Update on GDA studies with $p \bar{p} \rightarrow \gamma \gamma$ and $p \bar{p} \rightarrow \pi^0 \gamma$ Channel

Faiza Khalid

Justus Liebig University Giessen

May 31, 2022

Introduction

$$p\overline{p} \rightarrow \gamma M$$

at large Mandelstam variables

process amplitudes factorizes:

Simulation and Event Selection

- Full MC simulation with PANDARoot Framework
- Signal $p\overline{p} o \gamma\gamma$
- background $p\overline{p} o \pi^0 \gamma$ and $p\overline{p} o \pi^0 \pi^0$
- 1M signal and 1M background events simulated at beam momenta of 2.5, 5 and 10 GeV
- Events with at least two photons were selected
- Two gammas were combined to form initial $\bar{p}p$ system
- 4C fit is applied to select exclusive events

Acceptance for $p\overline{p} \rightarrow \gamma\gamma$

Cross-sections from E760 Data

- T. A. Armstrong*, Two-body neutral final states produced in antiprotonproton annihilations at 2.911 $\leq \sqrt{s} \leq$ 3.686 GeV
- Integrated the angular range for a fixed \sqrt{s} to get the partially integrated cross section in the cos(θ) range which is available for all energies.

Count Rate

- Count rate = Cross section_{scaled}
 * Acceptance * Integrated Luminosity
- Cross section_{scaled} = cross section_{E760}.
 * scaling factor

P_{beam}= 2.5 GeV

Count Rate

P_{beam}= 5 GeV

Count Rate

P_{beam}= 10 GeV

0.6 cos(θ)

Count Rate for $\mathcal{L} = 2 \text{ fb}^{-1}$ and $\mathcal{L} = 0.1 \text{ fb}^{-1}$

• $p_{beam} = 2.5 \text{ GeV/c}$

 $\mathcal{L} = 2 \text{ fb}^{-1}$

• $p_{beam} = 5 \text{ GeV/c}$

• $p_{beam} = 10 \text{ GeV/c}$

 $\mathcal{L} = 0.1 \text{ fb}^{-1}$

 \star count gamma=2 \star Kinematic fit + energy > 5.7

X

 \star

X

Background Suppression

Signal γγ: count gamma>1 count gamma=2

Bkg $\pi^0 \pi^0$: count gamma>1 count gamma=2

Signal to Background Ratio

0

0.2

0.4

-0.6

-0.4

-0.2

0.6

 $\cos(\theta)$

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

Cross-section with Statistical Uncertainties

● p>0.01

🔶 p>0.1

● p>0.3

• p>0.7

Summary

- Exclusive event selection with 4C kinematic fit was performed
- Acceptance in $cos(\theta)$ has been checked
- Acceptance corrections were done
- The cos(θ) dependence of the cross-section has been implemented and a reconstruction study has been performed at $\sqrt{s} = 2.6 \ GeV$, $\sqrt{s} = 3.4 \ GeV$ and $\sqrt{s} = 4.5 \ GeV$
- Count rate estimates and estimates of the expected statistical uncertainty was performed.
- Signal to background ratio was determined.
- Selection cuts were investigated to optimize the signal to background ratio while keeping a reasonable reconstruction efficiency.
- The channel $p\overline{p} \rightarrow \gamma \gamma$ can be well measured with $\overline{P}ANDA$ but background has to be considered as it was done in the E760 experiment.

Thank You For Your Attention!

Suppressing the background

Effect on the sum of energies of the two gamma particles with increasing probability of Kinematic fit

Signal to Background Ratio- a comparison p>0.01 p>0.01

gamma count = 2

gamma count > 1

p>0.7