EMC FWEC Calibration Setup at COSY

Lukas Linzen

Ruhr-Universität Bochum Institut für Experimentalphysik I

Collaboration Meeting DAQ Session 30.06.2022

Precalibration Overview

- initial calibration with cosmic rays in Bonn
- aim at COSY is twofold
 - test the fully assembled FWEC
 - pre-calibrate FWEC for PANDA
- calibration with π^0 decays into 2γ
- p^+ -beam at COSY will be used
- target of light nuclei is planned

Calibration Algorithm

•
$$m_{\gamma_1\gamma_2}^2(\pi^0) = f(E(\gamma_1), E(\gamma_2), \theta_{12})$$

Calibration at COSY

- simulations suggest that higher energies are preferable considering calibration time and range of γ -energies
- → highest energy available at extern experimental setups of ${\sim}2,5\,{\rm GeV}$ will be used
 - \mathbf{p}^+ rate up to $10^9\,\mathrm{s}^{-1}$
 - leads to luminosity of up to $10^{30}\,{\rm cm}^{-2}\,{\rm s}^{-1}$
 - ${\sim}50\,\%$ events result in hits in the FWEC
 - usable rate will depend on bandwidth of readout system
 - beam diameter in order of $1\,\mathrm{cm}$
 - expected time of data taking with a rate of $10^3\,{\rm s}^{-1}$ in the order of $55\,{\rm h}$

Setup in Time of Flight (ToF) Hall

Target

- PET-foil of $\sim 200\,\mu m$
- target position same as in $\overline{P}ANDA$

Proposed Hardware Setup

- 3856 crystals read out by 6176 APDs and 768 VPTTs
- → 6944 channels
 - readout by 217 SADCs (32 channels each) connected to 4 data concentrators
 - data concentrators send data to PC over fibre connections
 - synchronisation of SADCs with Aurora Sync instead of SODA to ensure fast development
 - storage in readout server as SSD or HDD array depending on size and bandwidth requirements

Hardware Test for PANDA

Proposed Hardware Setup

- SADCs in crates in detector frame
 - 10 crates for 15 SADCs
 - 12 crates for 6 SADCs
- ISEG high voltage in 7 10 slot crates
 - 8 modules with 16 channels at $2 \,\mathrm{kV}$ for VPTTs
 - 8 modules with 8 channels at $2 \,\mathrm{kV}$ for VPTTs
 - 49 modules with 16 channels at $1\,\mathrm{kV}$ for APDs
- 4 Wiener PL-512 low voltage PSUs

Tracking or Veto Detector

- tracking detector would be helpful with checking crystal positions and triggering
- alternatively simple veto detector to reduce data rate could be used
- could be read out by SADCs to ensure streamlined readout

Thank you for your attention!

Lukas Linzen (RUB EPI)

EMC FWEC Calibration Setup COSY

Spectrum of outer Crystal $(2,5 \,\mathrm{GeV})$

Spectrum of middle Crystal $(2,5 \, \text{GeV})$

Spectrum of inner Crystal $(2,5 \,\mathrm{GeV})$

Error in Mass Calculation from Beamdiameter

Simulation Overview

- EvtGen as event generator
- PANDARoot with FWEC as only detector
- $4 \cdot 10^8$ events simulated
- approximation of pC-scattering as scaled p(p+n)-scattering

$$m_{\pi^0} = 4E_1 E_2 \sin^2(\theta_{12}/2)$$

$$m_{\pi^0}\simeq 135\,{\rm GeV}/c^2$$