Charmed hadron spectroscopy from from lattice QCD for $N_{f}=2+1$ flavours

Paula Pérez Rubio

in collaboration with,

G. Bali, S. Collins, et. al.

Hersonissos, 5th September, 2012

OUTLINE

Motivation

Open charm mesons Charmonium Charmed baryons

Introduction to QCD on the lattice

Why Lattice QCD?

Brief introduction to the lattice formalism Extrapolations and typical scales

Program

Aim

Methods

Present status

Computational details

Setting the charm mass

Open and hidden Charmed mesons Interpolating operators

Results

Charmed baryons

Experimental status Interpolating operators

Results

Summary and Outlook

MOTIVATION

Heavy hadron spectroscopy

2003: New resonances were found in BaBar, Belle and CLEO.

1. Open charm quark mesons

- D_s spectrum before the B-factory era.
 Only s-wave (pseudoscalar, vector) and 2 p-wave (axial-vector,tensor) states known, cf. Figure.
- In 2003, some resonances $D_{s0}^*(2317)$, $D_{s1}(2460)$ were found, close to the D^*K , DK thresholds, respectively. **Puzzling states**, lighter than the expected $J_{s_l}^P = (0^+, 1^+)_{1/2}$ doublet.
- Later on, more channels were found: D_{SJ}(2700), D_{SJ}(2860).
- Present LHC, BEPCII, and future Super-B factories, FAIR facilities might help understanding the new states.
- We compute the D and D_s spectra in the framework of Lattice QCD (LQCD).

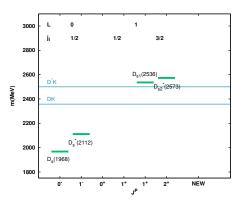


Figure: Experimental D_s spectrum

MOTIVATION

Heavy hadron spectroscopy

2003: New resonances were found in BaBar, Belle and CLEO.

1. Open charm quark mesons

- D_s spectrum before the B-factory era.
 Only s-wave (pseudoscalar, vector) and 2 p-wave (axial-vector,tensor) states known, cf. Figure.
- In 2003, some resonances $D_{s0}^*(2317)$, $D_{s1}(2460)$ were found, close to the D^*K , DK thresholds, respectively. **Puzzling states**, lighter than the expected $J_{s_l}^P = (0^+, 1^+)_{1/2}$ doublet.
- Later on, more channels were found:
 D_{S,I}(2700), D_{S,I}(2860).
- Present LHC, BEPCII, and future Super-B factories, FAIR facilities might help understanding the new states.
- We compute the D and D_s spectra in the framework of Lattice QCD (LQCD).

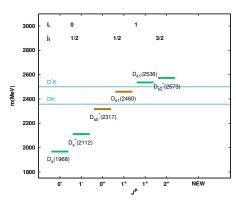


Figure: Experimental D_s spectrum

MOTIVATION

Heavy hadron spectroscopy

2003: New resonances were found in BaBar, Belle and CLEO.

1. Open charm quark mesons

- D_s spectrum before the B-factory era.
 Only s-wave (pseudoscalar, vector) and 2 p-wave (axial-vector,tensor) states known, cf. Figure.
- In 2003, some resonances $D_{s0}^*(2317)$, $D_{s1}(2460)$ were found, close to the D^*K , DK thresholds, respectively. **Puzzling states**, lighter than the expected $J_{s_l}^P = (0^+, 1^+)_{1/2}$ doublet.
- Later on, more channels were found: D_{SJ}(2700), D_{SJ}(2860).
- Present LHC, BEPCII, and future Super-B factories, FAIR facilities might help understanding the new states.
- We compute the D and D_s spectra in the framework of Lattice QCD (LQCD).

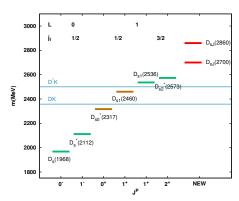


Figure: Experimental D_s spectrum

2. Charmonium

- Belle, 2002: State X(3872) was found.
 Extremely narrow and lying almost exactly on the D⁰D̄*⁰ threshold. 1++, molecule?
 There is still no consensus.
- Past few years: Other puzzling states found Z(3930), X(3940), Y(3940), Y(4260), Y(4660) ... whose inner structure is not clear either.
- Interpretations: molecules, tetraquarks, hadrocharmonium...No single model can explain the whole picture.
- Understanding these states is a challenge for present BEPCII, LHC, and upcoming FAIR, Super-B factories facilities.
- LQCD results on charmonium spectroscopy will be useful for understanding the puzzle.

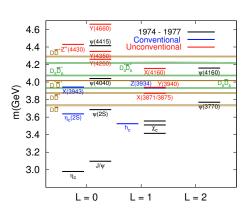


Figure: Experimental charmonium spectrum

3. Charmed baryons

- Lately, experimental charmed baryon spectroscopy has received special attention, cf. Figure 1 for singly charmed baryons. [PDG '10]
- New facilities are planned that will look for new hadrons:
 e.g. Super-B factories.
- Investigating charmed baryons helps understanding baryon spectroscopy in general.
- Charmed baryons have pretty narrow widths. They can be computed on the lattice. Parity Partners (PP) also computed.
- Doubly charmed baryons provide a new window for understanding the structure of all baryons.
 - * Figure 2(left): $r >> \Lambda_{\rm OCD}^{-1}$ Charmonium alike?
 - * Figure 2(right): $r << \Lambda_{\rm OCD}^{-1}$ HQET picture?

Figure 1: Singly charmed baryons

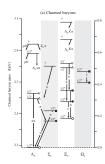


Figure 2: QQq baryon structure

Charmonium like

HQET picture

Hersonissos, 5th September, 2012

QCD ON THE LATTICE

1. Why Lattice QCD

- QCD is believed to describe the strong interactions at all scales.
- α_s is large at low energies. Perturbation Theory (PT) cannot be applied.
- Lattice QCD (LQCD) offers a non perturbative approach, consisting on:
 - * [Wilson '74]: A discretised version of the theory in euclidean space-time.
 - * [Creutz '80]: Implementation in a computer through Monte-Carlo simulations.
- The goals of LQCD are pretty diverse. Among them:
 - * Test whether QCD is the correct theory of strong interactions.
 - Calculate weak matrix elements occurring in weak decays.
 - Investigate the topological structure of the QCD vacuum.
 - * Calculate hadronic properties: hadron spectra, decay constants, ...
 - * Determine the fundamental parameters of QCD: α_s , and quark masses.
 - * Analyse QCD at non zero temperature.

2. Brief introduction to the lattice formalism

Discretise the spacetime, a lattice spacing (rôle of a cutoff):

$$\Gamma_E = \left\{ x \middle| x/a \in \mathbb{Z}^4, 0 \leq x_0 < T, 0 \leq x_k < L, k = 1, 2, 3 \right\}.$$

- Gauge fields, $U_{\mu}(x) = e^{iaA_{\mu}(x)}$: Links connecting $x \to x + a\hat{\mu}$.
- Plaquette, $P_{\mu\nu}(x)$: Possible gauge action, $S_g[U] = \frac{1}{g_0^2} \sum_{P} \text{tr} \{1 P(U)\}.$
- Fermions, $\psi(x)$: Different regularisations available. So called Wilson quarks used.
- Path integral: Expected value of a quantity, $\langle \mathcal{O} \rangle = \frac{1}{Z} \int [d U] [d \psi] [d \overline{\psi}] \mathcal{O}[U] e^{-S[U, \psi, \overline{\psi}]}$.
- Measurement on the lattice:
 - * Average over an ensemble of gauge field configurations, $\{U_i\}$
 - * $\{U_i\}$ follow the probability distribution, $p(U) \propto \int [d\psi][d\bar{\psi}]e^{S[U,\psi,\bar{\psi}]}$.
 - * Expected values of observables: $\langle O \rangle = \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}(U_i) + \Delta \mathcal{O}, \quad \Delta \mathcal{O} \propto \frac{\tau_{\text{corr}}}{\sqrt{N}}.$
 - * Autocorrelations, τ_{corr} need to be considered.
 - * $\{U_i\}$ generation is computationally expensive.
- Input parameters: $m_{\rm p}^{\rm exp}=m_{\rm p}^{\rm latt}$ to fix a. $m_{H}^{\rm latt}/m_{\rm p}^{\rm rmlatt}=m_{H}^{\rm exp}/m_{\rm p}^{\rm exp}$ Rest is predictions.

3. Extrapolations and typical scales

- For the simulations it is required c.f Figure:
 - * The cutoff a^{-1} has to be larger than the scales under investigation, $a^{-1} >> \mu_{had}$
 - * For volume effects to be negligible, it has to occur, $\mu_{\rm had}^{-1} << L$.

Altogether,
$$a^{-1} >> \mu_{had} >> L^{-1}$$

- Cost of simulations increases as a ↓, L/a ↑, m_q^{sea} ↓. Extrapolations needed:
 - **1.** Continuum limit (c.l.): $a \rightarrow 0$. Removal of the cutoff.
 - **2.** Physical mass extrapolation: $m_{\alpha}^{\text{latt}} \rightarrow m_{\alpha}^{\text{phys}}$. Chiral perturbation theory (χ PT), but m_q^{latt} should be small enough to use it.
 - **3.** Thermodynamical limit: $L \to \infty$. High radial excitations/ angular momenta require a large L.
 - Typical values in current simulations: $a \sim 1.5 4.0$ GeV (0.05 0.1 fm), $L \sim 1.5 6$ fm.
- Since $m_{\rm charm} \sim 1.3$ GeV. $a^{-1} > m_G$, $m_G v$, $m_G v^2$. L large. Simulations are sensible.

Figure: Scales on the lattice

Aim

PROGRAM

1.Aim

Charmonium, D, D_s.

- * Both Compute the spectrum, for states with $L \leq 3$.
- * Charmonium:
 - Mixing with other flavour singlets
 - Mixing L = 0, 2.
 - Analyse 1⁻⁻ tower of states.
 - Analyse molecular states lying close to the D^*D_0 threshold, (try to understand **X**(3872)).

* D, Ds:

- Mixing of 0^+ , 1^+ states with a *DK* molecule try to understand $D_s(2317)$, $D_s(2460)$.
- Mixing between the 1+ states.

Singly and doubly charmed hadrons:

- Choose interpolating operators overlapping with the states we want to look into.
- Compute the spectrum (including parity partners, **PP**) choosing a variational basis.

11 / 31

2. Methods (I). Extracting masses from the lattice

- Assume $\hat{\mathcal{O}}_1$, $\hat{\mathcal{O}}_2$ to be operators with an overlap with the state we are looking into.
- 2-point correlation function,

$$\begin{split} C(\hat{\mathcal{O}}_{1}, \hat{\mathcal{O}}_{2}, t) &= \langle \hat{\mathcal{O}}_{2}(0) \hat{\mathcal{O}}_{1}^{\dagger}(t) \rangle = \lim_{T \to \inf} \frac{1}{Z(T)} \operatorname{Tr} \left[e^{-(T-t)\hat{H}} \hat{\mathcal{O}}_{2} e^{-t\hat{H}} \hat{\mathcal{O}}_{1}^{\dagger} \right] = \\ &= \sum_{t} \langle 0|\hat{\mathcal{O}}_{2}|n\rangle \langle n|\hat{\mathcal{O}}_{1}|0\rangle e^{-E_{n}t}, \quad Z(T) = e^{-T\hat{H}}. \end{split}$$

- Variational method: Reduces contaminations of higher states.
 - * Choose a basis of N operators $\hat{\mathcal{O}}_i$ within a given $\mathcal{O}_h \subset \mathcal{O}(4)$ representation.
 - * Construct a cross correlation matrix, $C_{ij}(t) = \langle \hat{\mathcal{O}}_i(t) \hat{\mathcal{O}}_j(0)^{\dagger} \rangle$,
 - * Solve the generalised eigenvalue problem (GEVP):

$$\begin{split} C(t)\psi^{\alpha}(t,t_0) &= \lambda^{\alpha}(t,t_0)C(t_0)\psi^{\alpha}(t,t_0), \\ C^{-1/2}(t_0)C(t)C^{-1/2}(t_0)\psi^{\alpha}(t,t_0) &= \lambda^{\alpha}(t,t_0)\psi^{\alpha}(t,t_0). \end{split}$$

* Eigenvalues present the behaviour:

$$\lambda^{\alpha}(t,t_0) \propto e^{-(t-t_0)E_{\alpha}} \left[1 + O\left(e^{-(t-t_0)\Delta E_{N+1}}\right) \right].$$

2. Methods (II). Operators on the lattice

- **Rotational symmetry**: O(3) broken down to the cubic group O_h .
 - * Five irreducible representations (Irreps), $\{A_1, A_2, T_1, T_2, E\}$.
 - * States coupling to lattice operators, classified according to the Irreps.
 - * In the c.l., there is not a biyection between the O_h Irreps and the $J^{P(C)}$.
- Basis of operators should be properly chosen.
 - * Extended operators: several steps of Wuppertal smearing to the fermion field, ψ (Figure 1):

$$\psi_{x}^{(n+1)} = \frac{1}{1+6\kappa} \left(\psi_{x}^{(n)} + \kappa \sum_{j=\pm 1}^{\pm} 3U_{j,x} \psi_{x+\hat{a}j}^{(n)} \right)$$

- * Adjust κ , n to control the wavefunctions overlap with the physical states, (Figure 2)
- * Basis of \mathcal{O}_i applying different number of smearing steps.

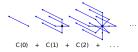


Figure 1: Fermionic smearing

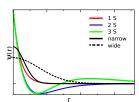


Figure 2: Radial excitations and narrow, wide smeared wavefunction.

3. Present status

Mesons

- * Computations using the QCDSF (SLiNC) $N_f = 2 + 1$ configurations.
- * Charm quark mass set via m_{η_c} , m_{1S} and/or m_{D_s}
- * $\bar{c}c$ and D_s spectra including higher states and non-local operators.
- * $J/\psi \eta_c \& D_s^* D_s$ hyperfine splittings.

Baryons

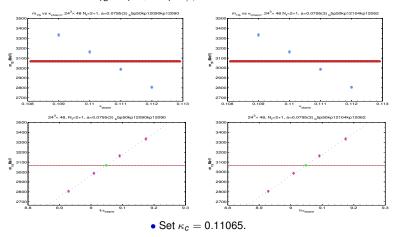
- * Interpolating operators chosen in two different ways:
 - Following SU(4) group representations.
 - Following HQET description at lowest order.
- * Selection of the operator basis for the variational method.
- * Preliminary results for the spectra singly and doubly charmed baryons (including PP) available.

COMPUTATIONAL DETAILS

- Gauge action: Wilson tree level O(a²) improved.
- Fermion action: Stout Link Non-perturbative Clover, (SLiNC).
 Non perturbatively O(a) improved.

General features:

- * Keep flavour singlet quark mass constant, $\bar{m}_q = (m_u + m_s + m_d)/3$,
- * # existing configurations per set $\sim 2000 4000$.
- * $M_{\pi}=$ 442 MeV: flavour symmetric point.


Analysed ensembles

β	Volume	a fm	No.	M_{π} (MeV)
5.50	$24^{3} \times 48$	0.0795(3)	941	442
5.50	$24^{3} \times 48$	0.0795(3)		412
5.50	$24^{3} \times 48$	0.0795(3)		375
5.50	$24^{3} \times 48$	0.0795(3)	450	348

SETTING THE CHARM MASS

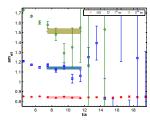
Example

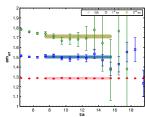
- The valence charm quark mass has to be set. $\kappa = \frac{1}{2ma+8r}$, or $m = \frac{1}{2a} \left(\frac{1}{\kappa} \frac{1}{\kappa_{\rm crit}} \right)$, $\kappa_{\rm crit}$ is the value of κ at the chiral limit.
- Set the spin averaged, $m_{\overline{1S}}=\frac{1}{4}m_{\eta c}+\frac{3}{4}m_{J/\psi}$ to its physical value.

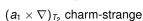
OPEN AND HIDDEN CHARMED MESONS

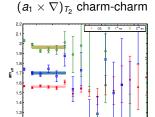
1. Interpolating operators (for charmonium).

Name	O _h Rep	JPC	State	Operator
π	A ₁	0-+	η_c	γ_5
ρ	T_1	1	J/ψ	γ_i
b ₁	T_1	1+-	h _c	$\gamma_i \gamma_i$
a_0	A_1	0++	<i>χ</i> _c 0	1 1
a ₁	T_1	1++	χc1	$\gamma_5 \gamma_i$
$(\rho \times \nabla)_{T_2}$	T_2	2++	χc2	$s_{ijk}\gamma_j abla_k$
$(\pi \times D)_{T_2}$	T_2	2^{-+}		$\gamma_4\gamma_5D_i$
$(a_1 \times \nabla)_{T_2}$	T_2	2		$\gamma_5 s_{ijk} \gamma_j \nabla_k$
$(\rho \times D)_{A_2}$	A_2	3		$\gamma_i D_i$
$(b_1 \times D)_{A_2}$	A_2	3+-		$\gamma_4\gamma_5\gamma_iD_i$
$(a_1 \times D)_{A_2}$	A_2	3++		$\gamma_5 \gamma_i D_i$
$(a_1 \times B)_{T_2}$	T_2	2+-	exotic	$\gamma_5 s_{ijk} \gamma_j B_k$
$(b_1 \times \nabla)_{T_1}$	<i>T</i> ₁	1-+	exotic	


O_h Irreps

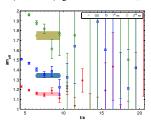

٨	d_{Λ}	J
A_1	1	0,4,6,
A_2	1	3,6,7,
T_1	3	1,3,4,
T_2	3	2,3,4,
Ε	2	2,4,5,

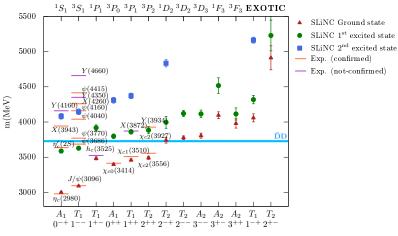

- $s_{ijk} = |\epsilon_{ijk}|, \quad D_i = s_{ijk} \nabla_i \nabla_k, \quad B_i = \epsilon_{ijk} \nabla_i \nabla_k.$
- D, D_s states have been analogously constructed.


2. Results (I) Effective masses

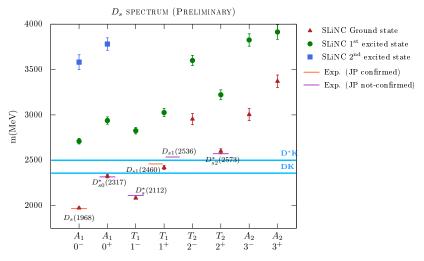
$$\beta = 5.5, \, \kappa_{s} = \kappa_{u} = 0.1209, 24 \times 48, \, \textit{M}_{\pi} = 442 \; \textrm{MeV}$$

$$\textit{D}_{s}^{*} \qquad \qquad \textit{J}/\psi$$

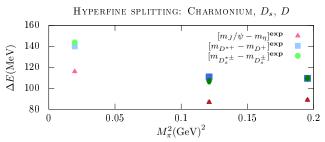



12 t/a

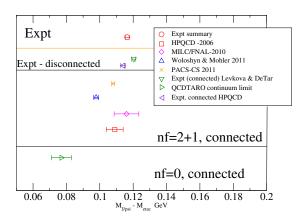
8


2. Results(II) Charmonium spectrum

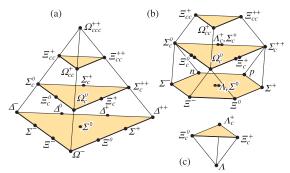
Charmonium spectrum (Preliminary)


• Flavour symmetric point, $m_{\pi}=$ 442 MeV.

2. Results (III) D_s spectrum


• flavour symmetric point, $m_\pi=442$ MeV.

2. Results (IV) Hyperfine splittings


- Little dependence on the pion mass.
- · Disagreement with the experimental value but,
 - * the c.l. extrapolation is needed,
 - * disconnected diagrams are not being included (charmonium),
 - * momenta $\sim m_c v$. Big discretisation effects are expected.
 - * Sensitive to m_c
- We are investigating other splittings.

2. Results (V) Summary of hyperfine splitting (Charmonium)

CHARMED BARYONS

• SU(4) representations

- Flavour symmetry is not respected.
- Simplest way to see which baryons should exist.
- SU(4): $4 \otimes 4 \otimes 4 = 20 \oplus 20 \oplus 20 \oplus \overline{4}$ $\square \otimes \square \otimes \square = \square \square \oplus \square \oplus \square \oplus \square \oplus \square$

1. Experimental status

Bar.	M(MeV)	(qqq)	$I(J^P)$	St.	Bar.	M(MeV)	(qqq)	$I(J^P)$	St.
2286 2595	2286		0 (1/2+)	****	Ξ'+	2575	(usc)	1/2(1/2+)	***
		$0(1/2^{-1})$	***	Ξ'0	2578	(dsc)	1/2(1/2+)	***	
Λ_c^+	+ 2625	(udc)) 0(3/2+)	***	\equiv_c	2645		1/2(3/2+)	***
	2880	` ′	$0(5/2^{+})$	***		2790	(usc),	0(??)	***
	2940		0 (? [?])	***		2815	`	1/2(3/2-)	***
	2455	(uuc), (udc),	1(1/2 ⁺)	****	1	2980	(dsc)	1(? [?])	***
Σ_c	2520		1(3/2)+	***		3080		1/2(??)	***
	2800	(ddc)	1(??)	***	Ω_c	2695	(ssc)	0(1/2+)	***
Ξ_c^+	2468	(usc)	1/2(1/2+)	***	1 22C	2770	(330)	$0(3/2^+)$	***
\equiv_c^0	2470	(dsc)	1/2(1/2+)	***	Ξ_{cc}^+	3519	(dcc)	?(??)	*

[PDG '10]

 Experimental results: Mass splittings between spin ½ and spin ¾ charm baryon multiplets (lights in 6)

$$m_{\Sigma_c^{*+}} - m_{\Sigma_c^{+}} = 64.6 \pm 2.3 \text{MeV}$$

 $m_{\Xi_c^{'*+}} - m_{\Xi_c^{'+}} = 70.9 \pm 3.4 \text{MeV}$
 $m_{\Omega_c^{*-}} - m_{\Omega_c^{+}} = 70.8 \pm 1.5 \text{MeV}$

- Heavy Quark effective model: These splittings are governed by EM interactions. They are similar \(
 //
)
- Naive parton model: Predict same $\tau_{1/2}$ for hadrons containing a heavy quark. They differ by a factor of 6! \times

2. Interpolating operators (I) SU(4) representations

- SU(4) 20-PLET CONTAINING SU(3) OCTETS
 - * *N* like: $P, \Sigma^{\pm}, \Xi^{-}, \Xi^{0}, \Omega^{0}_{c}, \Sigma^{++}_{c}, \Sigma^{0}_{c}, \Omega^{+}_{cc}, \Omega^{+}_{cc}, \Xi^{+}_{cc}$.

$$\mathcal{O}^P_{\gamma}(x) = \epsilon^{abc} \left[q_1^a(x)^T (C\gamma_5) q_2^b(x) \right] q_{2\gamma}^c(x).$$

* Λ - like: Λ_c , Ξ_c^0 , Ξ_c^+ .

$$\begin{split} \mathcal{O}_{\gamma}^{\Lambda}(x) &= \frac{1}{\sqrt{6}} \epsilon^{abc} \left\{ 2 \left[q_1^a(x)^T (C\gamma_5) q_2^b(x) \right] q_{3\gamma}^c(x) + \left[q_3^a(x)^T (C\gamma_5) q_2^b(x) \right] q_{1\gamma}^c(x) \right. \\ & \left. - \left[q_3^a(x)^T (C\gamma_5) q_1^b(x) \right] q_{2\gamma}^c(x) \right\}. \end{split}$$

* Σ_0 - like: $\Sigma_c^+, \Xi_c'^0, \Xi_c'^+$.

$$\mathcal{O}_{\gamma}^{\Sigma_0}(x) = \frac{1}{\sqrt{2}} \epsilon^{abc} \left\{ \left[q_1^a(x)^T (C\gamma_5) q_3^b(x) \right] q_{2\gamma}^c(x) + \left[q_2^a(x)^T (C\gamma_5) q_3^b(x) \right] q_{1\gamma}^c(x) \right\}.$$

2. Interpolating operators (II) SU(4) representations

- SU(4) 20-PLET CONTAINING SU(3) DECUPLET
 - * Δ^{++} like: $\Delta^{-}, \Omega^{-}, \Omega^{++}_{CCC}$.

$$\mathcal{O}_{\gamma}^{\Delta^{++}} = \epsilon^{abc} \left(q_1^{aT} (C \gamma_{\mu}) q_1^b
ight) q_{1\gamma}^c$$

*
$$\Sigma^{*-}$$
 - like: $\Delta^0, \Delta^+, \Sigma^{*+}, \Xi^{*-}, \Xi^{*0}, \Sigma_c^{*0}, \Sigma_c^{*++}, \Omega_c^{*0}, \Xi_{cc}^{+*}, \Xi_{cc}^{++}, \Omega_{cc}^{*-}$.
$$\mathcal{O}_{\gamma}^{\Sigma^{*-}} = \epsilon^{abc} \left\{ 2 \left(q_1^{aT} (C \gamma_\mu) q_2^b \right) q_{2\gamma}^c + \left(q_2^{aT} (C \gamma_\mu) q_2^b \right) q_{1\gamma}^c \right\}$$

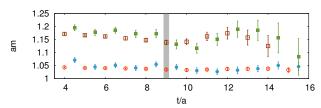
* Σ^{*0} -like : $\Xi_c^{*0}, \Xi_c^{*+}, \Sigma_c^{*+}$

$$\mathcal{O}_{\gamma}^{\Sigma^{*0}} = rac{\epsilon^{abc}}{\sqrt{3}} \left\{ \left(q_1^{aT} (C\gamma_\mu) q_2^b
ight) q_{3\gamma}^c + \left(q_3^{aT} (C\gamma_\mu) q_1^b
ight) q_{2\gamma}^c + \left(q_2^{aT} (C\gamma_\mu) q_3^b
ight) q_{1\gamma}^c
ight\}$$

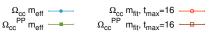
CORRELATORS

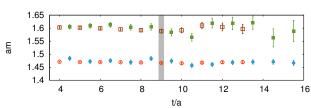
$$C(t, \mathbf{p} = 0) = T_{\bar{\gamma}\gamma} \sum \langle \mathcal{O}_{\gamma}(x) \overline{\mathcal{O}}_{\bar{\gamma}}(0) \rangle,$$

where T_{γ} is a polarisation matrix, projecting into a channel or its parity partner, PP.


2. Interpolating operators (III). HQET

2-light (2-heavy)
$$\mathbf{3} \times \mathbf{3} = \mathbf{\bar{3}} + \mathbf{6}$$


- All \mathcal{O}_{x} 's get contributions from PP. Projections $T_{\bar{\gamma}\gamma}$ needed.
- Correlators, $C_{\mu\nu}(t)$ from $\mathcal{O}_{\mu}^{(')}$ need projections into the desired J=1/2,/3/2. Projectors $P_{\mu\nu}^{3/2},P_{\mu\nu}^{1/2}$ used.


3. Results (I) Effective mass plots

• Ω_c and its parity partner, Ω_c^{PP}

• Ω_{cc} and its parity partner, Ω_{cc}^{PP}

3. Results (II) Singly charmed baryons

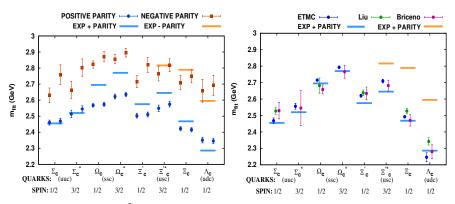


Figure: SLiNC ensemble, $V = 24^3 \times 48$, beta = 5.5, $M_{\rm PS} = 348 \ {\rm MeV}$

Figure: Summary results

- · Our results are from one single ensemble
- $m_u/m_s \sim 2.9 \Rightarrow$ light quarks too heavy, strange quark too light.

3. Results (III) Doubly charmed baryons

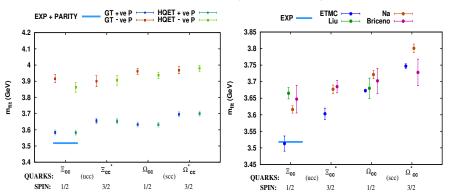


Figure: SLINC ensemble, $V=24^3\times 48,$ beta = 5.5, $M_{\rm PS}=348~{\rm MeV}$

Figure: Summary results

- Our results are from one single ensemble
- $m_u/m_s \sim 2.9 \Rightarrow$ light quarks too heavy, strange quark too light.

SUMMARY AND OUTLOOK

- Hidden and open charmed states are narrower and cleaner than many light quark resonances.
- In the last decade, new puzzling states were found, D_s(2317), D_s(2460), X(3872), ...
 Present LHC, BEPCII and future Super-B factories, FAIR facilities will help understanding them.
- There have been a number of experimental searches of charmed baryons over the last years, (SELEX, BaBaR, Belle, ...). New facilities will be able to study charmed baryons (e.g. Super-B factories, LHC)
- We are in the process of computing the spectra of charmed hadrons.
- In the D_s and charmonium sectors, mixing with $D\bar{K}$ and $\bar{D}D^{(*)}$ will be studied.
- In the singly charmed baryon sector, both, interpolating fields in the HQET and the SU(4) bases are being studied
- In the doubly charmed baryon sector we aim to establish if the spectrum resembles that
 of D mesons or that of c(cq) "quarkonia".