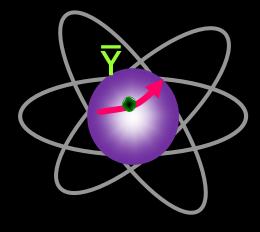
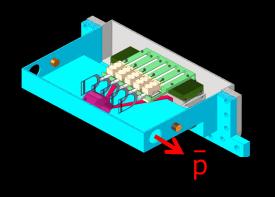
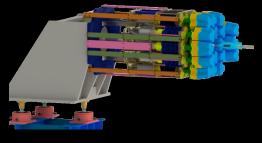
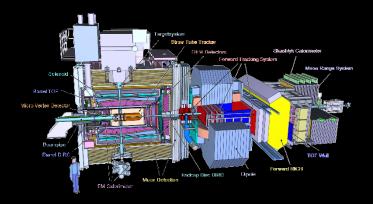


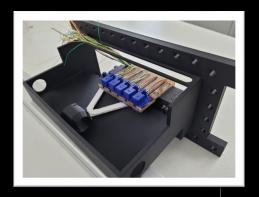
Strangeness Nuclear Physics


= Strangeness in cold nuclei

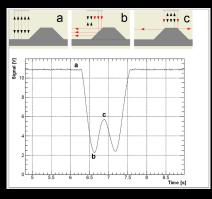

hyperatoms




hypernuclei


(anti)hyperon scattering

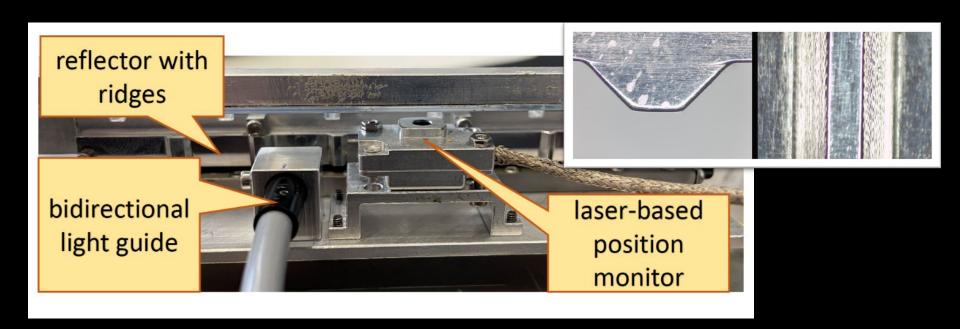
Primary Target

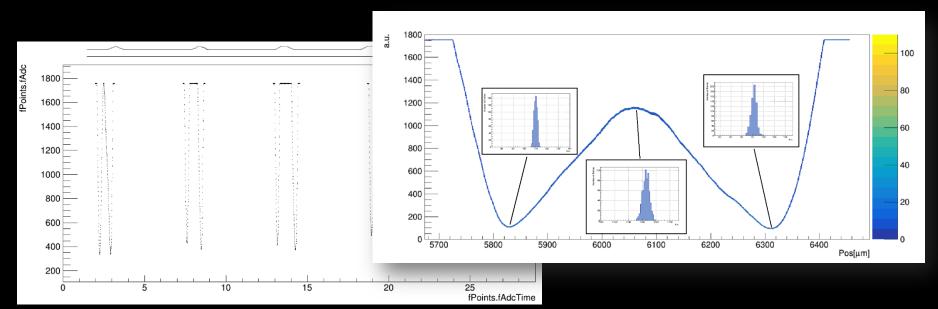


3D-printed Al vacuum chamber

Radiation hard positioning system

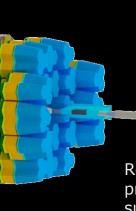
Precision < $3.3\mu m$




Pb secondary target

- most components available for assembly
- rmaining parts ordered
- stability and leak rate tests for 3D chamber
- cable routing

Positioning system



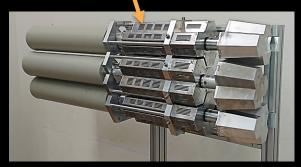
JG|U PANGEA

PANGEA: PANda GErmanium Array (in collaboration with DEGAS)

Components for 25 cryostats available for assembly, ordered for 5 more, PANGEA uses 20 detectors

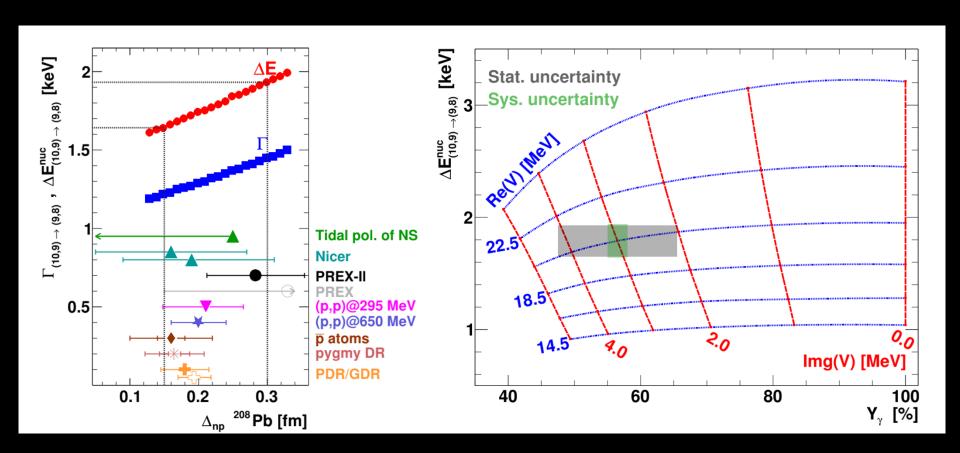
Redesign of the holding frame in progress switching from 5 to 4 submodu es (easier maintenance and installation)

Prototype of first submodules successfully tested with new LN2 cooled detector design



Successfull test of detector design with preliminary electronics

Ch.	HEX	Bias [V]	FWHM [keV]	
А	152	3000	2.02	
В	163	3000	1.96	
С	39	3500	2.18	



8 triple detectors used in experiment DESPEC S450 at FSR(GSI) in since 09.05.2022

Sensitivity to 208Pb structure

changing thickness of neutron skin artificially in calculations

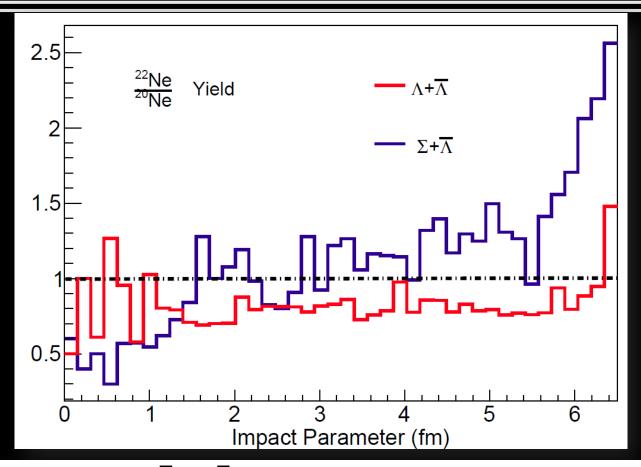
$$\delta(\text{Re}(V_{\Xi}))_{\text{stat}} \approx \delta(\text{Im}(V_{\Xi}))_{\text{stat}} \approx 1 \text{ MeV}$$

- Need to understand nuclear structure of core nuclei
- Exploring also the possibility of Σ^- and $\overline{\Sigma}$ -hyperatoms



Probing the Neutron Skin of Nuclei

$$\bar{p} + p \rightarrow \bar{\Lambda} + \Lambda \qquad \bar{p} + p \rightarrow \bar{\Sigma}^0 + \Lambda \qquad \bar{p} + n \rightarrow \bar{\Lambda} + \Sigma^- \qquad \bar{p} + n \rightarrow \bar{\Sigma}^+ + \Lambda$$
 absorption length of $\bar{p} \qquad r_{abs} = \frac{1}{\sigma_{abs}\rho} \sim \frac{1}{100mb \cdot 0.17fm^{-3}} \approx \frac{\rho_0}{\rho} 0.6fm$ survival probability
$$p_{survival} = \exp(-\Delta r / r_{abs})$$


going from ²⁰Ne vs. ²²Ne

- additional absorption of antiprotons in neutron skin:
 - ▶ $\overline{\Lambda} + \Sigma^{-}$ will increase in ²²Ne with respect to ²⁰Ne by $1 + p_{abs} \approx 1.16$
 - ▶ $\overline{\Lambda} + \Lambda^{-}$ will decrease in ²²Ne with respect to ²⁰Ne by $1 p_{abs} \approx 0.84$

BUU predictions

Table I. Production yield of $\overline{\Lambda}\Lambda$ and $\overline{\Lambda}\Sigma^-$ -pairs in \overline{p} -Ne interactions. The last line gives the double-ratio for $\overline{\Lambda}\Sigma^-$ and $\overline{\Lambda}\Lambda$ production.

Target	$\overline{\Lambda}\Sigma^-$	$\overline{\Lambda}\Lambda$
²⁰ Ne	3667	18808
²² Ne	4516	15733
ratio ²² Ne/ ²⁰ Ne	1.23	0.84
$ratio(\overline{\Lambda}\Sigma^{-})/ratio(\overline{\Lambda}\Lambda)$	1.46	

Krypton (Z=36) Isotopes

FIG. 5. Neutron number dependence of rms matter and proton radii. Closed symbols indicate the experimental data of $\tilde{r}_{\rm m}$ (squares) and $\tilde{r}_{\rm p}$ (circles) from $\tilde{r}_{\rm ch}$ [20]. Corresponding open symbols connected by lines show theoretical predictions [35].

JG U

Neutron skin of Sn

A. Krasznahorkay et al., Nucl. Phys. A 731, 224 (2004)

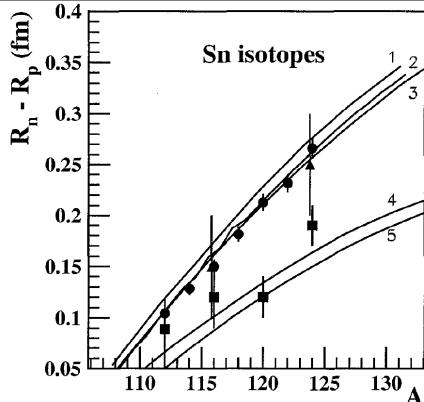
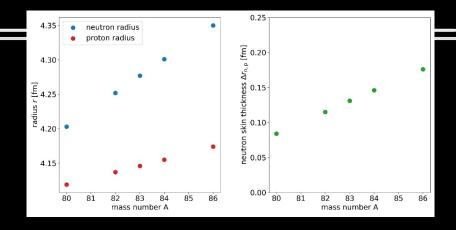


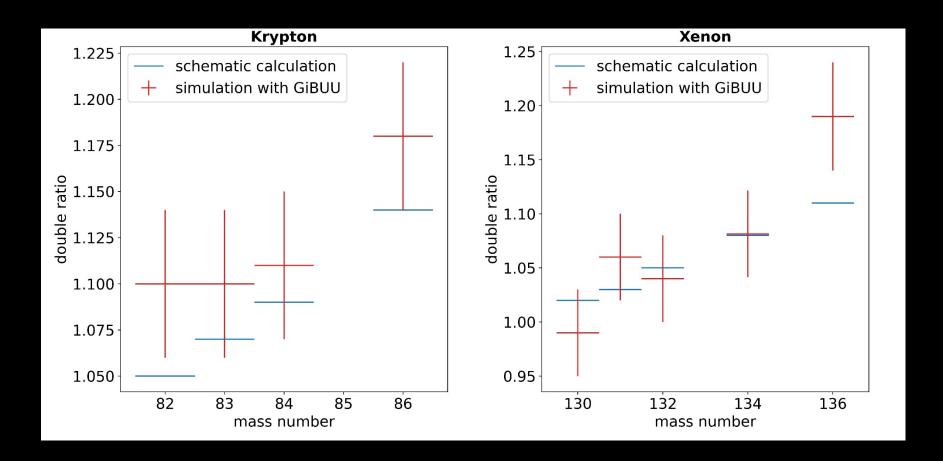
Table 1


Summary of the neutron-skin thicknesses $(\langle r_n^2 \rangle^{1/2} - \langle r_p^2 \rangle^{1/2})$ m m, obtained in uniform methods.

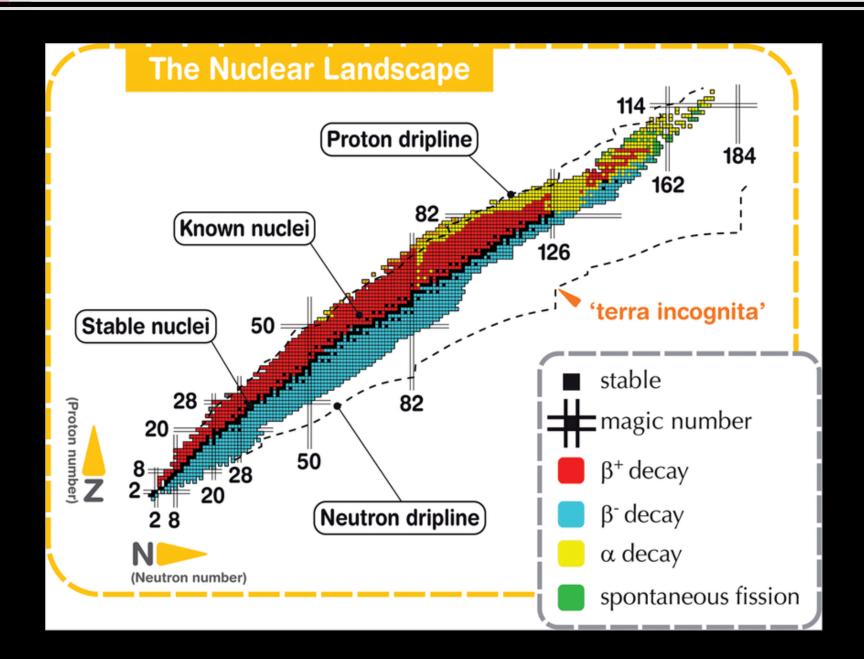
Jus.							
Isotope	(p,p) [4,5]	(p,p) [7]	GDR [16]	SDR [18]	antiproton [11]		
$^{112}\mathrm{Sn}$			·		0.09 ± 0.02		
$^{114}\mathrm{Sn}$				≤ 0.09			
$^{116}\mathrm{Sn}$	0.15 ± 0.05		0.02 ± 0.12	0.12 ± 0.06	0.12 ± 0.02		
$^{118}\mathrm{Sn}$				$0.13 {\pm} 0.06$			
$^{120}\mathrm{Sn}$				0.18^{a})	$0.12 {\pm} 0.02$		
$^{122}\mathrm{Sn}$				0.22 ± 0.07			
$^{124}\mathrm{Sn}$	0.25 ± 0.05		$0.21 {\pm} 0.11$	0.19 ± 0.07	0.19 ± 0.02		
²⁰⁸ Pb	0.14 ± 0.04	0.20 ± 0.04	0.19 ± 0.09		0.15 ± 0.02		
a	a) Normalized to the theoretical value of Americat at [01]						

a) Normalized to the theoretical value of Angeli et al. [21].

JG|U Method

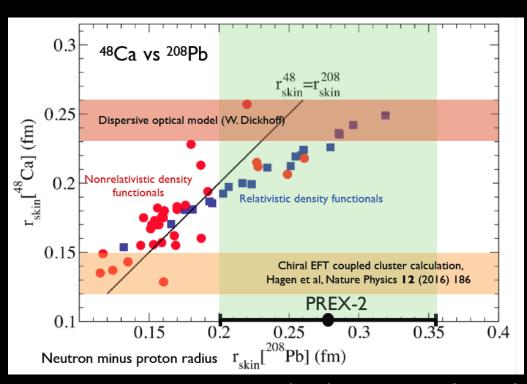

BA thesis Martin Christiansen

 $\begin{array}{c} \text{RMFM} \\ \text{Nucleon} \\ \text{distributions} \end{array}$ $\begin{array}{c} \text{Production} \\ \overline{\Lambda}\Lambda/\overline{\Lambda}\Sigma^- \\ \text{for 2 isotopes} \end{array}$ $\begin{array}{c} \text{Simplified} \\ \text{geometrical model} \\ \overline{\Lambda}\Lambda/\overline{\Lambda}\Sigma^- \end{array}$


$$DR = \frac{1 + \rho_{abs}}{1 - \rho_{abs}} = -1 + 2 \cdot \exp(\Delta r_{ns} \cdot \rho_{n} \cdot \sigma_{\bar{p}n \to \bar{\Lambda}\Sigma})$$

Result Result

Approx $3\cdot10^7$ events per target simulated Assuming 1% efficiency \Rightarrow 1h of PANDA at 10^6 interaction rate Problem: cost for gas!!!


Doubly Magic Nuclei

Realistic Option for PANDA

- Replace gas target with solid target (like for the hyperatom study)
 - Straight forward mechanics
 - ⇒ < mg target material needed
- Physics case: ⁴⁸C a vs. ⁴⁰Ca (c.f. CREX @ Jlab)
 - melting point 842°C

Chuck Horowitz (2021)