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Outline

✔ Why do we measure anisotropic flow?

✔ Measurement techniques: correlations and non-flow

✔ Elliptic flow at LHC

✔ Flow fluctuations and higher harmonics

✔ Directed flow

✔ Fourier decomposition of the 2-particle azimuthal correlation
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Traveling across the phase diagram
by varying the collision energy
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By varying the incident collision energy
(i.e. measurements at different accelerators)
we can travel across the phase diagram

AGS/SPS (CERN)

FAIR (GSI/Germany)

NICA (Russia)

√ sNN ∼ 1−10GeV

RHIC (BNL/USA)

√ sNN ∼ 10−200 GeV

LHC (CERN)

√ sNN ∼ 2−5TeV
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Evolution of the system created in HIC

● Initial pre-equilibrium state
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Nuclei just before collision

● Quark-gluon plasma formation

● QGP expansion and decay

 Hadronization
 Rescattering & chemical freeze out 
 Kinetic freeze out (stop interacting)

hard parton scattering & jet production
gluonic fields (Color Glass Condensate)

thermalization (hydrodynamics)

phase transition of partons into hadrons

Many observables need to be studied
to establish the properties of QGP

● Experimentally access only hadronic state
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Colliding nuclei has a finite size

Overlap region is strongly asymmetric
in the transverse plane

reaction

plane

b

b

Overlap region is close to be symmetric
in the transverse plane

Peripheral collision (large b)

Central collision (small b)

Asymmetry of the overlap region
depends on the impact parameter

reaction

plane

b - impact parameter
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Nucleon-nucleon collisions in the overlap region

Small number of nucleon-nucleon collisions:
few particles produced

- elementary
  nucleon-nucleon (NN) collision

Large number of NN collisions:
abundant particle production

Number of produced particles
is correlated with the impact parameter

reaction

plane

reaction

plane

Central collision

Peripheral collision
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reaction

plane

reaction

plane

Produced particles interact with each other

Less interaction - small modificationMultiple interaction with medium

Particle emitted out-of-plane Emitted in-plane
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reaction

plane

reaction

plane

Central collision

Peripheral collision
Strong coordinate space asymmetry
transforms into the azimuthal asymmetry
in the momentum space

Multiple interaction with medium but small
initial spacial asymmetry:
small asymmetry in the momentum space

Particle collectivity

Correlated particle production
wrt. the collision plane of symmetry 
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Quantifying azimuthal asymmetry

Coordinate space asymmetry is ~ ellipsoidal
quantified by eccentricity:

ϵs =
〈 y2

−x2
〉

〈 y2
+x2

〉

x, y - position of each elementary NN interaction

reaction

plane
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Quantifying azimuthal asymmetry

Coordinate space asymmetry is ~ ellipsoidal
quantified by eccentricity:

ϵs =
〈 y2

−x2
〉

〈 y2
+x2

〉

x, y - position of each elementary NN interaction

e p ∼
〈 p x

2
− p y

2
〉

〈 p y
2
+ p x

2
〉

→ 〈cos(2Δϕ)〉

Momentum space asymmetry:

- particle transverse momentumpt

Second Fourier harmonic in momentum space

Δϕ

reaction

plane

reaction

plane

- azimuthal angle relative to the reaction plane
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Time evolution of the spacial and momentum asymmetries

arXiv:0901.4355

Spacial asymmetry
drops very fast

Momentum asymmetry
develops very early

Momentum asymmetry is sensitive to:

spacial

momentum

EoS I: massless ideal gas
EoS RHIC: matching Lattice QCD

● Early times of the system evolution

● Equation of State
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Anisotropic transverse flow: Fourier harmonics

reaction

plane

Δϕ

pt

dN
d (Δ ϕ)

∼ 1 + 2∑
n=1

vn( pt ,η) cos (nΔϕ)

No “sin” terms because of the collision symmetry

v
n
(p

t 
,η) – anisotropic transverse flow coefficients

Fourier decomposition of the particle
azimuthal distribution wrt. the reaction plane:

v
1
 - directed flow

v
2
 - elliptic flow

v
3
 - triangular flow
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Different types of transverse flow

beam

direction

Directed flow:

Originate from ellipticity of the overlap region
Self quenching effect - develops at early time
(spacial asymmetry decrease with expansion)

v2 = 〈cos 2Δϕ〉

reaction

plane

reaction

plane

Radial flow (symmetric in azimuth)

v1 = 〈cosΔϕ〉

Reflects the history of the radial expansion
Boost particle spectra to
higher transverse momenta

Elliptic flow:

Deflection of particles in the beam direction.
Develops at earliest time.
At forward (large) rapidity is sensitive to
the pre-equilibrium stage
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Experimental measurements
of the anisotropic flow
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Modern ultra-relativistic HI colliders

RHIC

AGS

LINAC

BRAHMSPHOBOS

PHENIX
STAR

RHIC LHC

Location BNL (USA) CERN (Europe)

Circumference 3.8 km 27 km

Species p, d, Cu, Au, U
polarized protons

p, Pb

Center of mass energy 
per nucleon pair

in GeV
 7.7-38, 62, 200

500 (pp only)

in TeV
0.9, 2.76, 7 (pp)

2.76 (Pb)

Relativistic Heavy Ion Collider Large Hadron Collider

LHC

SPS

PS

CMS

ALICE
ATLAS

LHCb

LINACs
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Current heavy-ion experiments at RHIC and LHC

ALICE (A Large Ion Collider Experiment)

ATLAS (A Toroidal LHC Apparatus)

CMS (Compact Muon Solenoid)

STAR (Solenoidal Tracker At RHIC)

PHENIX (Pioneering High Energy
Nuclear Ion Experiment)

Charge particle tracking and identification:
 full azimuth, large rapidity coverage
 wide p

t 
range: ~ 100 MeV/c to ~ 100 GeV/c

Calorimetry and rare probes:
 neutral particles, photons, jets, heavy flavor

Main capabilities for heavy-ion studies:



17
Ilya Selyuzhenkov, , 16/03/2012

TPC:
Time Projection Chamber
charged tracks at midrapidity

VZERO:
Forward Scintillator Arrays
multiplicity counters

ZDCs:
Zero Degree Calorimeter
recoil neutrons at beam rapidity

The ALICE subsystems used for the flow measurements

Charged particle cuts for correlations:

System Energy, √sNN
Events

Pb-Pb 2.76 TeV 13 M

Pseudo-rapidity: |η| < 0.8

Transverse momentum pt > 0.15 GeV/c

Data from LHC running in November 2010

Reaction plane:

|η| < 0.8-3.7 < η < -1.7 2.8 < η < 5.1η ~ - 8.8 η ~ 8.8

ZDC-C ZDC-AVZERO-C VZERO-ATPC

Estimated with TPC, VZERO, and ZDCs
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Anisotropic flow measurement:
Using collectivity to study collectivity

Reaction plane is not known experimentally
Orientating wrt. to the laboratory frame changes event-by-event

If the momentum distribution is azimuthally asymmetric due to flow,
then this asymmetry should be correlated
with the impact parameter direction (reaction plane orientation)

Only measuring particles distribution in the momentum space

Use particle azimuthal distribution in the event
to estimate the reaction plane angle – event plane vector

reaction

plane

reaction
plane

x lab

y lab

Event 1 Event 2
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Event plane vector

x lab

y lab

Ψ RP

1
N ∑i

cos(2ϕi)

1
N ∑i

sin (2ϕi)
1
N

Q⃗2

Ψ2

Qn , x = ∑
i

wi cos (nϕi) Qn , y = ∑
i

wi sin(nϕi)

Ψn , EP =
1
n

tan−1(Qn , y

Qn , x
)

Vector sum of all particles direction:

Experimental estimate of the reaction plane:

Event plane vector:
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Measuring flow with the event plane vector

vn = 〈cos [n(ϕ−ΨRP)]〉

dN
d (ϕ−ΨRP)

∼ 1 + 2∑
i=1

vn( p t ,η) cos[n(ϕ−ΨRP)]

vn
obs = 〈cos [n(ϕ−Ψn , EP)]〉

Want to measure: Measured:
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Measuring flow with the event plane vector

Event plane vector and the reaction plane are
correlated with finite resolution:

vn = 〈cos [n(ϕ−ΨRP)]〉

dN
d (ϕ−ΨRP)

∼ 1 + 2∑
i=1

vn( p t ,η) cos[n(ϕ−ΨRP)]

vn
obs = 〈cos [n(ϕ−Ψn , EP)]〉

Want to measure: Measured:

vn =
〈cos [n(ϕ−Ψn , EP)]〉

〈cos [ n(Ψn , EP−ΨRP)]〉
=

vn
obs

Rn

R ∼ √〈cos [n(Ψn , EP
a −Ψn , EP

b )]〉

Resolution can be measured from subevents:
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Anisotropic flow measurement and correlations

vn = 〈cos [n(ϕi−Ψ RP)]〉

dN
d (ϕi−Ψ RP)

∼ 1 + 2 ∑
n=1

vn cos[n(ϕi−ΨRP)]

- directly calculable only in theory when
  the reaction plane orientation is known
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Anisotropic flow measurement and correlations

vn = 〈cos [n(ϕi−Ψ RP)]〉

Ψ RP → Ψ EP {∑ϕ j

g (ϕ j)}

Event plane angle - experimental estimate of the reaction plane angle
based on the measured azimuthal distribution of particles:

dN
d (ϕi−Ψ RP)

∼ 1 + 2 ∑
n=1

vn cos[n(ϕi−ΨRP)]

- directly calculable only in theory when
  the reaction plane orientation is known

cn{2} = 〈cos n(ϕi−ϕ j)〉

Measure anisotropic flow with azimuthal correlations

- two particle correlations

vn
obs

= 〈cos [ n(ϕi−ΨEP)]〉 ∼ 〈∑
ϕ j≠ϕi

cos n(ϕi−ϕ j)〉
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Non-flow correlations

〈cos [ n(ϕi−ϕ j) ]〉 = 〈vn
2
〉 + δ2, n

Non-flow: correlations among the particles unrelated to the reaction plane

In case of two particle correlations:

Sources of non-flow correlations:
● Resonance decay
● Jet production
● In general - any cluster production
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reaction

plane

Example: 2-particle decay

Collective flow:
correlations between particles through
the common plane of symmetry

Probability to be correlated  for one particle
with another out of M-particles is 1/(M-1):

vn ≫ 1 /√M

M = 200 → vn ≫ 0.07

vn≈ 0.04−0.07For RHIC/LHC:

To measure flow with 2-particle correlations:

δ2 ∼
1

M −1

Non-flow correlations

〈cos [ n(ϕi−ϕ j) ]〉 = 〈vn
2
〉 + δ2, n

Non-flow: correlations among the particles unrelated to the reaction plane

In case of two particle correlations:

Sources of non-flow correlations:
● Resonance decay
● Jet production
● In general - any cluster production
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Suppressing non-flow with multi-particle correlations

Two particle correlations:

k-particle correlations:

δ2 ∼
1
M

δk ∼
1

M k−1

Four-particle correlations:

vn ≫
1

M 1/2

vn ≫
1

M 3/4

Measurement requirement:

δ4 ∼
1

M 3

M = 200 → vn ≫ 0.07

M = 200 → vn ≫ 0.019

vn ≫
1

M (k−1)/ k

vn ≫
1
M

M = 200 → vn ≫ 0.07

M = 200 → vn ≫ 0.019

k →∞Large k (                 )

M = 200 → vn ≫ 0.005
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but                           (for example non-uniform detector acceptance) 

Multi-particle cumulants

Cumulant are used to study the genuine n-particle correlations

n-particle cumulant can be defined as a correlation function
which is zero if there are no n-particle correlations in the system
(it is insensitive to other,            , correlations)

Example:

〈cos [n(ϕ1−ϕ2) ]〉 = 〈e i n(ϕ1−ϕ2)〉 Note: imaginary part is zero (no sin terms)

cn{2} = 〈ei n (ϕ1−ϕ2)〉−〈ei n ϕ1〉 〈e i nϕ2〉

If there are no correlations in the particle distribution,

〈ei n ϕ1,2〉 ≠ 0

〈cos [ n(ϕ1−ϕ2) ]〉 ≠ 0 cn{2} = 0

2-particle cumulant: 

k≠n

2-particle correlations
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Multi-particle cumulants and relation to flow

cn{2} = 〈ei n (ϕ1−ϕ2)〉 = vn
2
+δ2, n

2-particle cumulant: 

cn{4} = 〈e i n(ϕ1+ϕ2−ϕ3−ϕ4)〉 − 2 〈ei n (ϕ1−ϕ2)〉
2

cn{4} = (vn
4+δ4, n+4vn

2 δ2, n+2δ2, n
2 ) − 2 (vn

2+δ2, n )
2

4-particle cumulant: 

cn{4} = 〈−vn
4+δ4, n〉

No contribution from  2-particle non-flow to the 4-particle cumulant

δ2 ∼
1
M

δ4 ∼
1

M 3
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Multi-particle cumulants and relation to flow

vn {2}2 = cn{2}

Connection of cumulants to the anisotropic flow

vn {4}2 = −cn{4} vn {6}
6

=
1
4

cn{6}

cn{2} = 〈ei n (ϕ1−ϕ2)〉 = 〈vn
2
+δ2, n〉

2-particle cumulant: 

4-particle cumulant: 

cn{4} = 〈−vn
4+δ4, n〉

Characteristic pattern of the cumulants changing sign
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Estimating flow with multi-particle cumulants

v2{2} > v 2{2,∣Δη∣}

Rapidity separation between
correlated particles suppress
short-range non-flow:

elliptic flow vs. centrality

Large non-flow in
peripheral collisions
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Estimating flow with multi-particle cumulants

v2{2} > v 2{2,∣Δη∣}

Rapidity separation between
correlated particles suppress
short-range non-flow:

elliptic flow vs. centrality

Note:
v

2
{2} and v

2
{4} differ not only because

of non-flow, but also due to flow fluctuations
(discussed later) 

Large non-flow in
peripheral collisions

v2{4} ≈ v2{6} ≈ v2 {8}

Multi-particle cumulants remove
residual non-flow:



32
Ilya Selyuzhenkov, , 16/03/2012

Overview of methods to measure anisotropic flow

Scalar Product

Event plane method

Based on 2-particle correlations:

vn
obs

= 〈∑
ϕ≠ϕi

cos n(ϕ−ϕi)〉 cn{2} = 〈cos n(ϕi−ϕ j)〉
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Overview of methods to measure anisotropic flow

Scalar Product

Based on multi-particle cumulant:

Event plane method

Based on 2-particle correlations:

vn {2}
2

= cn{2} vn {4}
4

= −cn{4} vn {6}6 =
1
4

cn{6} vn {8}
6 = −

1
33

cn {8}

Cumulants from generating function (GF):

Q-cumulants (or direct cumulants)

vn
obs

= 〈∑
ϕ≠ϕi

cos n(ϕ−ϕi)〉 cn{2} = 〈cos n(ϕi−ϕ j)〉

GF: function which expanded in series
gives multi-particle correlations as
expansion coefficients



34
Ilya Selyuzhenkov, , 16/03/2012

Overview of methods to measure anisotropic flow

Scalar Product

Based on multi-particle cumulant:

Method based on the event flow vector:

Event plane method

Lee-Yang zeros
(first minimum of the generating function)

Fitting Q-vector distribution

Based on 2-particle correlations:

vn {2}
2

= cn{2} vn {4}
4

= −cn{4} vn {6}6 =
1
4

cn{6} vn {8}
6 = −

1
33

cn {8}

Cumulants from generating function (GF)
Q-cumulants (or direct cumulants)

vn
obs

= 〈∑
ϕ≠ϕi

cos n(ϕ−ϕi)〉 cn{2} = 〈cos n(ϕi−ϕ j)〉

GF: function which expanded in series
gives multi-particle correlations as
expansion coefficients
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ALICE results from different techniques

Results separate into two bands: from two and multi-particle correlations
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In-plane elliptic flow:

the dominant flow component
at the relativistic energies

dN
d (Δ ϕ)

∼ 1+2 v2cos(2Δϕ)
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      collision energy,           (GeV)√sNN

centrality 20-30%

Elliptic flow vs. collision energy

Experimental results
covers about 4 decades
of the collision energy

Data from GSI, AGS, SPS,
RHIC, and LHC experiments
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      collision energy,           (GeV)√sNN

LHC

RHIC
30% increase of v

2 
from RHIC:

stronger collectivity at LHC

Elliptic flow: RHIC vs. LHC

But: measured v
2

vs. transverse momenta has
similar shape and magnitude
at RHIC and LHC

centrality 20-30%
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v
2 
(p

t
) has similar shape and magnitude:

increase of integral v
2 
is driven

by stronger radial flow (boost to higher p
t
) 

 ALICE PRL105, 252302 (2010)

p
t 
differential elliptic flow vs. collision energy

√sNN

LHC

RHIC
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Identified particle spectra: LHC vs. RHIC

transverse momentum, p
t
 (GeV/c)

Boost particles to higher p
t

(particles gain extra radial velocity)

Spectra shapes changed
significantly from RHIC to LHC

From Blast wave spectra fits:
20% stronger radial flow at LHC

→ increase of integral v
2

Radial expansion (flow):

LHC

RHIC
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Identified particle spectra: LHC vs. RHIC

transverse momentum, p
t
 (GeV/c)

Boost particles to higher p
t

(particles gain extra radial velocity)

Spectra shapes changed
significantly from RHIC to LHC

From Blast wave spectra fits:
20% stronger radial flow at LHC

→ increase of integral v
2

Radial expansion (flow):

LHC

RHIC

Boost
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Elliptic flow mass splitting

Similar to spectra:
v

2 
of heavier particles

is pushed to higher p
t

VISHNU: Heinz et. al, arxiv:1108.5323

Viscous hydrodynamics
well describe flow of π± and K±:

→ sensitivity to QGP viscosity

Including hadronic rescattering
with UrQMD model allows
better reproduce proton v

2
:

→ sensitivity to the evolution
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Coalesence and v
2
 number of quarks scaling 

Distribution of primordial particles
reflects the distribution of original particles:

A-neutrons

nuclei with
mass number A

Mesons: Baryons:

If distribution is affected by flow,
it will be amplified by coalesence:

dN
d (ϕ−ΨRP)

∼1+2∑
i=1

vn( p t ,η)cos[n(ϕ−Ψ RP)]

1
2
...
A
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Constituent number of quarks scaling

Observe approximate number of quark
 
scaling:

Strong indication that system evolved
through deconfined (QGP) phase

RHIC LHC
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Flow fluctuations
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Flow fluctuations

Transverse distribution of nucleons inside a nuclei
(e.g. can be simulated with Glauber Monte-Carlo)

xlab

ylab
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reaction

plane

Flow fluctuations

A moment just before collision:
overlayed transverse distributions of nucleons inside each nuclei 

xlab

ylab
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Flow fluctuations

Some of the nucleons (participants) interacted; others (spectators) passed by

reaction

plane

xlab

ylab
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Flow fluctuations

Event-by-event flow fluctuations

xlab

ylab

Event1

Event2

Event3

Example:
same impact parameter
same reaction plane orientation
(same nucleons distributions,
Just rotated by some angle)



50
Ilya Selyuzhenkov, , 16/03/2012

Flow fluctuations

xlab

ylab

Event1

Event2

Event3

Fluctuating spacial asymmetry
result in the event by event
fluctuations of anisotropic flow
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Flow fluctuations: participant eccentricity

y pp
(2)

x pp
(2)

ϵ2, x = ( 〈 y2
−x2

〉

〈 y2
+x2

〉 )part

=
〈r2 cos(2ϕ)〉

〈r2
〉xlab

ylab

reaction

plane

Participant
plane

participant eccentricity:
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How fluctuations affect the measured flow?

cn{2} = 〈cos [2(ϕi−ϕ j)]〉 = 〈vn
2
〉 + δn ,2

〈vn
2
〉 = 〈vn〉

2
+ σn

2

〈cos [ n(ϕi−ϕ j) ]〉 = 〈vn〉
2

+ σn
2

+ δn , 2

flow fluctuations non-flow

〈vn
2
〉 ≠ 〈vn〉

2

2-particle azimuthal correlation:
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Fluctuations set the difference

between

v2
corr

{2} ≈ 〈v2〉 +
σ2

2

2 〈v2〉

Residual non-flow subtracted
based on HIJING Monte-Carlo:

Many-particle correlations
free of non-flow:

v2
corr {2} v2{4}

Elliptic flow fluctuations

2-particle correlations affected by 3 effects: v2{2} = √〈v 2〉
2

+ σ2
2

+ δ2

v2{4} ≈ 〈v2〉 −
σ2

2

2 〈v2〉

Flow fluctuations are significant

Additional constraint on the initial conditionand
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Estimating flow fluctuations from data

σ2 ≈ √ v2{2}−v2 {4}

2

σ2 /〈 v2〉

〈v2〉 = √ v2{2}+v2{4}

2

σ2

Fluctuations can be significant

Helps to constrain initial condition

σn ≪ 〈vn 〉Gaussian fluctuations or 
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“Odd” harmonic flow and fluctuations

dN α

d (Δ ϕα)
∼ 1+2∑

i=1

v n ,α cos(nΔϕα)

v2m+1
odd

(−η) = −v2m+1
odd

(η)

v2m+1
even (−η) = +v2m+1

even (η)

Fluctuations does not obey the symmetry rule
of the odd harmonic flow wrt. reaction plane.
For example in case of directed flow:

v1{2} = √〈v1
2
〉 = √〈v1〉

2
+σ1

2
= σ1 ≠ 0

By symmetry of the collision, odd harmonic flow v
2m+1 

measured
wrt. the reaction plane should vanish at mid-rapidity
(or in any symmetric rapidity range):

Conclusion: in the symmetric rapidity range all odd harmonics
originates from flow fluctuations:

- rapidity “even” odd harmonic flow
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Flow fluctuations: ellipticity

y pp
(2)

x pp
(2)

xlab

ylab

reaction

plane

Participant
plane

ϵ⃗2 = ( 〈 y ' 2
−x ' 2

〉

〈 y ' 2
+x ' 2

〉
,

〈2 y ' x ' 〉

〈 y ' 2
+x ' 2

〉 )part

x '=x−〈 x 〉 y '= y−〈 y 〉

Participant plane is defined by
the participant eccentricity vector:
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Flow fluctuations: triangularity

y pp
(3)

x pp
(3)

ϵ3, x =
〈r3 cos(3ϕ)〉

〈r3
〉

xlab

ylab

Triangularity
plane

reaction

plane

Triangularity:
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Triangular flow, v
3

σn ≪ 〈vn 〉

〈v3〉 = 0 σ3 ≠ 0

does not apply

v
3 
shows weak centrality dependence - collectivity

(non-flow correlations should drop as 1/multiplicity)

Measured odd harmonic flow provides clean probe of fluctuations

Non-zero v
3
 is observed
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v3{2}

v3{4}
≈ 2

Strong evidence for the geometrical
(due to spacial fluctuations) origin of v

3

Cumulant results consistent with
expectations for fluctuations:

Uncorrelated to reaction plane
zero v

3
 with spectators:

v3{Ψ RP} ≡ v3{ZDC } = 0

v3{Ψ2} = 0

Mixed harmonics (3rd and 2nd):

Weak centrality dependence

Triangular flow, v
3
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● Observed mass splitting for v
3 
supports its hydrodynamic origin

Mass splitting: test of “hydrodynamic” origin of  v
3

● Additional strong constraint on viscosity and initial condition
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Directed flow measured with spectators

dN
d (Δ ϕ)

∼ 1+2 v1cosΔϕ
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Sensitivity to spectator's directed flow with ZDC

Observe correlation between spectators' deflection
measured with neutron Zero Degree Calorimeters located
114meters on each side from the collision vertex:

sensitivity to the directed flow of spectator

 ZDC: 7.2 x 7.2 cm2
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Directed flow: η, p
t 
and centrality dependence

● Negative slope at midrapidity:

● Zero crossing around p
T
 ~ 1.5 GeV

✔ Same as at RHIC
✔ In contrast to some of the theoretical predictions
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Directed flow: longitudinal scaling

Universal trend when shifted to beam rapidity

Data follows the longitudinal scaling observed at RHIC

STAR data: PRL 101, 252301 (2008) PHOBOS data: PRL97, 012301 (2006)
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Two particle azimuthal correlation:

collective flow modulations
or ridge & mach cone?

C (ϕ1−ϕ2) ∼ 1 + 2∑
i=1

vn ,1vn ,2cos(n [ϕ1−ϕ2])

?
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Two particle azimuthal correlations

Correlation function:

2D-correlations:
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Two particle azimuthal correlations

Non-trivial shape of the correlation function

Correlations at small p
t 
(bulk particles)
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Anatomy of the two particle correlations

Same side “jet” peak

Correlations at small p
t 
(bulk particles)
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“ridge” (extended in rapidity)

Correlations at small p
t 
(bulk particles)

Anatomy of the two particle correlations
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“Mach-cone” region
(double hump structure on the away side region)

Correlations at small p
t 
(bulk particles)

Anatomy of the two particle correlations
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Correlations at small p
t 
(bulk) Correlations at high p

t 
(away side jet)

Lets study the azimuthal shape of
the correlations outside of the jet peak
in terms of collective modulations

Two particle azimuthal correlations:
small and high p

t
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Higher harmonics for very central collisions

At p
t
 ~ 1.5 GeV v

3
 become larger v

2
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Two particle correlations and higher harmonic flow

ALICE arXiv:1109.2501

Correlations at small p
t 
(bulk) Correlations at high p

t 
(away side jet)

“ridge” and “mach-cone” like structures are
naturally described by the collective flow effects

Azimuthal correlations are studied with large rapidity gap: 0.8 < |Δη| < 1.8

ALICE arXiv:1109.2501
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Power spectrum from two particle correlations

C (ϕ1−ϕ2) ∼ 1 + 2∑
i=1

V n cos(n [ϕ1−ϕ2])
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Anisotropic flow: summary

● Anisotropic transverse flow is an important experimental observable
to study the evolution of a heavy-ion collision and
understand the properties of the quark-gluon plasma (QGP).

✔ Equation of state of the created matter

✔ Transport properties (i.e. viscosity) of the  QGP matter

✔ Shape of the initial conditions in a heavy-ion collision

● Helps to understand the origin
of the correlations between produced particle

● It provides constraints on:

● Path length dependence of the parton energy loss
(flow at high transverse momenta)
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Backup
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Elliptic flow at high p
t

● Non-zero elliptic flow at large transverse momenta p
t 
> 8 GeV

● Centrality dependence is consistent with suppression measure
via nuclear modification factor R

AA

Nuclear modification factor, R
AA

Elliptic flow, v
2
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Identified particle v
2
 at high p

t

Bulk:
descrbed by hydro

Coalesence:
breaks at p

t
 ~ 8GeV

High p
t:

jet quenching
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Direct photon v
2

Chatterjee, Srivastava
PRC79, 021901 (2009) significant difference between

π0 and γinc. v2 above 5GeV/c

surprisingly large γdir. v2 is seen,
similar to hadron v2 at low pT

γdir. v2 is small at high pT,
consistent with prompt photon 
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v
2 
of heavy quarks (charm from D0 → K+π)

● Charm quark v
2
 predicted to be

smaller than flow of light quarks
at small transverse momentum

Within large statistical errors,
the  flow of D0 is consistent
with that of charged particles

● No particle type dependence at high p
t
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