Jana Rieger

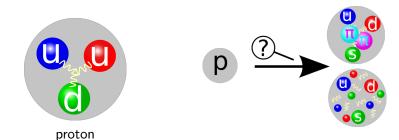
Uppsala University

PANDA Collaboration Meeting 1/2022

Outline

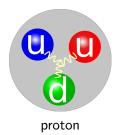
- Motivation
- 2 pp @ 4.5 GeV Beam Time
- 3 The Standard Elastic Scattering
- The Unknown Hyperon Form Factors
- Conclusion

Hyperons vs. Nucleons



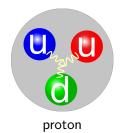
Hyperons vs. Nucleons

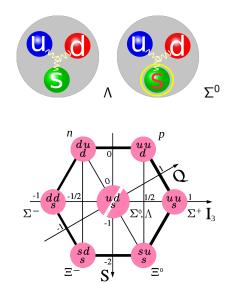
What if we add strangeness?



Hyperons vs. Nucleons

What if we add strangeness?





Form Factors

Describe non-point-like character of particles, dependent on four-momentum transfer *q*

→ Coupling of photon to hadron

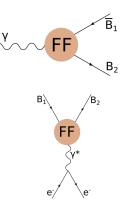
Nucleon: Electron scattering

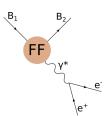
- Space-like ($q^2 < 0$) region
- Fixed target experiment

Challenge of hyperons: They are unstable!

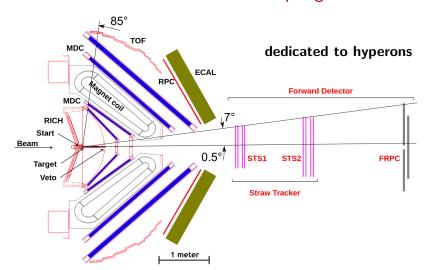
- → Study Dalitz decay
 - Makes hyperon-hyperon TFF accessible
 - Time-like $(q^2 > 0)$ region

This has never been measured before!





PANDA @HADES – Setup for pp @ 4.5 GeV Beam Time in Spring 2022



The HADES Feb22 Beam Time

- pp collisions at 4.5 GeV beam kinetic energy
- Hyperon campaign

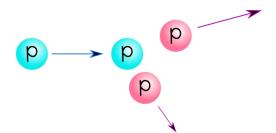
see also talk by Konrad Sumara:

"Production and decays of hyperons in p+p reactions measured with HADES", Tuesday

- Total of 488.25 hours of data taking
- Total amount of data collected:

41 G Events (all triggers) 683973.7 GB

The Standard – pp Elastic Scattering –



Many exeriment parameters are still unknown but we know the physics...

pp Elastic Scattering

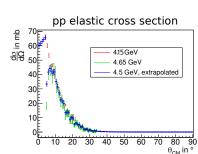
A well defined reaction

Kinematic relations

$$\begin{split} \rho &= \frac{\rho_{\mathrm{beam}}}{\cos\theta \cdot (1 + \tan\theta^2 \gamma_{\mathrm{CM}}^2)} \\ \tan\theta_1 \cdot \tan\theta_2 &= \frac{1}{\gamma_{\mathrm{CM}}^2} = 0.29429 \\ \varphi_2 &= |180^\circ - \varphi_1| \end{split}$$

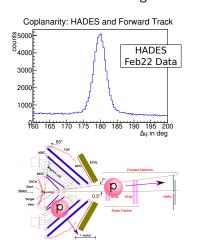
With a lot of existing data

from SAID database

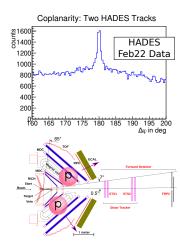


p

Online monitoring



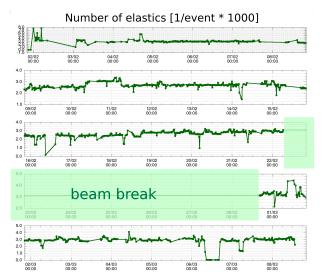
Selection: $\tan \theta_1 \cdot \tan \theta_2 = 0.294 \pm 0.1$



Selection:

 $an heta_1 \cdot an heta_2 = 0.294 \pm 0.015$

Online monitoring



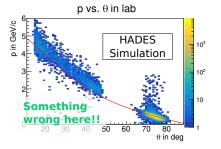
Selection on $\Delta \varphi$ and $\tan \theta_1 \cdot \tan \theta_2$

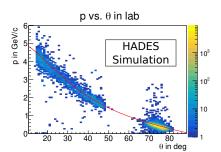
Credits to Rafał Lalik and Konrad Sumara

- Online monitoring
- Calibration and quality assurance see also talk by Gabriela Perez:

The new Forward Tracker System for the HADES FAIR Phase-0 experiment", Wednesday

From elastic scattering kinematics: $p = \frac{p_{\text{beam}}}{\cos \theta \cdot (1 + \tan \theta^2 \gamma_{\text{cov}}^2)}$

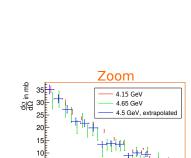




Corrected geometry

Elastic scattering, both protons detected

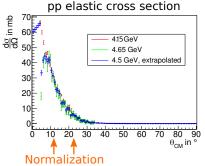
- Online monitoring
- Calibration and quality assurance
- Normalization luminosity determination



18

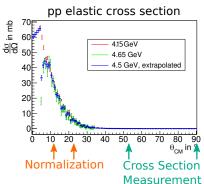
10 12

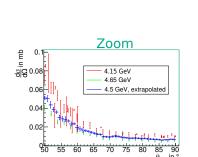
HADES



Integrated cross section from $\theta_{\rm CM} = 13^{\circ} - 22^{\circ} = 3.7^{+0.7}_{-0.3} \, \rm mb$

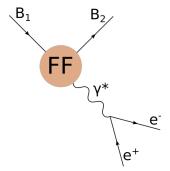
Detector





Integrated cross section from $\theta_{\rm CM} = 55^{\circ} - 90^{\circ} = 0.04^{+0.02}_{-0.01}\,{\rm mb}$

The Unknown – Hyperon Form Factors –



Now the experiment is known and we can explore unknown physics ...

The Σ^0 Hyperon



$\sum_{i=1}^{n} I(J^{P}) = 1(\frac{1}{2}^{+})$

Mass: $1193 \pm 0.024 \,\mathrm{MeV}$

Mean life: $(7.4 \pm 0.7) \cdot 10^{-20} s$

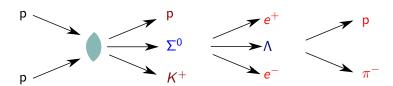
Decay mode	Branching ratio
$\Lambda\gamma$	100 %
$\Lambda\gamma\gamma$	< 3 %
Λe^+e^-	$5\cdot 10^{-3}$ unmeasured

P.A. Zyla et al.(Particle Data Group), Prog. Theor. Exp. Phys.2020, 083C01 (2020)

Dalitz Decay – Challenges

- $\Sigma^0 \Lambda$ mass difference (only 77 MeV) \Rightarrow low dielectron (e^+e^-) mass
- Large background from $\Sigma^0 \to \Lambda \gamma$

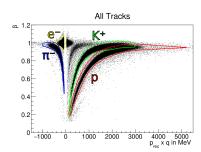
Simulation



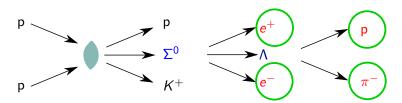
Simulated signal

- 1 000 000 events
- 4.5 GeV beam kinetic energy
- Uniform phase-space population

Particle identification



Reconstruction Strategy I



Simulated signal

- 1 000 000 events
- 4.5 GeV beam kinetic energy $\hat{=} \sqrt{s} = 3.5 \, \text{GeV}$

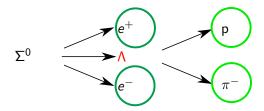
Analysis Strategy I

Inclusive reconstruction of $\Sigma^0 \to \Lambda e^+ e^-$

Reconstructed particles

Strategy I: A Reconstruction

Vertex fit in secondary vertex

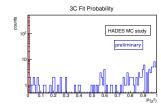


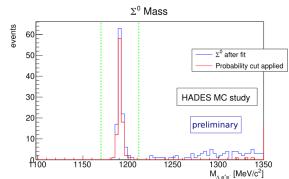
- Λ production vertex from e^+ and e^-
- Λ decay vertex from p and π^-
- Λ direction is given by vertex positions
- Kinematic fit ensures 4-momentum conservation in secondary vertex to reconstruct Λ momentum

Strategy I: Σ^0 Reconstruction

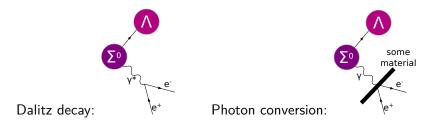
Finally: Build Σ^0 from $\Lambda e^+ e^-$ Selection:

- $P(\chi^2) > 1\%$
- $1170\,{
 m MeV}/c^2 < m_\Sigma < 1216\,{
 m MeV}/c^2$





Strategy I: Σ^0 Radiative Decay as Background Source

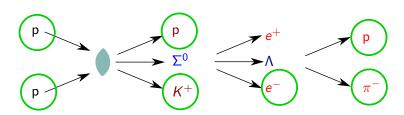


$$pp o pK^+\Sigma^0[\Lambda\gamma]$$

- Cross section $pp \to pK^+\Sigma^0$: 23.5 μb
- v. Flaminio, et al., (1984), eprint: CERN-HERA-84-01 • Fraction that passes the Σ^0 Dalitz selection criteria: $5 \cdot 10^{-8}$ (1 of 20 million)
- Corresponding $S/\sqrt{S+B}$: 9.1

Very good background suppression by kinematic fit

Reconstruction Strategy II



Simulated signal

- 1 000 000 events
- 4.5 GeV beam kinetic energy $\hat{=} \sqrt{s} = 3.5 \, \mathrm{GeV}$

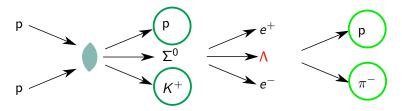
Analysis Strategy II

(almost) Exclusive reconstruction of $pp \to pK^+\Sigma^0[\Lambda e^+e^-]$, e^+ constructed by kinematic fitting

Reconstructed particles

Strategy II: A Reconstruction

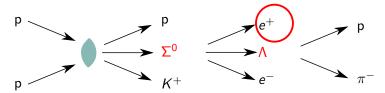
Vertex fit in secondary vertex



- Σ^0 decays in interaction point, Λ in secondary vertex
- Find two vertices from $p\pi^-$ and pK^+
- Λ direction is given by vertex positions
- Kinematic fit in secondary vertex to reconstruct Λ momentum

Strategy II: e^+ Reconstruction

Get e^+ from $pK^+\Lambda e^-$ missing 4-momentum



- Initial 4-momentum is known
- Λ candidate from vertex fit
- p, K^+ and e^- measured
- Determine e^+ momentum by kinematic fit
- O Missing particle

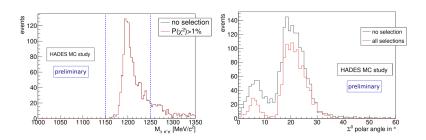
Kinematic fitting software developed in Uppsala

Strategy II: Σ^0 Reconstruction

Finally: Build Σ^0 from Λe^+e^-

Selection criteria:

- $P(\chi^2) > 1\%$
- $1150 \,\mathrm{MeV}/c^2 < m_\Sigma < 1250 \,\mathrm{MeV}/c^2$



Strategy II: Most Prominent BG: Σ^0 Radiative Decay

$$pp o pK^+\Sigma^0[\Lambda\gamma]$$

- Cross section $pp \to pK^+\Sigma^0$: 23.5 μb
 - V. Flaminio, et al., (1984), eprint: CERN-HERA-84-01
- Fraction that passes the Σ^0 Dalitz selection criteria: $4.5 \cdot 10^{-5}$ (886 of 20 million)
- Corresponding $S/\sqrt{S+B}$: 11.5
- Phase space largely overlapping

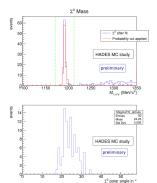
Apply additional background suppression selections

- Electron production vertex and hit structure
- Signal: -18%; BG: -76%
- New $S/\sqrt{S+B}$: 17

Strategy I and II

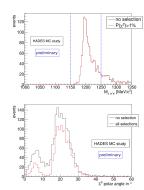
Strategy I

- Detected particles: e^- , e^+ , p, π^-
- Very good background supp.: $\frac{S}{\sqrt{S+B}} = 9.1, \frac{S}{B} = 92$
- Counts/day: 15



Strategy II

- Detected particles: p, K^+, e^-, p, π^-
- More signal, more background: $\frac{S}{\sqrt{S+B}} = 17$, $\frac{S}{B} = 0.48$
- Counts/day: 152



Conclusion

At First: The standard, elastic scattering

- Understand the data
- Calibrate the data
- Normalize the data
- Analyze the data

Then: The unknown, Σ^0 Dalitz decay

- Do analysis on Feb22 beam time data
- Measure the Σ^0 Dalitz decay!

BACKUP

Strategy I: Most Prominent BG: Σ^0 Radiative Decay

Find background suppression criteria



Cut on RICH index > 0 and isPrimaryVertex == 1

Signal: 1153 \rightarrow 947; **BG:** 886 \rightarrow 209

New S/B: 0.477

Expected Count Rates

- Luminosity $\mathcal{L} = 1.5 \cdot 10^{31} \, \mathrm{cm}^{-2} s 1$ (beam time proposal)
- Cross section $\sigma(pp \to pK^+\Sigma^0) = 23.5 \,\mu \mathrm{b}$
- Branching ratio ${
 m BR}(\Sigma^0 o \Lambda e^+ e^-) = 5 \cdot 10^{-3}$
- Efficiency and Acceptance $(\epsilon \cdot A \cdot \mathrm{BR}(\Lambda \to p\pi^-))$ = 9.968 · 10⁻⁴ (exclusive $pp \to pK^+\Sigma^0[\to \Lambda e^+e^-])$ = 9.684 · 10⁻⁵ (inclusive $\Sigma^0 \to \Lambda e^+e^-$)

$$pp o pK^+\Sigma^0[o\Lambda(e^+)e^-]/{\sf day}$$

 $N_{\mathrm{LH}} = \mathcal{L} \cdot \sigma \cdot \mathrm{BR} \cdot (\epsilon A) \cdot t \approx 152$

$$\Sigma^0 o \Lambda e^+ e^-/{\sf day}$$

$$N_{\mathrm{LH}} = \mathcal{L} \cdot \sigma \cdot \mathrm{BR} \cdot (\epsilon A) \cdot t \approx 15$$

Kinematic Fitter for HADES Software

Suppose there are N measured and M unmeasured variables related by K constraints

$$f_k(\eta_1, \, \eta_2, \, ...\eta_N, \, \xi_1, \, \xi_2, \, ...\xi_M) = 0.$$
 (1)

Goal: Minimize $\chi^2(\eta) = (y - \eta)^T V(y)(y - \eta)$ under those K constraints

Procedure: Introduce Lagrangian Multiplliers λ

$$\chi^{2}(\eta, \xi, \lambda) = (y - \eta)^{T} V(y)(y - \eta) + 2\lambda^{T} f(\eta, \xi) = \text{minimum (2)}$$

y: Measurements, V(y): Covariance matrix of y

4C Fitter

Constraint equations for N particles:

$$f_1 = \sum_{n=1}^{N} p_n \cdot \sin \vartheta_n \cos \varphi_n - p_{x_{\text{ini}}} = 0$$

$$f_2 = \sum_{n=1}^{N} p_n \cdot \sin \vartheta_n \sin \varphi_n - p_{y_{\text{ini}}} = 0$$

$$f_3 = \sum_{n=1}^{N} p_n \cdot \cos \vartheta_n - p_{z_{\text{ini}}} = 0$$

$$f_4 = \sum_{n=1}^{N} \sqrt{p_n^2 + m_n^2} - E_{\text{ini}} = 0$$

The Fitting Procedure - Minimization

 χ^2 minimization will result in N+M+K equations:

$$\nabla_{\eta} \chi^{2} = -2V^{-1}(y - \eta) + 2F_{\eta}^{T} \lambda = 0$$
$$\nabla_{\xi} \chi^{2} = 2F_{\xi}^{T} \lambda = 0$$
$$\nabla_{\lambda} \chi^{2} = 2f(\eta, \xi) = 0$$

where F_{η} and F_{ξ} are defined by

$$(F_{\eta})_{ij} = \frac{\partial f_i}{\partial \eta_i}, \qquad (F_{\xi})_{ij} = \frac{\partial f_i}{\partial \xi_i}$$
 (3)

→Solve in iterative procedure