

Update on High Voltage Board and additonal PCBs in FWEC cold volume

PANDA-Collaboration-Meeting 01.06.2022 Ch. Schmidt

Helmholtz Institut für Strahlen- und Kernphysik

- Update of radiation hardness simulation
 H*(10) [Sv/h] vs D(Si) [Gy/h]
- Tests of other part combination in HV part Summary of rev. 7 and 8
- Status HV-Adjustment boards
- Status of other PCBs in cold volume

To determine dose at ⁶⁰Co irrad., using time, activity and simulated mean deposited energy per ⁶⁰Co photon:

To determine dose at ⁶⁰Co irrad., using time, activity and simulated mean deposited energy per ⁶⁰Co photon:

 \rightarrow e.g. ADC only would only last half lifetime

To determine dose at ⁶⁰Co irrad., using time, activity and simulated mean deposited energy per ⁶⁰Co photon:

 \rightarrow e.g. ADC only would only last half lifetime

But additional simulations show a strong dependence on package size and density Results in a factor of up to 6 (approx. realistic packaging)

 \rightarrow e.g. ADC would last ~3x lifetime

To determine dose at ⁶⁰Co irrad., using time, activity and simulated mean deposited energy per ⁶⁰Co photon:

 \rightarrow e.g. ADC only would only last half lifetime

H*(10) dose at the position of high voltage boards for lumi 2[.]10³², 10x half years, average luminosity (50%), 15GeV DPM, full detector setup:

→ 3x lifetime dose results to 180Sv, which would be compatible to factor of 6 in realistic chip packaging

HISKP - Ch. Schmidt

 $H^{*}(10)$ dose at the position of high voltage boards for lumi 2[.]10³², 10x half years, average luminosity (50%), 15GeV DPM, full detector setup:

→ 3x lifetime dose results to 180Sv, which would be compatible to factor of 6 in realistic chip packaging

HISKP - Ch. Schmidt

rev6/7 – Output drifts (APD bias)

UNIVERSITÄT BONN

U_{out} defines bias voltage for APD and total gain crystal (~8%/V at gain 200)

rev6/7 – Output drifts (APD bias)

UNIVERSITÄT BONN

U_{out} defines bias voltage for APD and total gain crystal (~8%/V at gain 200)

rev6/7 – Output drifts (APD bias)

UNIVERSITÄT BONN

U_{out} defines bias voltage for APD and total gain crystal (~8%/V at gain 200)

Final test to use a MOSFET as a current sink for creating Ic, because MOSFET has a well-behaved dose dependency.

HISKP - Ch. Schmidt

Temp. coefficient

Output voltage (APD bias):

	rev 8			rev 6/7	
	LND150K+ A03162	BSS126 + A03162	LND150K + BSS127	BSS126 + BSS127	PMBTA45 + A03162
Temp Coeff.	-11 mV/C	-18 mV/C	-4 mV/C	-9 mV/C	6-9 mV/C
Drift / dose (< 100Sv)	-1 mV/Sv	0.8 mV/Sv	-2 mV/Sv	-1 mV/Sv	10 mV/Sv
Drift 400Sv (min,max)	-0.3 – 0 V	-0.5 – 0.1 V	-0.4 – 0 V	-0.5 – 0 V	-1.8 – 1.3 V
Range	~17.7 V	~17.5 V	~12 V	~12 V	~20 V
P(8ch)@128	~43mW	~43mW	~43mW	~43mW	~33mW

chip-shortage:

LND150K first available 24-Oct-2022

Output voltage (APD bias):

	rev 8			rev 6/7	
	LND150K+ A03162	BSS126 + A03162	LND150K + BSS127	BSS126 + BSS127	PMBTA45 + AO3162
Temp Coeff.	-11 mV/C	-18 mV/C	-4 mV/C	-9 mV/C	6-9 mV/C
Drift / dose (< 100Sv)	-1 mV/Sv	0.8 mV/Sv	-2 mV/Sv	-1 mV/Sv	10 mV/Sv
Drift 400Sv (min,max)	-0.3 – 0 V	-0.5 – 0.1 V	-0.4 – 0 V	-0.5 – 0 V	-1.8 – 1.3 V
Range	~17.7 V	~17.5 V	~12 V	~12 V	~20 V
P(8ch)@128	~43mW	~43mW	~43mW	~43mW	~33mW
			L		

chip-shortage:

LND150K first available 24-Oct-2022

Drift is one order lower and independet of potentiometer position!

Maximal voltage difference on one HV-line of 117 APD-Alveoles measured so far:

Up to 7V adjustment is needed to get a common gain on one HV-line

Stability output/ADC

HV-Board rev. 8 (lab. setup, temp. stabilized)

Drift ranges in comparison of revisions

	ADC (Voltage-Measurement)		Output (APD bias)	
Test duration	rev. 7	rev. 8	rev. 7	rev. 8
6d	0 – 20mV	0 – 30mV	-20 – 30mV	-10 – 10mV
14d		0 – 30mV		-30 – 10mV

	rev7 Transistor + MOSFET	rev8 MOSFET + MOSFET
Drift range	1.1V @1305v 0V @1805v	-0.06V @60Sv -0.18V @180Sv
Power (0-255)	lower 64-120uA@360V 23-43mW/8ch	higher 96-140uA@370V 35-51mW/8ch
Drift under rad. Predictable	no, voltage can change drasticly	yes
Poti calibration	pol(3) not enough, residuum up to 80mV	linear, residuum < 10mV
ADC	unusable >200Sv	unusable >2005v
Tempcoeff.	pos. 6 – 9mV/C (lower I₅)	neg. -49mV/C (higher I₅)

Pros and Cons

	rev7 Transistor + MOSFET	rev8 MOSFET + MOSFET
Drift range	1.1V @1305v 0V @1805v	-0.06V @605v -0.18V @1805v
Power (0-255)	lower 64-120uA@360V 23-43mW/8ch	higher 96-140uA@370V 35-51mW/8ch
Drift under rad. Predictable	no, voltage can change drasticly	yes
Poti calibration	pol(3) not enough, residuum up to 80mV	linear, residuum < 10mV
ADC	unusable >200Sv	unusable >2005v
Tempcoeff.	pos. 6 – 9mV/C (lower I₅)	neg. -49mV/C (higher I₅)

HV-Adjustment-Board (APD):

- All parts bought/available
- PCBs of 32ch/16ch design in production (delivery mid june)
- July series production (in-house):
 - assembly
 - testing
 - coating
 - calibration of ADCs/output voltage at -25°C

Time consumeing several calibration points for at least 4 temperatures

HV-Feedthrough boards (VPTT):

- Design ready, delivery expected begin of july.
- Assembly ~1 month

Patch-Panel boards (APD,VPTT):

- Design ready, delivery expected begin of july.
- Assembly 1-2 month

Thank you for your attention

Backup

Use PandaRoot (geant4) to determine dose in $200\mu m 1x1mm^2$ Si:

- Used full PANDA detector setup in PandaRoot to determine dose at HV-board position
- Simulation of ⁶⁰Co photons were done to determine mean energy deposition per photon
- Simulation parameters verified by reproducing fluence coeff. for the conversion into H*(10) in the 0.5-3MeV energy range

Activity of ⁶⁰Co source :

- activity: 5.896 TBq calculated from start activity and T_{1/2}
- calculated from measured H*(10) dose e.g. 7.71Sv/h@46cm → 5.823 TBq (Rad Pro Calculator). Uncertainty ~ +/-15%

Simulation of ⁶⁰Co photons on 200µm Si :

- Mean energy deposit in 200 μ m Si (1x1mm²) per photon: \overline{E}_{γ} = 0.16*10⁻³ MeV
- Photon fluence through $1 \times 1 \text{mm}^2$: $\phi = 2.18 \times 10^6 \text{ Bq} (@46 \text{ cm})$ (point-like source assumed)
- Energy fluence: $\psi = 0.16 \times 2.18 \times 10^3 \text{ MeV/s} = 0.3488 \times 10^3 \text{ MeV/s}$
- With mass of Si: D = 0.43 Gy/h
- 2 photons $(1.17 + 1.33 \text{MeV}) \rightarrow \text{D} = 0.86 \text{ Gy/h}$

Factor for converting $H^{*}(10)$ to dose in Si: 0.86 Gy/7.71 Sv = 0.104 Gy/Sv

Dose for $200\mu m$ Si at the position of high voltage boards for lumi 2.10³², 10x half years, average luminosity (50%), 15GeV DPM, full detector setup:

Simulation with 1x0.2mm Si ring for several radii

Compare to energy deposit

Simulation shall give a handle bzw. ball park in what range to look.

HISKP - Ch. Schmidt

Min/max radii of HV-boards: 51.3cm (12°) 102.7cm (23°)

214 HV-boards total: 24 in 12°-15° 190 in 15°-23°

Input/output high voltage up to 500V needs to be scaled down to 2V@ADCinput to be able to digitize it:

- For a measurement range of 500V \rightarrow calibration factor is ~0,016V/ch
- To get accurate calibrated readings, the scaled down voltage (U_{sense}) needs to be stable quickly

But used HV-resistor (22M0hm, 1206 size) shows slow dirft after switch on:

Effect reproduced in a separate setup in stabilized temp. environment.

Test of different I_c settings and a fixed potentiometer position of 128:

HISKP - Ch. Schmidt

Interval irradiation

"Simulation" beamtimes by irradiate the board in parts with a pause in between:

