

PANDA collaboration meeting

May 31, 2022

Update on: PID and Background Studies for GPD Measurements with Antiproton Scattering

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

Introduction

Antiproton Scattering: Measure space like GPDs with PANDA as they are currently studied i.e. in hard exclusive electroproduction experiments @ JLAB

Physics content: spatial structure of the nucleon, pressure distributions, shear forces, ...

Experimental method: Lepton-pair production in hard exclusive hadronic collisions

$$A B \to A B l^+ l^-$$

→ Exclusive analogue of the Drell-Yan process

Theoretical Description

Lepton-pair production in hard exclusive hadron-hadron collisions

S.V. Goloskokov $^{\S1},$ P. Kroll \dagger2 and O. Teryaev §\ddagger3

§: Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Moscow region, Russia

†: Fachbereich Physik, Universität Wuppertal, D-42097 Wuppertal, Germany

‡: Veksler and Baldin Laboratory of High Energy Physics, Dubna 141980, Moscow region, Russia

arXiv:2008.13594v1 [hep-ph] 31 Aug 2020

Double handbag for exclusive lepton-pair production in hadron-hadron collisions

Observables

The $p\bar{p} \rightarrow p\bar{p} l^+ l^-$ cross section in pb/ GeV⁶ versus t_1 and t_2 $s = 30 \text{ GeV}^2, Q^2 = 3 \text{ GeV}^2$

Feasability Studies

→ PANDAroot simulations with a phase space event generator

2 final states have been studied:
$$p\overline{p} \rightarrow p\overline{p}\gamma^* \rightarrow \begin{cases} p\overline{p}e^+e^-\\ p\overline{p}\mu^+\mu^- \end{cases}$$

2 beam momenta have been studied: S = 20

 $s = 20 \text{ GeV}^2$ (p ~ 9.7 GeV/c) $s = 30 \text{ GeV}^2$ (p ~ 15 GeV/c)

→ Smaller beam momenta can not provide sufficiently high Q²

Generated Hadron Distributions vs -t

→ Detection of the antiproton is not required

 \rightarrow Reconstruction via the missing antiproton mass

→ Results after Bremsstrahlungscorrection

Expected Background and PID Refinements

Main background channel: $p\bar{p} \rightarrow p\bar{p}\pi^{+}\pi^{-}$ Signal: $p\bar{p} \rightarrow p\bar{p}\gamma^{*} \rightarrow \begin{cases} p\bar{p}e^{+}e^{-} & \text{A good lepton PID is essential!} \\ p\bar{p}\mu^{+}\mu^{-} & \end{cases}$

- → Inital background studies focus on $s = 20 \text{ GeV}^2$
- → 1.012 B two pion background events ($t_{1,2} < 1.5 \text{ GeV}^2$) have been simulated

Cross section estimates for the main background channel:

Low-energy pion–pion scattering in the $pp\to pp\pi^+\pi^-$ and $p\bar{p}\to p\bar{p}\pi^+\pi^-$ reactions

P. Lebiedowicz^a, A. Szczurek^{a,b,*}, R. Kamiński^a

Background Cross Section (Updated)

→ Lowest background at 30 GeV²

→ Signal cross sections have been inetgrated over the second t_i and over the full Q² (assumed 1/Q² dep.)

PID Refinenements and Background Suppression

- → A suppression of the two pion background by $10^5 10^6$ is needed
- → PID refinements are needed to reach this!

Two PID versions have been investigated:

- a) Cuts on the PID variables and additional detector variables
- b) A TMVA analysis including the PID and detector variables

8

PID Refinenements and Background Suppression

Protons: 2 configurations were investigated for protons:

tight: $P_C > 0.99$ && $P_S > 0.05$ loose: $P_C > 0.99$

Electrons: $P_{c} > 0.99$ && $P_{s} > 0.19$

i. Calorimeter sampling fraction E/p

E/p > 0.8 + momentum dependent 3 sigma band cut

ii. Energy los per path length dE/dx in the STT

momentum dependent 3 sigma band cut

iii. **EMC E**₁ $E_1 > 0.35 \text{ GeV}$

iv. EMC lateral moment EMC lateral < 0.75

Electron / Positron PID (refinements)

→ Cuts are applied sequentially

	signal eff.	BG eff.	S/BG
PID_C > 0.99	47,7	2,4750	20
PID_S > 0.19	32,5	0,5044	66
sampfrac E/p	28,6	0,1341	219
STT dE/dx	21,4	0,0477	460
EMC E1	17,6	0,0255	707
EMC lateral	15,3	0,0121	1293

electrons:

	signal eff.	BG eff.	S/BG
PID_C > 0.99	50,3	2,8021	18
PID_S > 0.19	36,3	0,8441	43
sampfrac E/p	30,5	0,3906	78
STT dE/dx	22,0	0,0692	319
EMC E1	18,5	0,0393	471
EMC lateral	15,8	0,0179	883

positrons:

Electron / Positron PID (TMVA analysis)

	BDT ele / pos	signal eff	S/B ele / pos
very loose	> 0.70 / 0.70	~ 26 %	53 / 244
loose	> 0.75 / 0.75	~ 19 - 20 %	400 / 526
standard	> 0.78 / 0.78	~ 15 - 16 %	1100 / 850
very tight	> 0.81 / 0.83	~ 6.7 %	2620 / 1630

μ^{-}/μ^{+} PID (classical PID)

combined PID probability

Applied cuts: $P_C > 0.99$ && $P_S > 0.19$ signal eff =31% (µ-) /15% (µ+)S/B =14 (µ-) /18 (µ+)compare electrons:S/B =66 (e-) /

μ^{-}/μ^{+} PID (TMVA analysis)

→ Include also the variables of the muon system

- → Following the $\mu^+\mu^-$ form factor analysis note
- Path length inside iron absorber of the MS. The length of the reconstructed trajectories is calculated inside the absorber and detections layers based on the spatial hit information, denoted as "iron thickness".
- Number of fired layers in the MS.
- Initial momentum at MS layer zero: p_{MS} .
- Normalized path length of the tracklet inside the MS to p_{MS} .
- Identification probability for being a muon based on MS observables: $P(\mu)$.
 - + Calorimeter and STT variables as for electrons

	BDT μ-/μ+	signal eff	S/B	
cut on PID	variables	30% / 15 %	14 / 18	no additional
optimal TMVA setting	> 0.45 / > 0.4	10.6% / 9.8 %	25 / 23	improvement possible

μ^{-}/μ^{+} PID

Why is it not possible to improve the particle ID with a TMVA analysis?

- a) MS Module 1: MS Barrel
- b) MS Module 2: MS Forward Endcap plus Muon Filter
- c) MS Module -1: Hybrid Tracking (Combining Endcap plus Barrel for common track reconstruction)

MS Module	Iron threshold	p_{min}	p_{max}
1	40 cm	0.2 GeV/c	0.8 GeV/c
-1	$60~\mathrm{cm}$	0.4 GeV/c	1.1 GeV/c
2	60 cm	0.4 GeV/c	1.1 GeV/c

Form factor studies:

Antiprotons up to 3.3 GeV/c This study: 10 – 15 GeV/c

Expected S/B ratio for the µ- µ+ sample

→ The PID studies so far were made for all electrons and pions of the sample

Now: - Select exclusive events with a cut on the missing antiproton mass

- Select the events of interest with a cut on Q^2 , t_1 and t_2

→ The expected S/B ratio is weighted with the expected cross section ratio of 8*10⁵

classical PID

optimized TMVA cuts

	signal acc.	backgr. acc.	expected S/B	signal acc.	backgr. acc.	expected S/B
Q² > 1 GeV²	0,0095	0,00011	1,23 E-05	0,016	2,17 E-05	0,00010
Q² > 1 GeV² -t < 1 GeV²	0,012	0,00012	1,40 E-05	0,015	1,23 E-05	0,00017
Q² > 1 GeV² -t < 0.7 GeV²	0,011	0,00013	1,17 E-05	0,013	7,91 E-06	0,00024

→ Muon PID is not sufficient to controll the background

→ Muons are mainly above the threshold of the muon detector

→ The study will focus on electrons in a first step!

Effect of the improved PID on the final e⁻ e⁺ sample

→ The PID studies so far were made for all electrons and pions of the sample

Now: - Select exclusive events with a cut on the missing antiproton mass

- Select the events of interest with a cut on Q², t_1 and t_2

 \rightarrow The expected S/B ratio is weighted with the expected cross section ratio of 8*10⁵

classical PID refinements

standard TMVA cuts

	signal acc.	backgr. acc.	expected S/B	signal acc.	backgr. acc.	expected S/B
Q ² > 1 GeV ²	0,035	< 1.5*10 ⁻⁹	> 29	0,018	< 1.5*10 ⁻⁹	> 15.3
Q ² > 1 GeV ² -t _{1 2} < 1 GeV ²	0,0036	< 4.1*10 ⁻⁹	> 1.1	0,0021	< 4.1*10 ⁻⁹	> 0.66

		signal acc.	backgr. acc.	expected S/B
loose TMVA cuts	Q ² > 1 GeV ²	0,039	1.67*10 ⁻⁹	~ 29
2-3 times larger wrong PID rate than classical cuts	Q ² > 1 GeV ² -t < 1 GeV ²	0.0044	< 4.1*10 ⁻⁹	> 1.4

➔ If ">" is stated, the given background acceptances and S/B ratios are only limits, no single event of the generated BG sample (1 B events) was reconstructed!

Effect of the improved PID on the final e⁻ e⁺ sample

- → So far protons were selected with a cut on $PID_s > 0.05$ and $PID_c > 0.99$
- → Now only $PID_{C} > 0.99$ is used

2-3 times larger wrong PID rate than classical cuts

loose TMVA cuts

	signal acc.	backgr. acc.	expected S/B	signal acc.	backgr. acc.	expected S/B
Q ² > 1 GeV ²	0,096	~ 1.66*10 ⁻⁹	~ 71	0,086	~ 3.3*10 ⁻⁹	~ 32.2
Q ² > 1 GeV ²						
-t _{1,2} < 1 GeV²	0,0098	< 4.1*10 ⁻⁹	> 3.04	0,008	< 4.1*10 ⁻⁹	> 2.5

		signal acc.	backgr. acc.	expected S/B
very loose TMVA cuts	Q ² > 1 GeV ²	0,16	1.5*10 ⁻⁸	13.3
3.5 times larger wrong PID rate	Q ² > 1 GeV ²			
than classical cuts	-t < 1 GeV²	0,016	~ 4.5*10 ⁻⁹	> 4.5

➔ Releasing the proton cut increases the acceptance by a factor > 2

- → S/B ratio improves slightly
- → A cut on $PID_{C} > 0.99$ only is sufficient for protons

classical PID refinements

Effect of the PID cuts on the t₁ acceptance

Effect of the PID cuts on the t₂ acceptance

Effect of the PID on the count rates and uncertainties

- Differential cross section available for s = 10 GeV², 20 GeV² and 30 GeV²
 @ Q² = 3 GeV²
 - ➔ Scaling is expected to follow 1/Q²
 - → Fix a Q² bin: 2.5 GeV² < Q² < 3.5 GeV²
- Set the bin size in -t:
 - i. e. $\Delta t_1 = \Delta t_2 = 0.05 \text{ GeV}^2 \text{ or } 0.1 \text{ GeV}^2$
- L = 2 fb⁻¹ \rightarrow 1/2 year at the design luminosity
- L = 10 fb-1 \rightarrow 2.5 years at the design luminosity
- Acceptance based on MC simulations

Rate estimate for s = 20 GeV²

 $p\overline{p} \rightarrow p\overline{p}e^+e^-$

 $L = 2 \text{ fb}^{-1}$

 $L = 10 \text{ fb}^{-1}$

 $Q^2 > 1 \text{ GeV}^2 \rightarrow \text{-counts * 4}$

Rate estimate for s = 20 GeV²

 $p\overline{p} \rightarrow p\overline{p}e^+e^-$

 $L = 2 \text{ fb}^{-1}$

25

 Q^2 dependence at s = 20 GeV²

 $p\overline{p} \rightarrow p\overline{p}e^+e^-$

Summary and Outlook

- Center of mass energies between s = 20 GeV² and s = 30 GeV² provide suitable kinematics to measure the reaction
- PID refinements with classical cuts and a TMVA analysis have been investigated for electrons and muons
- For e⁻ / e⁺ a good pion suppression can be achieved even with a relatively loose TMVA cut
- For μ^- / μ^+ probably the energies are to high for a reliable ID $\rightarrow e^- / e^+$ topology will be used as a first stage.
- Production of a lare scale background MC sample for s = 30 GeV²
 (> 1 B events) was completed last week
 - \rightarrow Analysis is in progress
 - \rightarrow For electrons similar results as for s = 20 GeV² are expected