Study of $\bar{p} p \longrightarrow \pi^{0} \pi^{0} \eta \longrightarrow 6 \gamma$ with the $\overline{\text { PANDA－Detector }}$
Observations in the photon reconstruction

Naomi Davis
－naomi＿davis＠live．de
June 1， 2022
Helmholtz－Institut für Strahlen－und Kernphysik

Photon Reconstruction

Photon Energy Reconstruction

- Test simulation:
$\bar{p} p \longrightarrow \pi^{0} \pi^{0} \eta \longrightarrow 6 \gamma$ at 1.94 GeV beam momentum
- Energy resolution:

Photon energy residuals
\longrightarrow residual offset towards
$E_{\text {rec }}>E_{\text {gen }}$

Energy residual vs. generated energy
(wrong MC truth propagation)

Photon Energy Reconstruction

- Test simulation:

Energy residual vs. generated energy
$\bar{p} p \longrightarrow \pi^{0} \pi^{0} \eta \longrightarrow 6 \gamma$ at 1.94 GeV beam momentum

- Energy resolution: Photon energy residuals
\longrightarrow residual offset towards $E_{\text {rec }}>E_{\text {gen }}$

Possible causes

\longrightarrow crystal non-uniformity

- non-uniform light yield across the scintillation crystals
- uniformity function shifts residual towards positive values

\longrightarrow energy correction function

- leakage correction
- $E_{\gamma, \mathrm{cor}}=E \cdot f(E, \theta)$
- shift towards larger reconstructed energies

Energy residual vs. generated position (No data correction)

Possible causes

\longrightarrow crystal non-uniformity

- non-uniform light yield across the scintillation crystals
- uniformity function shifts residual towards positive values

\longrightarrow energy correction function

- leakage correction
- $E_{\gamma, \text { cor }}=E \cdot f(E, \theta)$
- shift towards larger reconstructed energies

Energy residual vs. generated position
(Crystal Non-Uniformity)

Possible causes

\longrightarrow crystal non-uniformity

- non-uniform light yield across the scintillation crystals
- uniformity function shifts residual towards positive values

\longrightarrow energy correction function

- leakage correction
- $E_{\gamma, \text { cor }}=E \cdot f(E, \theta)$
- shift towards larger reconstructed energies

Energy residual vs. generated position
(Crystal Non-Uniformity + ECF)

Photon Position Reconstruction

- issue: spikes in θ for reconstructed photon position

Generated photon position

Reconstructed photon position

\longrightarrow nearly match θ positions of crystal centres
\longrightarrow spikes not correlated to low-energy clusters or single-crystal clusters

Photon Position Reconstruction

- issue: spikes in θ for reconstructed photon position

Generated photon position

Cluster energy vs. reconstructed position

\longrightarrow nearly match θ positions of crystal centres
\longrightarrow spikes not correlated to low-energy clusters or single-crystal clusters

Photon Position Reconstruction

- issue: spikes in θ for reconstructed photon position

Generated photon position

Cluster size vs. reconstructed position

\longrightarrow nearly match θ positions of crystal centres
\longrightarrow spikes not correlated to low-energy clusters or single-crystal clusters

Linear-logarithmic (Lilo) Position Method

- method studied and optimised for FWEC
- (linear-)logarithmic weighting of the cluster position:
$W_{\text {log }}^{\text {crystal }}=\log \left(\frac{E_{\text {crystal }}}{E_{\text {cluster }}}\right)+W_{0}$
- dynamic offset to ensure a positive weight:

$$
W_{0}=4.071-0.678 \cdot E_{\text {cluster }}^{-0.534} \cdot e^{E_{\text {custer }}^{1.141}}
$$

- optimised position resolution introduces additional bias

Linear-logarithmic (Lilo) Position Method

- method studied and optimised for FWEC
- (linear-)logarithmic weighting of the cluster position:
$W_{\text {log }}^{\text {crystal }}=\log \left(\frac{E_{\text {crystal }}}{E_{\text {cluster }}}\right)+W_{0}$
- dynamic offset to ensure a positive weight:

$$
W_{0}=4.071-0.678 \cdot E_{\text {cluster }}^{-0.534} \cdot e^{E_{\text {custer }}^{1.1 .17}}
$$

- optimised position resolution
 introduces additional bias

Analysis of $\bar{p} p \longrightarrow \pi^{0} \pi^{0} \eta \longrightarrow 6 \gamma$

About RHEA ${ }^{1}$

- RHEA: mini-analysis framework for neutral final states
- easy access to important variables
- combinatorics, particle selection, energy/momentum conservation
- includes tests and documentation

[^0]
PANDA Analysis Chain

- simulation: $\bar{p} p \longrightarrow \pi^{0} \pi^{0} \eta \longrightarrow 6 \gamma$ (phasespace)
- Bonn-Gatchina PWA Group: PWA weighted Dalitz Plot as input
- 2.5 million events at 1.94 GeV beam momentum

Event selection

- Preselection

\longrightarrow require 6 neutral photon candidates and 0 charged

```
Event multiplicity
```

\longrightarrow Mass selector (for η and π^{0} mass)

- Final selection
\longrightarrow Energy and momentum conservation for reconstructed $\bar{p} p$ system

\longrightarrow require 6 distinct primary photon candidates (including preshower events)

Event selection

- Preselection
\longrightarrow require 6 neutral photon candidates and 0 charged

Mass fit π^{0}
\longrightarrow Mass selector (for η and π^{0} mass)

- Final selection
\longrightarrow Energy and momentum conservation for reconstructed $\bar{p} p$ system

\longrightarrow require 6 distinct primary photon candidates (including preshower events)

Event selection

- Preselection
\longrightarrow require 6 neutral photon
candidates and 0 charged
Mass fit η
\longrightarrow Mass selector (for η and π^{0} mass)
- Final selection
\longrightarrow Energy and momentum conservation for reconstructed $\bar{p} p$ system

\longrightarrow require 6 distinct primary photon candidates (including preshower events)

Event selection

- Preselection

\longrightarrow require 6 neutral photon candidates and 0 charged

Momentum $\bar{p} p$

\longrightarrow Mass selector (for η and π^{0} mass)

- Final selection
\longrightarrow Energy and momentum conservation for reconstructed $\bar{p} p$ system

\longrightarrow require 6 distinct primary photon candidates (including preshower events)

PWA weighted Dalitz plot

Generated PWA weighted Dalitz plot
Reconstructed PWA weighted Dalitz plot

- input: Crystal Barrel Lear Data by Bonn-Gatchina Partial Wave Analysis Group

Photon Efficiency

Photon Efficiency

- analysis: left with 16.3% of reconstructed $\bar{p} p \longrightarrow \pi^{0} \pi^{0} \eta \longrightarrow 6 \gamma$ events
- ${ }^{1} \gamma$ Efficiency for EMC $\epsilon=\frac{N_{\text {Mc }}}{N_{\text {rec }}}$:
$\longrightarrow 59.5 \%$
$\longrightarrow 73.8 \%$ (including preshower events)
- photon beam intensity reduced to $e^{-\frac{7}{9}}=0.46$ after passing one X_{0}

Photon Efficiency - Radiation Length

- How many radiation lengths before reaching the EMC?

P̄ANDA Collaboration, Physics Performance Report for PANDA

Summary

- new issues to be solved in photon reconstruction
- investigating detector material budget
\longrightarrow photon efficiency optimisation
- results on $\bar{p} p \longrightarrow \pi^{0} \pi^{0} \eta \longrightarrow 6 \gamma$ (Dalitz Plot) promising
\longrightarrow extended analysis, with e.g. kinematic fitting

Questions?

References

References i

References

[Moe+13] H. Moeini et al. "Design studies of the PWO Forward End-cap calorimeter for P̄ANDA". In: The European Physical Journal A 49.11 (Nov. 2013). ISSN: 1434-601X. DOI: 10.1140/epja/i2013-13138-0. URL:
http://dx.doi.org/10.1140/epja/i2013-13138-0.
[P̄PAN09] P̄ANDA Collaboration. Physics Performance Report for P̄ANDA: Strong Interaction Studies with Antiprotons. 2009. DoI:
10.48550/ARXIV.0903.3905. URL:
https://arxiv.org/abs/0903.3905.

Appendix

Kinematics i

- fixed-target experiment:

$$
\longrightarrow P_{1}=\left(E_{\mathrm{LAB}}, 0,0, p_{\mathrm{LAB}}\right), P_{2}=\left(m_{2}, 0,0,0\right)
$$

- Energy (LAB-system)

$$
\begin{aligned}
& \longrightarrow p_{\text {beam }}=1.94 \mathrm{GeV}, m_{1}=m_{2}=0.938 \mathrm{GeV} \\
& \longrightarrow E_{\mathrm{LAB}}=\sqrt{p_{\text {beam }}^{2}+m_{1}^{2}}=2.15 \mathrm{GeV}
\end{aligned}
$$

- p \bar{p} system properties
$\longrightarrow E_{\text {reaction }}=2.15 \mathrm{GeV}+0.938 \mathrm{GeV}=3.09 \mathrm{GeV}$
$\longrightarrow p_{\text {reaction }}=1.94 \mathrm{GeV}$

Photon Preshower Events i

- Expectation:

event generator consequently assigns Mc indices 1-3 to mesons and 4-9 to gammas

- Special case: Preshower Events

- Mc truth is reduced to the lowest Mc index
- Mc truth sees just a fraction of the photon's energy
- reconstructed energy is determined by whole digi entry
- Solution: recursively check for primary particle

[^0]: ${ }^{1}$ RHo-Edition AG-Thoma

