - WLCG Tier1
 - Belle II RAW datacenter
- computing
 - 450 worker nodes
 - about 59.000 CPU cores

- GridKa is a
 - Helmholtz LK II
 - WLCG Tier1
 - Belle II RAW datacenter
- computing
 - 450 worker nodes
 - about 59.000 CPU cores
- storage
 - about 48 PB (upgrade to 99 PB) disk storage
 - about 6.600 hard drives

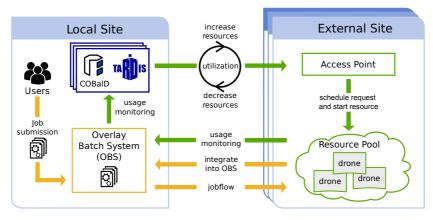
- GridKa is a
 - Helmholtz LK II
 - WLCG Tier1
 - Belle II RAW datacenter
- computing
 - 450 worker nodes
 - about 59.000 CPU cores
- storage
 - about 48 PB (upgrade to 99 PB) disk storage
 - about 6.600 hard drives
 - about 70 PB tape storage
 - about 10% of the LHC and Belle II data are storage at GridKa

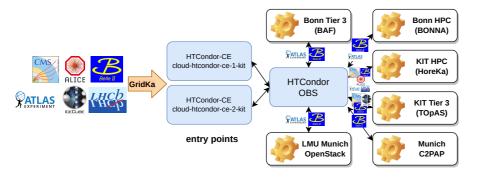
- GridKa is a
 - Helmholtz LK II
 - WLCG Tier1
 - Belle II RAW datacenter
- computing
 - 450 worker nodes
 - about 59.000 CPU cores
- storage
 - about 48 PB (upgrade to 99 PB) disk storage
 - about 6.600 hard drives
 - about 70 PB tape storage
 - about 10% of the LHC and Belle II data are storage at GridKa
- network
 - 2×100 Gbit s⁻¹ WAN
 - 2×100 Gbit s⁻¹ direct to CERN

- GridKa is a
 - Helmholtz LK II
 - WLCG Tier1
 - Belle II BAW datacenter
- computing
 - 450 worker nodes
 - about 59.000 CPU cores
- storage
 - about 48 PB (upgrade to
 - about 6.600 hard
 - about 70 R
 - about 10% C and Belle II data are storage at GridKa
- network
 - 2×100 Gbit s⁻¹ WAN
 - 2×100 Gbit s⁻¹ direct to CERN

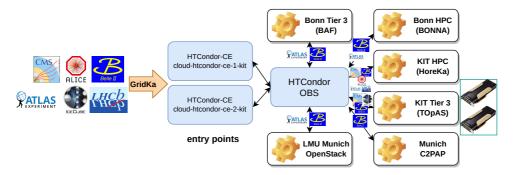
Additional Resources for HEP

- small resource and resources that are not designed for HEP (opportunistic resources) can be used
 - institute cluster
 - cloud provider
 - HPC cluster
 - desktop PCs
- challenges
 - complex resource scheduling due to heterogeneous resource pool
 - software environments provision
 - single point of entry for all resources
 - transparent usage





- load balancing daemon COBalD (COBalD the Opportunistic Balancing Daemon)
- life cycle management TARDIS (Transparent Adaptive Resource Dynamic Integration System)



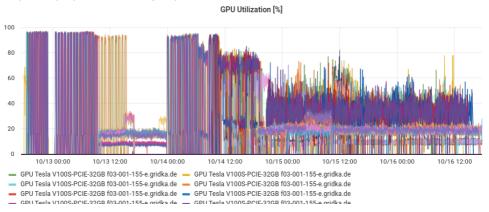
- transparent provisioning of computing resources to specific collaborations, see monitoring
- container or virtual machines provide HEP software environment on heterogeneous resources
- integration of further resources in the future fully transparent and experiment independently

- transparent provisioning of computing resources to specific collaborations, see monitoring (with GPUs)
- container or virtual machines provide HEP software environment on heterogeneous resources
- integration of further resources in the future fully transparent and experiment independently

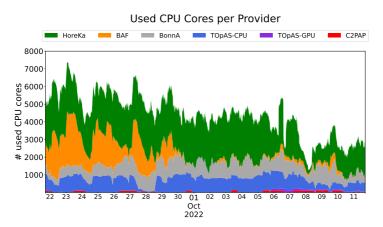
more and more applications use GPUs

- more and more applications use GPUs
- hen egg problem
 - sites do provide resources which are needed
 - experiments develop software for resources that are available

- more and more applications use GPUs
- hen egg problem
 - sites do provide resources which are needed
 - experiments develop software for resources that are available
- end-user analysis cluster with GPUs at GridKa
 - 8x NVIDIA V100
 - 24x NVIDIA V100s
 - 24x NVIDIA A100
- accessible via the physics institute batch system and GridKa cloud CEs

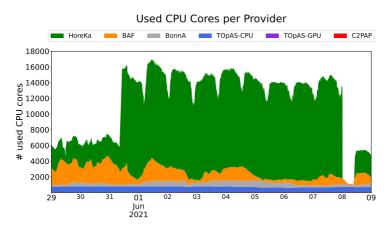

- more and more applications use GPUs
- hen egg problem
 - sites do provide resources which are needed
 - experiments develop software for resources that are available
- end-user analysis cluster with GPUs at GridKa
 - 8x NVIDIA V100
 - 24x NVIDIA V100s
 - 24x NVIDIA A100
- accessible via the physics institute batch system and GridKa cloud CEs
- the local KIT group can use the GPUs and experiments can develop and use the GPUs for/via Grid

GPUs at GridKa: Usage



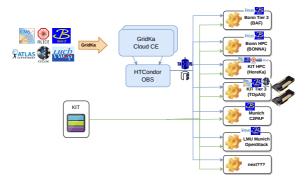
- used by local CMS and Belle II group as well as CMS via Grid
- ALTAS and Belle II are testing usage via Grid
- development project with local group to increase GPU utilization

Cloud Resources Provided

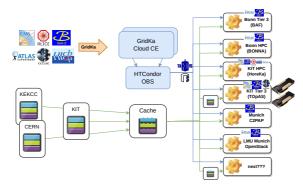


about 4000 CPU cores additional cores on average

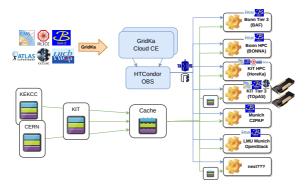
21.10.2022


Cloud Resources Provided: Scaletest

scaletest with up to 17400 CPU cores

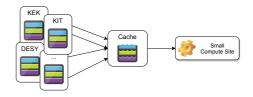


network connection between GridKa storage and opportunistic computing resources can influence CPU efficiency



- network connection between GridKa storage and opportunistic computing resources can influence CPU efficiency
- caches at the computing resources could help by insufficient network connection

GridKa HEP Cloud



- network connection between GridKa storage and opportunistic computing resources can influence CPU efficiency
- caches at the computing resources could help by insufficient network connection
- development project with the physics institute at KIT to cache Belle II data from other sites

GridKa as Background Storage

- managed Grid storage is expensive and need person power
- small sites can not or would not provide a full Grid storage
- cache with background storage e.g., GridKa could be an alternative for small sites

Conclusion

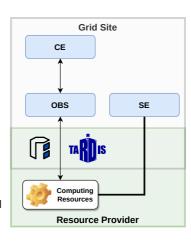
- GridKa provides a massive amount of computing and storage resources, including GPUs to high energy and astroparticle physics
- development with the physics institute at KIT on caching and resource scheduling
- GridKa provides transparent access to computing resources from partners
- GridKa is ready to be a data hub

Backup

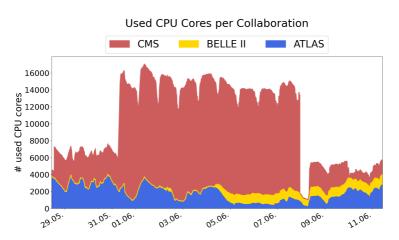
What We Provide

- COBalD & TARDIS
 - https://github.com/MatterMiners/cobald
 - https://github.com/MatterMiners/tardis
- help to setup OBS or integrate site
 - hands on sessions (integration of C2PAP cluster Munich within 4h)
- puppet module
 - https://github.com/unibonn/puppet-cobald
- wlcg-wn container
 - https://hub.docker.com/r/matterminers/wlcg-wn
 - https://github.com/MatterMiners/container-stacks/blob/main/wlcg-wn

Generalized Pilot Concept


- pilot concept
 - placeholder job allocates resources
 - worker node instance of an Overlay Batch System (OBS) starts payload jobs inside the pilot job
 - requires software environment
- generalized pilot concept ⇒ drone concept
 - resource allocation as
 - batch job
 - virtual machine
 - container
 - provides full Grid software environment
 - drone/pilot/job can run inside a drone

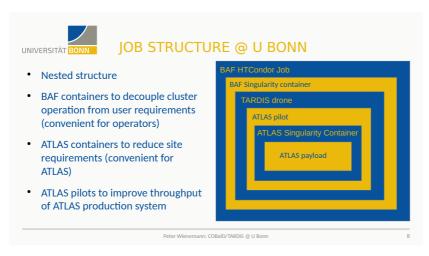
Minimal Setup



- Grid Site
 - standard Grid site services
 - CE
 - OBS for resources
 - provide performant SE and outgoing network
- computing resource provider
 - accessible via HTCondor, Slurm, OpenStack, ...
 - virtualization or container with enables userspace
- COBaID/TARDIS instance
 - lightweight multiple instances fit on one VM
 - needs just python and resource access
 - instances can be run by Grid site, resource provider, and third party

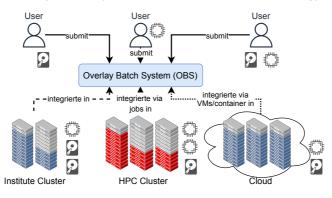
Provided Resources

- used by several collaborations
- up to 17.400 CPU cores integrated

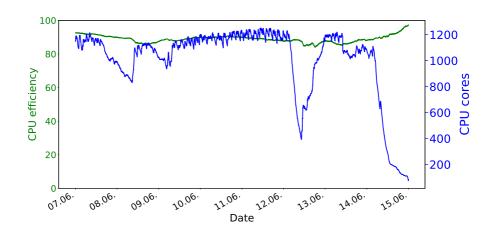

Supported Providers

- adapter to interact with provider
- providers
 - HTCondor
 - Moab
 - Slurm
 - CloudStack
 - OpenStack
 - Kubernetes
- further developments are welcome

Pilot inside a Drone


Talk: Opportunistic Resource Mangement with COBaID/TARDIS at U Bonn from Peter Wienemann at the IDT-UM Meeting 30. Sep. 2019: https://indico.physik.uni-muenchen.de/event/22/

21, 10, 2022


Integration of Resources

- integration via drone (virtual machine, container, batch job) into OBS
- HEP software environment provided by virtualization and container technology

