High-Resolution Spectroscopy of X-Ray Transitions in He-like Uranium at CRYRING@ESR

resolve the n=2 level structure and benchmark state-ofthe-art theory.

Metallic Magnetic Microcalorimeter (MMC) Detectors

Combination of high spectral resolution and broad bandwidth acceptance offers unique possibilities.

Preceding Experiment E138: Setup and Spectra

Spectra obtained during recent beam time

First well-resolved K_{α} spectra ere recorded for a high-*Z* system.

Spectral resolution of 70 – 80 eV FWHM @ 100 keV was achieved.

First exploitation of microcalorimeter timing capabilities with Δt_{FWHM} < 400 ns.

But: low statistics, mainly due to outages and underperformance of the accelerator during the first week of beam time.

Preceding Experiment E138: Preliminary Results

E138 Preliminary Results

$K_{\alpha 2}$ Splitting				
Experiment	Theory			
138.6 eV ± 4.5 eV	141.7 eV			
Kα @ 0° → 142 events Kα @ 180° → 184 events				

Effective Cooler Voltage

From Line Positions	Voltage Divider +	
of M, N \rightarrow L	Space Charge	
Transitions	Potential	
5602 V ± 6 V	5609 V	

Spectra obtained during recent beam time

First well-resolved K_{α} spectra ere recorded for a high-*Z* system.

Spectral resolution of 70 – 80 eV FWHM @ 100 keV was achieved.

First exploitation of microcalorimeter timing capabilities with Δt_{FWHM} < 400 ns.

But: low statistics, mainly due to outages and underperformance of the accelerator during the first week of beam time.

New Experiment Proposal

E138 Preliminary Results

$K_{\alpha 2}$ Splitting				
Experiment	Theory			
138.6 eV ± 4.5 eV	141.7 eV			
Kα @ 0° → 142 events $ Kα @ 180° → 184 events$				

Effective Cooler Voltage

From Line Positions	Voltage Divider +		
of M, N \rightarrow L	Space Charge		
Transitions	Potential		
5602 V ± 6 V	5609 V		

Proposal for a follow-up experiment

	180°	0°	
lons per injection	2.0E+06		
Measurement cycle in s	55		
RR fraction of beam loss	0.65		
Branching to K_{α}	0.9		
Efficiency Particle Detector	0.95		
$\Delta\Omega$ coverage	6.5E-07	5.0E-07	
Lorentz transformation	0.75	1.34	
Stopping Power (100 μm)	0.75	0.47	
Escape Event Fraction (100 μ m)	0.3	0.3	
Photons per hour	18.6	16.0	
Photons after 5 days	2233	1914	

Goal: To increase the statistics by roughly a **factor of 10**, thus reducing the statistical uncertainty towards the **1 eV level**.

Requirement: 9 shifts (accelerator preparation and tuning) + 21 shifts (data taking).

We ackowledge support by

DY Bundesministerium für Bildung und Forschung

