PLB 712(2012)240 A light in the complexity of proton and neutron structure 10 years of *Apбy3* model

Egle Tomasi-Gustafsson

CEA, IRFU, DPhN et Université Paris-Saclay, France

In collaboration with: Simone Pacetti (INFN & Università di Perugia, Italia) and Andrea Bianconi (INFN & Università di Brescia, Italia)

<u> ArXiv: 2205.0917, 2204.05197</u>1

PANDA Coll. Meeting, EM Session, May 31, 2022

ра

Nucleon Charge and Magnetic Distributions

Egle Tomasi-Gustafsson

Experimental fact

- Precise data on the proton space-like form factors by the Akhiezer-Rekalo recoil proton polarization method show that the electric and magnetic distributions in the proton are different, suggesting a steaper Q²-decrease and eventually a zero-crossing of GE.
- The FF ratio decreases as a monopole
- G_M follows a dipole
- It is well accepted today that the polarization method gives THE reliable measurement of the EM FF ratio at large Q² (compared to the Rosenbluth method).

The Time-like Region

A.Bianconi, E. T-G. Phys. Rev. Lett. 114,232301 (2015)

Cez

Experimental fact

- BaBar and BESIII data on the proton time-like effective form factor show a systematic sinusoidal modulation in terms od the p-p relative 3-momentum in the near-threshold region.
- ~ 10% size oscillations on the top of a regular background (dipole x monopole)
- The periodicity and the simple shape of the oscillations point to a unique interference mechanism, which occurs when the hadrons are separated by ~1 fm.
- The hadronic matter is distributed in nontrivial way.

A.Bianconi, E. T-G. Phys. Rev. Lett. 114,232301 (2015)

Fourier Transform

- Rescattering processes
- Large imaginary part
- Related to the time evolution of the charge density? (E.A. Kuraev, E. T.-G., A. Dbeyssi, PLB712 (2012) 240)
- Consequences for the SL region?
- Data from BESIII, expected from PANDA

Cez

The nucleon according to Арбуз

It is generally assumed that the nucleon is composed by 3 valence quarks and a neutral sea of $q\overline{q}$ pairs

Nucleon: antisymmetric state of colored quarks

$$|p \rangle \sim \epsilon_{ijk} |u^{i}u^{j}d^{k} \rangle \\ |n \rangle \sim \epsilon_{ijk} |u^{i}d^{j}d^{k} \rangle$$

Main assumption of the $Ap \delta y s$ model:

Does not hold in the spatial center of the nucleon: the center of the nucleon *is electrically neutral,* due to the strong gluonic field

Compare the dynamical description of this model to the recent FF data : *p*, *n*, *G*_E, *G*_M, *Geff*, *TL* &SL

Definition of TL-SL Form Factors

$$F(q^2) = \int_{\mathcal{D}} d^4 x e^{iq_\mu x^\mu} \rho(x), \ q_\mu x^\mu = q_0 t - \vec{q} \cdot \vec{x}$$

TL_

0000

e V

time >

p

 $\rho(x) = \rho(\vec{x}, t)$ space-time distribution of the electric charge in the space-time volume \mathcal{D} .

SL photon 'sees' a charge density

TL photon can NOT test a space distribution

How to connect and understand the amplitudes?

Photon-Charge coupling

Amplitude for creating *charge-anticharge pairs* at time *t*

9

The nucleon

Inner region: gluonic condensate of clusters with randomly oriented chromomagnetic field (Vainshtein, 1982, instanton model):

Intensity of the gluon field in vacuum:

$$< 0 |\alpha_s / \pi (G^a_{\mu\nu})^2 |0> \sim E^2 - B^2 \sim E^2 = 0.012 \text{ GeV}^4$$

$$G^2 \simeq 0.012 \, \pi / \alpha_s GeV^4$$
, i.e., $E \simeq 0.245 \, GeV^2$. $\alpha_s / \pi \sim 0.1$

In the internal region of strong chromo-magnetic field, the color quantum number of quarks does not play any role, due to stochastic averaging

$$< G | u^i u^j | G > \sim \delta_{ij}$$
 proton
 $d^i d^j$ neutron

Colorless quarks: Pauli principle

Model

Antisymmetric state of colored quarks

1) uu (dd) quarks are repulsed from the inner region
 2) The 3rd quark is attracted by one of the identical quarks, forming a compact di-quark
 3) The color state is restored
 Formation of di-quark: competition between attraction force and stochastic force of the gluon field

$$\frac{Q_q^2 e^2}{r_0^2} > e |Q_q| E.$$

isolated quark proton: (u) Qq = +1/3neutron: (d) Qq = -2/3

attraction force >stochastic force of the gluon field

QCD-Counting rules

V. A. Matveev, R.M. Muradian, A.N. Tavkhelidze, Nuovo Cimento Lett. 7 (1973) 719 S.J. Brodsky, G.R. Farrar, Phys. Rev. Lett. 31 (1973) 1153.

$$G_M^{(p,n)}(Q^2) = \mu G_E(Q^2);$$

$$G_E^{(p,n)}(Q^2) = G_D(Q^2) = \left[1 + Q^2/(0.71 \,\text{GeV}^2)\right]^{-2}$$

Normalization:
$$G_E^{(p,n)}(0) = 1, 0, G_M^{(p,n)}(0) = \mu_{p,n}$$

Quark counting rules apply to the vector part of the potential

Model

Additional suppression for the scalar part due to colorless internal region: "charge screening in a plasma":

$$\Delta \phi = -4\pi e \sum Z_i n_i, \ n_i = n_{i0} exp \left[-\frac{Z_i e\phi}{kT} \right]$$

Boltzmann constant

Neutrality condition: $\sum Z_i n_{i0} = 0$

$$\Delta\phi-\chi^2\phi=0,\;\phi=\frac{e^{-\chi r}}{r},\;\chi^2=\frac{4\pi e^2Z_i^2n_{i0}}{kT}$$

Additional suppression (Fourier transform)

$$G_E(Q^2) = \frac{G_M(Q^2)}{\mu} \left(1 + Q^2/q_1^2\right)^{-1} q_1 (\equiv \chi)$$

SL Form Factors Ratio

Large Q²-> Small r

Cea

SL- the most precise ruler

Cez

Egle Tomasi-Gustafsson

Proton radius

Data from Mainz, PRC 90, 015206 (2014)

Proton radius

Data from Mainz, CLAS...

Cez

The annihilation channel: $e^+ + e^- \rightarrow \gamma^*(q) \rightarrow p + \bar{p}$

- 1) Creation of a $p\bar{p}$ state through ${}^{3}S_{1} = <0|J^{\mu}|p\bar{p}>$ intermediate state with $q = (\sqrt{q^{2}}, 0, 0, 0)$.
- 2) The vacuum state transfers all the released energy to a state of matter consisting of:
 - 6 massless valence quarks
 - Set of gluons
 - Sea of current qq pairs of quarks with energy q₀>2M_p, J=1, dimensions h/(2M_p) ~ 0.1 fm.

3) Pair of p and p formed by three bare quarks:
 •Structureless
 •Colorless

The annihilation channel: $e^+ + e^- \rightarrow \gamma^*(q) \rightarrow p + \bar{p}$.

- The point-like hadron pair expands and cools down: the current quarks and antiquarks absorb gluon and transform into constituent quarks
- The residual energy turns into kinetic energy of the motion with relative velocity $2\beta = 2\sqrt{1 - 4M_p^2/q_0^2}$
- The strong chromo-EM field leads to an effective loss of color. Fermi statistics: identical quarks are repulsed. The remaining quark of different flavor is attracted to one of the identical quarks, creating a compact diquark (*du*-state)

The repulsion of p and \overline{p} with kinetic energy

$$T = \sqrt{q^2} - 2M_p c^2$$

is balanced by the confinement potential

$$q_0 - 2M_p c^2 = (k/2)R^2$$

- The long range color forces create a stable colorless state of proton and antiproton
- The initial energy is dissipated from current to constituent quarks originating on shell pp separated by R.

The annihilation channel: $e^+ + e^- \rightarrow \gamma^*(q) \rightarrow p + \bar{p}$.

Арбуз

At larger distances, the inertial force exceeds the confinement force: p and \overline{p} start to move apart with relative velocity β

p and p leave the interaction region: at larger distances the integral of Q(t) must vanish.

For very small values of the velocity $\frac{\alpha \pi / \beta}{N} \approx 1$ FSI lead to the creation of a bound $\overline{N}N$ system.

Cross section from $e^+e^- \rightarrow p\overline{p}$

Novosibirsk 38pt 1.9<2E<4.5 *PLB794,64 (2019)*

BaBar 85pt 1.9<2E<4.5 PRD87,092005 (2013)

ISR-ISR-SA 30pt 2<2E<3.6 *PRD99,092002 (2019)*

ISR-Scan 22pt 2<2E<3.1 *PRL124,042001 (2020)*

Generalized Form Factor

Form Factor Ratio R=|GE|/|GM|

- Precise data from BESIII
 - Dip at |q²|~5.8 GeV²
 - Comparison with SL (Jlab-GEp data)
 - Oscillations on top of a monopole: from GE or GM?

$$F_R(\omega(s)) = \frac{1}{1 + \omega^2/r_0} \left[1 + r_1 e^{-r_2 \omega} \sin(r_3 \omega) \right], \ \omega = \sqrt{s} - 2m_p,$$

Sachs form factors: |G_E|, |G_M|

From the fit on Fp and the fit on R, the Sachs FFs (moduli) can be reconstructed

$$|G_E(s)| = F_p(s) \sqrt{\frac{1+2\tau}{R^2(s)+2\tau/R^2(s)}}$$
$$|G_M(s)| = F_p(s) \sqrt{\frac{1+2\tau}{R^2(s)+2\tau}}.$$

Threshold constrain R=1 for τ =1 The fit gives : $|G_E| = |G_M| = 0.48$

Proton & Neutron

Similar 6-parameter fit for p & n with a different phase

M. Ablikim et al. (BESIII Collaboration), Nature Phys. 17, 1200 (2021)

- Depends on background
 - n-fit without Novosibirsk data

H. Lin, H.-W. Hammer, and U.-G. Meissner, P.R.L. 128, 052002 (2022)

Cez

np-correlation : 3 steps?

np∧-correlation

3 steps:

The quantum vacuum is '<u>democratic</u>': *all quark flavors are equally probable,* but, due to Heisenberg principle, the *time associated to the vacuum fluctuations depends on the energy (mass)*

TL- the most precise clock

10⁻²³ s is the time for *light to cross a proton*

Conclusions

- BESIII precise data on time-like n & p form factors, their ratio and first determination of individual FFs ($|G_F|$ and $|G_M|$)
- FFs ratio: damped oscillations around a monopole decrease
- Oscillations more pronounced in $|G_{F}|$
- Origin of oscillatory phenomena : Di-quark as a necessary step towards hadron creation?
- Main features of the SL and TL FFs data qualitatively *explained by the* Ap6y3 model:
 The monopo Ap6y3 crease of the FF ratio

 - The formation of a di-quark component in the nucleon
 - The np Λ correlation
- **Predicts**
 - similarities between n&p, SL & TL, non zero crossing in SL Deepen the connections with instantons.

Thank you for your attention

Model

attraction force > stochastic force of the gluon field

Proton: r_0 =0.18 fm, p_0 = 0.86 GeV *Neutron:* r_0 =0.33 fm, p_0 = 0.61 GeV

Applies to the scalar part of the potential

Total Cross Section from $e^+e^- \rightarrow \overline{p}p$

$$\sigma_{e^+e^- \to \bar{p}p}(s) = \frac{4\pi\alpha^2\beta \,\mathcal{C}(\beta)}{3s} \left(|G_M(s)|^2 + \frac{1}{2\tau} |G_E(s)|^2 \right)$$

- Effective FF: $\sigma_{\text{Tot}} \sim F_p^{-2}$ $F_p(s)^2 = \frac{2\tau |G_M(s)|^2 + |G_E(s)|^2}{2\tau + 1}$
 - Equivalent to:

$$|G_E(s)| = |G_M(s)| \equiv F_p(s)$$

Strictly valid at threshold, where only one amplitude is present

PHYSICS

POLARIZATION PHENOMENA IN ELECTRON SCATTERING BY PROTONS IN THE HIGH-ENERGY REGION

Academician A. I. Akhiezer* and M. P. Rekalo

Physicotechnical Institute, Academy of Sciences of the Ukrainian SSR Translated from Doklady Akademii Nauk SSSR, Vol. 180, No. 5, pp. 1081-1083, June, 1968 Original article submitted February 26, 1967

M.P. Rekalo (1938-2004)

$$s_{2} \frac{d\sigma}{d\Omega_{R}} = 4p_{2} \frac{(s \cdot q)}{1 + \tau} \Gamma (\theta, \epsilon_{1}) \left[\tau G_{M} (G_{M} + G_{E}) - \frac{1}{4\epsilon_{1}} G_{M} (G_{E} - \tau G_{M}) \right],$$

A.I. Akhiezer (1911-2000)

The polarization induces a term in the cross section proportional to $G_E G_M$ *Polarized beam and target or polarized beam and recoil proton polarization*

Egle Tomasi-Gustafsson

