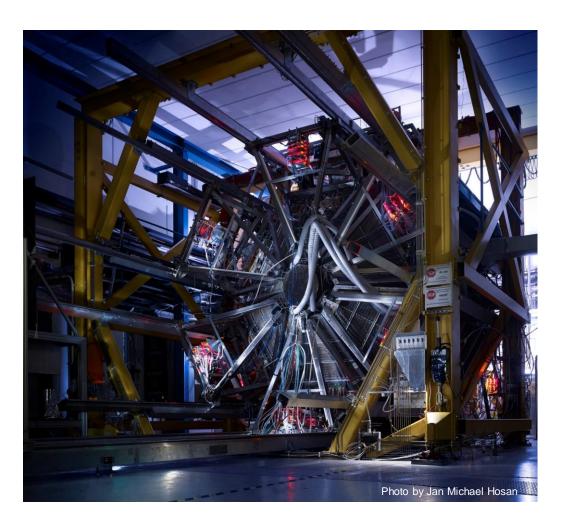
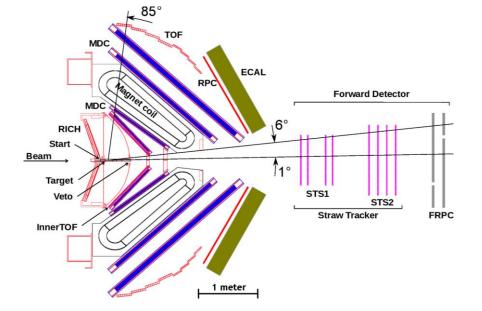
STATUS OF STS@HADES

Gabriela Pérez Andrade FZJ Tracking session PANDA Collaboration Meeting 2022/1



Overview


- The STS detector
- FAIR Phase-0 STS@HADES
- STS Calibration
- Luminosity determination
- Summary

STS detector system

- Two stations (STS1/2) each consisting of four double layers of self-supporting gas-filled straws
- Straws design for STS1/2 (originally developed for PANDA):
- 10 mm diameter, 27μ m thin Al-Mylar walls with a 20 μ m diameter W/Re wire along axis.
- Gas mixture: Ar/CO₂ (90/10) @ 2 bar
- STS default settings: HV = 1700 V, Gas gain factor = 4 mV/fC
- Front-end electronics(PASTTREC FE-boards), TRB3 readout, common DAQ STS1/2

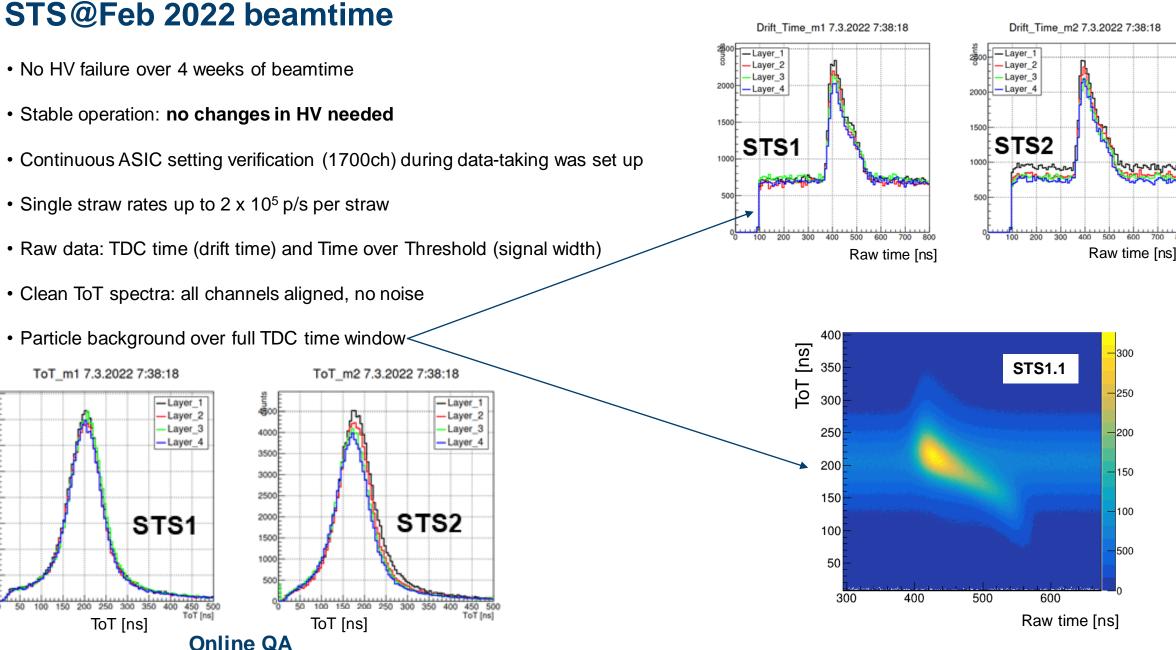
Schematic overview of the HADES spectrometer, including the newly added FD components.

Photograph of installed STS system (not final positions)

Station	STS1	STS2			
No. Straws	704	1024			
Straw length	76 cm	125 cm			
Orientation (azimuthal)	0°, 90°, 90°, 0°	0°, 90°, 45°, -45°			
Beam opening	8 x 8 cm ²	16 x 16 cm ²			
Distance to target	3.341 m (STS1.1)	4.910 m (STS2.1)			

FAIR Phase-0 STS@HADES

- HADES hyperon physics program at SIS18:
 - Hyperon radiative decays.
 - Multi-strangeness production.
- Daughter baryon from hyperon decay strongly forward peaked in the lab frame:
 - FD crucial for hyperon reconstruction
- Synergies between HADES and PANDA straw systems:
 - Straws design, front-end electronics(PASTTREC FE-boards), TRB readout, DAQ
 - Straw system tests under experiment conditions
 - STS will become part of the PANDA-FT
- Dedicated commissioning beamtime in February 2021:
 - SIS18 proton beam (2 and 4.2 GeV kinetic energy)
- HADES Production run in February/March 2022:
 - SIS18 proton beam (4.5 GeV kinetic energy)
 - 4 weeks beam on target



Straw Tracking Stations (coll. With PANDA@FAIR) $\sigma(r) \sim 150 \, \mu m$

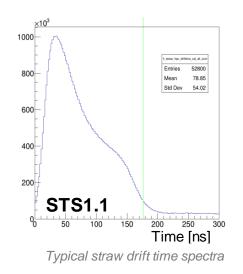
Online QA

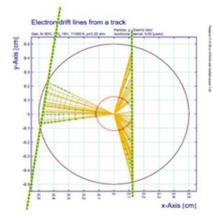
ToT_m1 7.3.2022 7:38:18

ToT [ns]

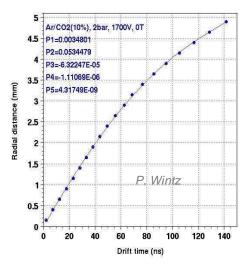
STS Calibration

Raw STS TDC time:


TDC time = t_0 + time offset + ToF_i + drift time


- t_0 , reference time measured by start detector
- *time offset,* caused by *e.g.* electronics
- *ToF_i*, time-of-flight to STS station i, derived from particle time of flight measurement by fRPC.

Calibrated time: drift time = TDC time - t_0 - time offset - ToF_i


Calibration steps:

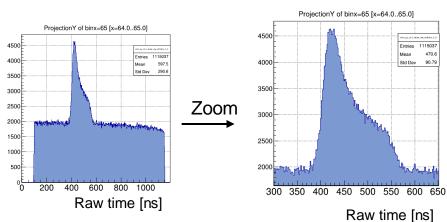
- Start time correction for each event
- Time offset determination for each channel
- Drift times obtained by subtracting channel-specific time offset
- T_{max} determination from TDC time spectra
- Space drift time relation: Isochrone parametrization
 - Running integral over time spectra
 - Homogenous straw illumination assumption
- First calibration done without ToF_i correction (mainly proton tracks, p ~ 4.5 GeV/c)

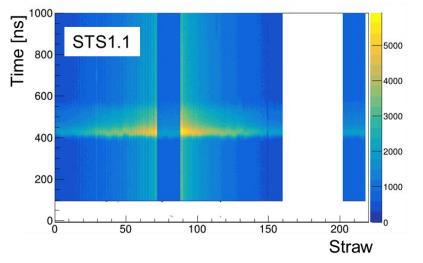
Drift path of electrons from the particle's path to the anode wire

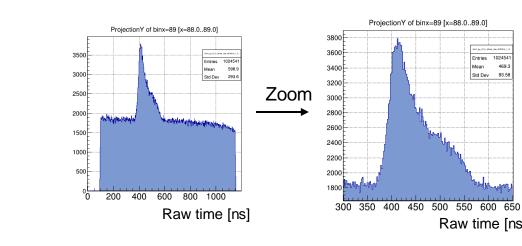
Isochrone parametrization from simulation

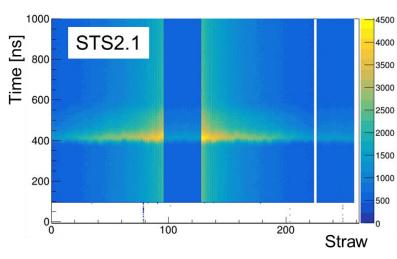
Raw TDC time

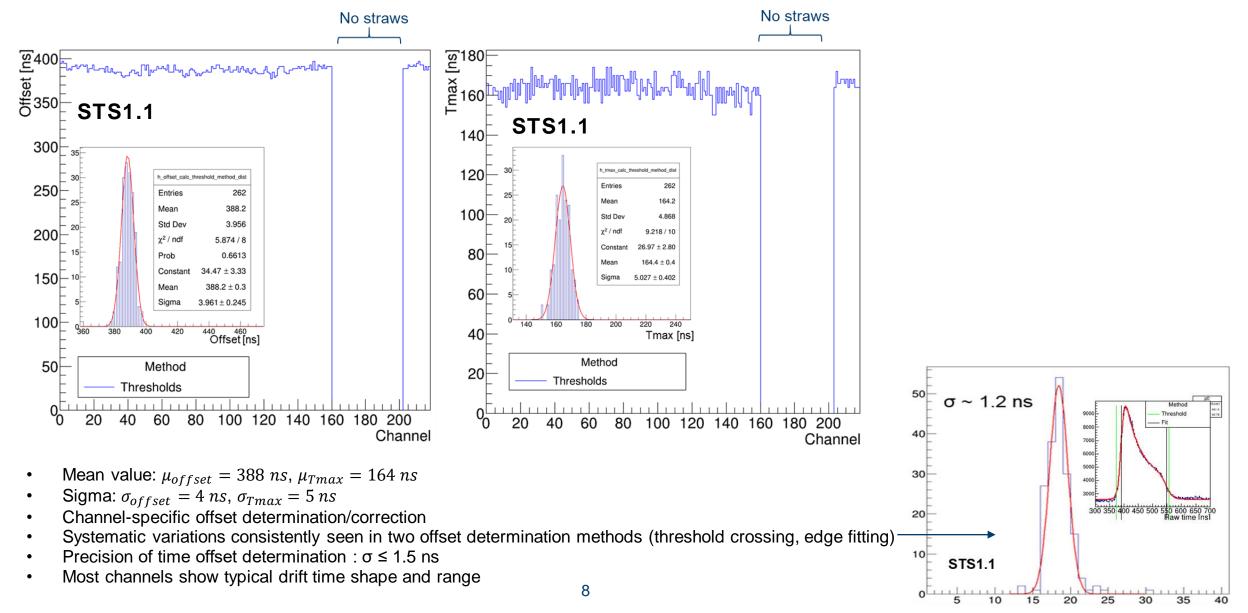
ProjectionY of binx=89 [x=88.0..89.0]

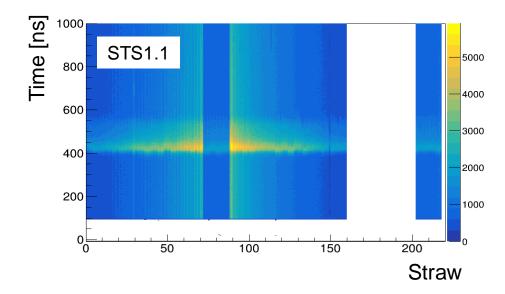

470.6

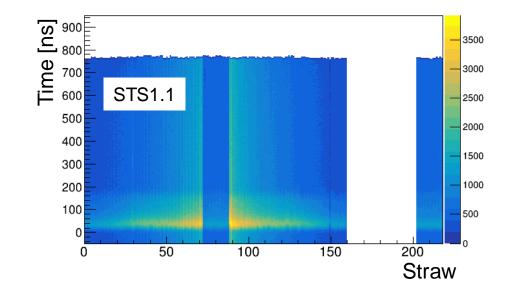

Entries 102454 469.3 Mean

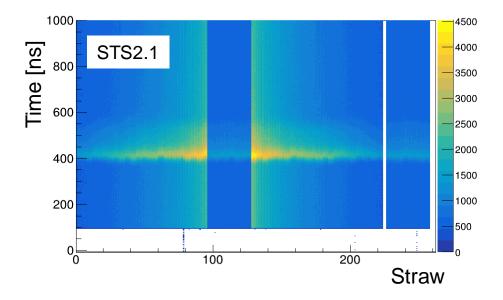

Std Dev 93.58

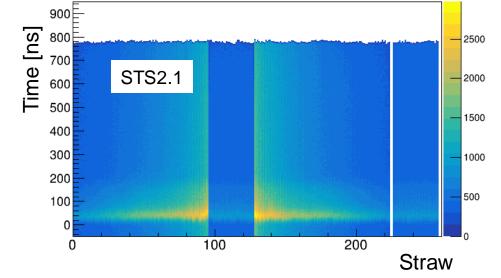

Raw time [ns]



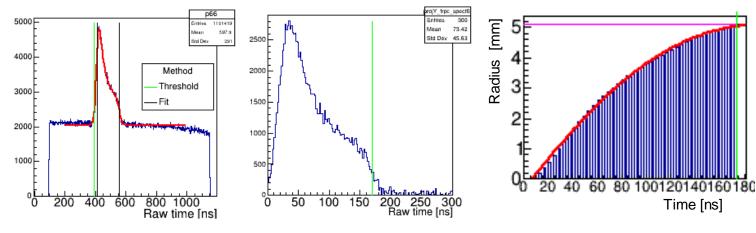

7


Offset and Tmax determination

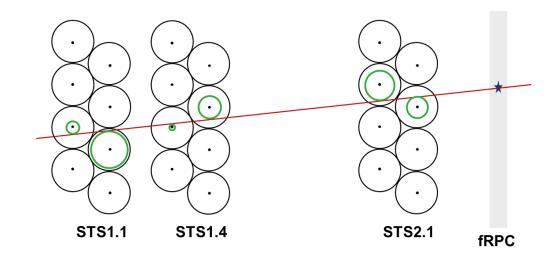



Offset fit - threshold [ns]

Offset correction: before and after


9

Isochrone parametrization

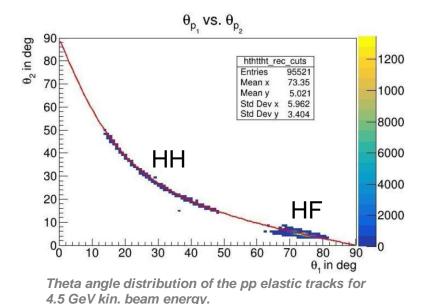

- 1. Offset correction calculated and applied
- 2. Calculate time-distance equivalence :

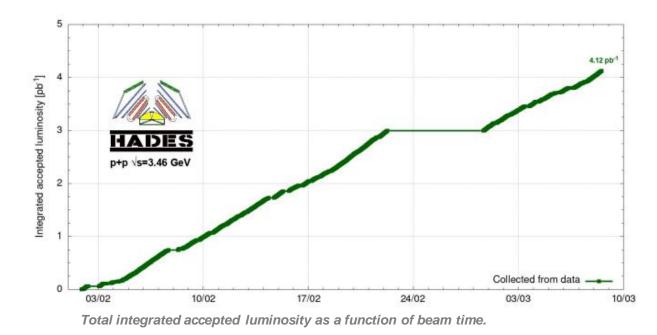
•
$$R(t) = \left(\frac{\sum_{i=0}^{i_t} N_i}{N}\right) \times (R_{max} - R_{min}) + R_{min}$$

- $R_{max} = 5.1 \text{ mm}$
- $R_{min} = 0.1 \text{ mm}$
- Pol4 fit describes the r(t) relation.
 - E.g. $(-0.24874) + (0.03077)^{*}t + (0.00038926)^{*}t^{2} + (-3.6833e-06)^{*}t^{3} + (8.2491e-09)t^{4}$
 - Single isochrone parametrization/double layer: (1728 x 5) parameters
- Parametrization limits defined to account for smearing effects close to the wire and close to the straw walls.

Example of the calibration stages for a single straw of STS1.1

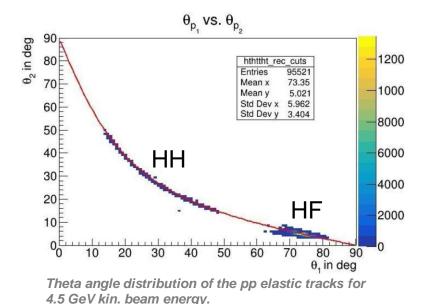
STS parameter integration

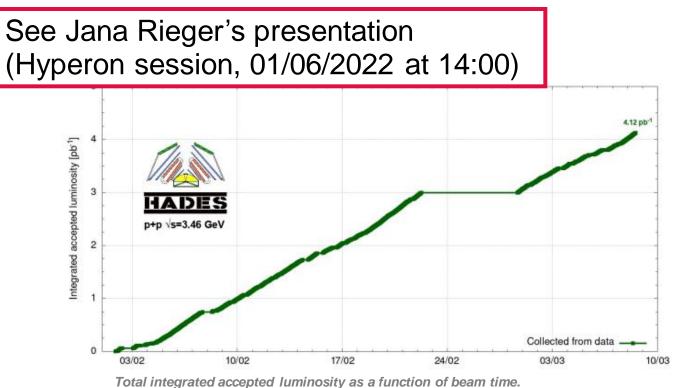



- Preliminary parameters obtained from data collected during day 049 :
 - Testing and validation is ongoing
- Additional calibration parameters connected with ToT and ToF_i to be determined
- Calibration parameters with data collected from different days is in progress

#	******														
#	‡ Cali	brati	on p.	arameters f	or the Sts										
#	form	at:													
#	t mod(01	.) l	ayer(03)	straw(0?	255) timeO	ffset time	eMax timeSl	ope tofR	ef isoPar0	isoPar1	isoPar2 is	oPar3 isoPar	4 totPar0	totPar1
#															
[StsCalPar]															
/	// Par	amete	ег Со	ntext: StsC	alProduction										
/	//														
	0	0	0	381.00000	174.00000	0.00000	0.00000	-0.31564	0.05006	-1.7607e-05	-9.011e-07	2.1009e-09	0.00000	0.00000	
	0	0	1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0	0	Ο	0.00000	0.00000	
	0	0	2	381.00000	166.00000	0.00000	0.00000	-0.28914	0.04485	0.00011815	-1.8807e-06	4.253e-09	0.00000	0.00000	
	0	0	3	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0	0	Ο	0.00000	0.00000	
	0	0	4	379.00000	178.00000	0.00000	0.00000	-0.31551	0.05074	-2.8765e-05	-8.4514e-0	7 2.0063e-09	9 0.00000	0.00000	
	0	0	5	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0	0	Ο	0.00000	0.00000	
	0	0	6	381.00000	166.00000	0.00000	0.00000	-0.28220	0.04872	4.2483e-05	-1.3792e-06	3.1342e-09	0.00000	0.00000	
	0	0	7	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0	0	Ο	0.00000	0.00000	
	0	0	8	371.00000	176.00000	0.00000	0.00000	-0.31613	0.04874	5.1472e-06	-1.0466e-06	2.4222e-09	0.00000	0.00000	
	0	0	9	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0	0	Ο	0.00000	0.00000	
	0	0	10	373.00000	166.00000	0.00000	0.00000	-0.29082	0.04334	0.00014249	-2.0324e-06	4.6036e-09	0.00000	0.00000	
	0	0	11	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0	0	Ο	0.00000	0.00000	
	0	0	12	373.00000	174.00000	0.00000	0.00000	-0.31295	0.05220	-4.8932e-05	-7.445e-07	1.8297e-09	0.00000	0.00000	
	0	0	13	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0	0	Ο	0.00000	0.00000	
	Θ	0	14	375.00000	166.00000	0.00000	0.00000	-0.29019	0.04686	8.5745e-05	-1.7038e-06	3.9262e-09	0.00000	0.00000	
	0	0	15	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	Θ	Θ	Θ	0.00000	0.00000	

Luminosity Determination (credits to Rafal Lalik, Jana Rieger, Konrad Sumara):


- Online yield of pp elastic scattering events used to determine total integrated luminosity:
 - · Using preliminary calibrations and tracking efficiency estimated from simulations
 - Live monitoring of the collected luminosity: all registered files used.
 - Elastic scattering cross section extrapolated from existing data at other energies (SAID database)
- Hades-Forward (HF) elastic event selection:
 - One track in main HADES ($70^\circ < \theta < 80^\circ$) and one in FD ($\theta < 7^\circ$)
 - Well defined cuts:
 - Coplanarity condition $\Delta \phi = 180^{\circ}$
 - $\tan\theta_1 \cdot \tan\theta_2 = 1/\gamma_{CM}^2 = 0.29429$
- Final reconstruction efficiency still to be determined



Luminosity Determination (credits to Rafal Lalik, Jana Rieger, Konrad Sumara):

- Online yield of pp elastic scattering events used to determine total integrated luminosity:
 - Using preliminary calibrations and tracking efficiency estimated from simulations
 - Live monitoring of the collected luminosity: all registered files used.
 - Elastic scattering cross section extrapolated from existing data at other energies (SAID database)
- Hades-Forward (HF) elastic event selection:
 - One track in main HADES ($70^\circ < \theta < 80^\circ$) and one in FD ($\theta < 7^\circ$)
 - Well defined cuts:
 - Coplanarity condition $\Delta \phi = 180^{\circ}$
 - $\tan\theta_1 \cdot \tan\theta_2 = 1/\gamma_{CM}^2 = 0.29429$
- Final reconstruction efficiency still to be determined

Summary

- Upgrade of the HADES spectrometer and data-acquisition systems for the FAIR Phase-0
- The new FD components are crucial for hyperon reconstruction (FAIR Phase-0 physics program)
- STS system was installed in 2020 and tested during commissioning beamtime in Feb. 2021
- STS operation was successful during the four week experiment beamtime with the upgraded HADES in February 2022:
 - High quality data: 41.4 Billion events, 684 TB, 488.25 h
- STS calibration procedure developed and implemented:
 - Single channel offset determination with two different methods show consistent channel-to-channel systematic variations
 - Precision of time offset determination : $\sigma \le 1.5$ ns
 - Time-distance parametrization curve obtained for each channel
 - Algorithm will be included in the HADES analysis software (Hydra)
 - Calibration parameters to be checked with data from the start, middle and end of the beamtime
- Online yield of pp elastic scattering used to determine total integrated luminosity:
 - One proton reco. in main HADES and one in FD.

