Anisotropic flow measurements by ALICE

Ilya Selyuzhenkov (EMMI/GSI)

One day workshop on the reaction plane reconstruction and flow
GSI, March16, 2012

Outline

- Why do we measure anisotropic flow?
- Measurement techniques: correlations and non-flow
- Elliptic flow at LHC
- Flow fluctuations and higher harmonics
- Directed flow
- Fourier decomposition of the 2-particle azimuthal correlation

Traveling across the phase diagram by varying the collision energy

AGS/SPS (CERN) FAIR (GSI/Germany) NICA (Russia)

$$
\sqrt{s_{N N}} \sim 1-10 \mathrm{GeV}
$$

RHIC (BNL/USA)

$$
\sqrt{s_{N N}} \sim 10-200 \mathrm{GeV}
$$

LHC (CERN)

$$
\sqrt{s_{N N}} \sim 2-5 \mathrm{TeV}
$$

By varying the incident collision energy (i.e. measurements at different accelerators) we can travel across the phase diagram

Evolution of the system created in HIC

Nuclei just before collision

- Initial pre-equilibrium state
hard parton scattering \& jet production gluonic fields (Color Glass Condensate)
- Quark-gluon plasma formation thermalization (hydrodynamics)
- QGP expansion and decay
phase transition of partons into hadrons
- Hadronization
- Rescattering \& chemical freeze out
- Kinetic freeze out (stop interacting)
- Experimentally access only hadronic state

Many observables need to be studied to establish the properties of QGP

Colliding nuclei has a finite size

Peripheral collision (large b)

Overlap region is strongly asymmetric in the transverse plane

Central collision (small b)

Overlap region is close to be symmetric in the transverse plane

Asymmetry of the overlap region depends on the impact parameter
b-impact parameter

Nucleon-nucleon collisions in the overlap region

Peripheral collision

Small number of nucleon-nucleon collisions: few particles produced

Central collision

Large number of NN collisions: abundant particle production

Number of produced particles is correlated with the impact parameter

- elementary nucleon-nucleon (NN) collision

Produced particles interact with each other

Particle emitted out-of-plane

Multiple interaction with medium

Emitted in-plane

Less interaction - small modification

Particle collectivity

Peripheral collision

Central collision

Strong coordinate space asymmetry transforms into the azimuthal asymmetry in the momentum space

Multiple interaction with medium but small initial spacial asymmetry: small asymmetry in the momentum space

Correlated particle production wrt. the collision plane of symmetry

Quantifying azimuthal asymmetry

Coordinate space asymmetry is ~ ellipsoidal quantified by eccentricity:

$$
\epsilon_{s}=\frac{\left\langle y^{2}-x^{2}\right\rangle}{\left\langle y^{2}+x^{2}\right\rangle}
$$

x, y - position of each elementary NN interaction

Quantifying azimuthal asymmetry

Coordinate space asymmetry is ~ ellipsoidal quantified by eccentricity:

$$
\epsilon_{s}=\frac{\left\langle y^{2}-x^{2}\right\rangle}{\left\langle y^{2}+x^{2}\right\rangle}
$$

x, y - position of each elementary NN interaction

Momentum space asymmetry:

$$
e_{p} \sim \frac{\left\langle p_{x}^{2}-p_{y}^{2}\right\rangle}{\left\langle p_{y}^{2}+p_{x}^{2}\right\rangle} \rightarrow\langle\cos (2 \Delta \phi)\rangle
$$

Second Fourier harmonic in momentum space
$p_{t} \quad$ - particle transverse momentum
$\Delta \phi$ - azimuthal angle relative to the reaction plane

Time evolution of the spacial and momentum asymmetries

EoS I: massless ideal gas EoS RHIC: matching Lattice QCD

Momentum asymmetry is sensitive to:

- Early times of the system evolution
- Equation of State

Anisotropic transverse flow: Fourier harmonics

Fourier decomposition of the particle azimuthal distribution wrt. the reaction plane:

$$
\frac{d N}{d(\Delta \phi)} \sim 1+2 \sum_{n=1} v_{n}\left(p_{t}, \eta\right) \cos (n \Delta \phi)
$$

No "sin" terms because of the collision symmetry
$v_{n}\left(p_{t}, \eta\right)$ - anisotropic transverse flow coefficients
$v_{1}-$ directed flow
v_{2} - elliptic flow
v_{3} - triangular flow

Different types of transverse flow

Radial flow (symmetric in azimuth)
Reflects the history of the radial expansion Boost particle spectra to higher transverse momenta

Elliptic flow: $\quad v_{2}=\langle\cos 2 \Delta \phi\rangle$
Originate from ellipticity of the overlap region Self quenching effect - develops at early time (spacial asymmetry decrease with expansion)

Directed flow: $\quad v_{1}=\langle\cos \Delta \phi\rangle$
Deflection of particles in the beam direction. Develops at earliest time. At forward (large) rapidity is sensitive to the pre-equilibrium stage

Experimental measurements of the anisotropic flow

Modern ultra-relativistic HI colliders

Relativistic Heavy Ion Collider

Large Hadron Collider

	RHIC	LHC
Location	BNL (USA)	CERN (Europe)
Circumference	3.8 km	27 km
Species	$\mathrm{p}, \mathrm{d}, \mathrm{Cu}, \mathrm{Au}, \mathrm{U}$ polarized protons	p, Pb
Center of mass energy per nucleon pair	in GeV $7.7-38,62,200$ $500(\mathrm{pp} \mathrm{only})$	in TeV $0.9,2.76,7(\mathrm{pp})$ $2.76(\mathrm{~Pb})$

Current heavy-ion experiments at RHIC and LHC

STAR (Solenoidal Tracker At RHIC)

PHENIX (Pioneering High Energy Nuclear Ion Experiment)

Main capabilities for heavy-ion studies:
Charge particle tracking and identification: full azimuth, large rapidity coverage wide p_{t} range: $\sim 100 \mathrm{MeV} / \mathrm{c}$ to $\sim 100 \mathrm{GeV} / \mathrm{c}$
Calorimetry and rare probes: neutral particles, photons, jets, heavy flavor

ALICE (A Large Ion Collider Experiment)

ATLAS (A Toroidal LHC Apparatus)

CMS (Compact Muon Solenoid)

The ALICE subsystems used for the flow measurements

zDC-C	vzero-c	TPC	vzero-A	ZDC-A
	\square			\square
п ~-8.8	$-3.7<\eta<-1.7$	$\|\eta\|<0.8$	$2.8<\mathrm{n}<5.1$	n ~

TPC:
Time Projection Chamber charged tracks at midrapidity

VZERO:
Forward Scintillator Arrays multiplicity counters

ZDCs:

Zero Degree Calorimeter recoil neutrons at beam rapidity

Data from LHC running in November 2010

System	Energy, $\sqrt{ } \mathbf{s}_{N N}$	Events
$\mathrm{Pb}-\mathrm{Pb}$	2.76 TeV	13 M

Charged particle cuts for correlations:

Pseudo-rapidity: $|\eta|<0.8$
Transverse momentum $p_{t}>0.15 \mathrm{GeV} / \mathrm{c}$
Reaction plane:
Estimated with TPC, VZERO, and ZDCs

Anisotropic flow measurement: Using collectivity to study collectivity

Reaction plane is not known experimentally Orientating wrt. to the laboratory frame changes event-by-event

Only measuring particles distribution in the momentum space
If the momentum distribution is azimuthally asymmetric due to flow, then this asymmetry should be correlated with the impact parameter direction (reaction plane orientation)

Use particle azimuthal distribution in the event to estimate the reaction plane angle - event plane vector

Event plane vector

Vector sum of all particles direction:

$$
Q_{n, x}=\sum_{i} w_{i} \cos \left(n \phi_{i}\right) \quad Q_{n, y}=\sum_{i} w_{i} \sin \left(n \phi_{i}\right)
$$

Experimental estimate of the reaction plane:

$$
\text { Event plane vector: } \quad \Psi_{n, E P}=\frac{1}{n} \tan ^{-1}\left(\frac{Q_{n, y}}{Q_{n, x}}\right)
$$

Measuring flow with the event plane vector

$$
\frac{d N}{d\left(\phi-\Psi_{R P}\right)} \sim 1+2 \sum_{i=1} v_{n}\left(p_{t}, \eta\right) \cos \left[n\left(\phi-\Psi_{R P}\right)\right]
$$

Want to measure:
Measured:

$$
v_{n}=\left\langle\cos \left[n\left(\phi-\Psi_{R P}\right)\right]\right\rangle \quad v_{n}^{o b s}=\left\langle\cos \left[n\left(\phi-\Psi_{n, E P}\right)\right]\right\rangle
$$

Measuring flow with the event plane vector

$$
\frac{d N}{d\left(\phi-\Psi_{R P}\right)} \sim 1+2 \sum_{i=1} v_{n}\left(p_{t}, \eta\right) \cos \left[n\left(\phi-\Psi_{R P}\right)\right]
$$

Want to measure:
$v_{n}=\left\langle\cos \left[n\left(\phi-\Psi_{R P}\right)\right]\right\rangle \quad v_{n}^{\text {obs }}=\left\langle\cos \left[n\left(\phi-\Psi_{n, E P}\right)\right]\right\rangle$

Event plane vector and the reaction plane are correlated with finite resolution:

$$
v_{n}=\frac{\left\langle\cos \left[n\left(\phi-\Psi_{n, E P}\right)\right]\right\rangle}{\left\langle\cos \left[n\left(\Psi_{n, E P}-\Psi_{R P}\right)\right]\right\rangle}=\frac{v_{n}^{\text {obs }}}{R_{n}}
$$

Resolution can be measured from subevents:

$$
R \sim \sqrt{\left\langle\cos \left[n\left(\Psi_{n, E P}^{a}-\Psi_{n, E P}^{b}\right)\right]\right\rangle}
$$

Anisotropic flow measurement and correlations

$$
\begin{gathered}
\frac{d N}{d\left(\phi_{i}-\Psi_{R P}\right)} \sim 1+2 \sum_{n=1} v_{n} \cos \left[n\left(\phi_{i}-\Psi_{R P}\right)\right] \\
v_{n}=\left\langle\cos \left[n\left(\phi_{i}-\Psi_{R P}\right)\right]\right\rangle \quad \begin{array}{l}
\text { - directly calculable only in theory when } \\
\text { the reaction plane orientation is known }
\end{array}
\end{gathered}
$$

Anisotropic flow measurement and correlations

$$
\begin{gathered}
\frac{d N}{d\left(\phi_{i}-\Psi_{R P}\right)} \sim 1+2 \sum_{n=1} v_{n} \cos \left[n\left(\phi_{i}-\Psi_{R P}\right)\right] \\
v_{n}=\left\langle\cos \left[n\left(\phi_{i}-\Psi_{R P}\right)\right]\right\rangle \begin{array}{l}
\text { - directly calculable only in theory when } \\
\text { the reaction plane orientation is known }
\end{array}
\end{gathered}
$$

Event plane angle - experimental estimate of the reaction plane angle based on the measured azimuthal distribution of particles:

$$
\begin{gathered}
\Psi_{R P} \rightarrow \Psi_{E P}\left\{\sum_{\phi_{j}} g\left(\phi_{j}\right)\right\} \\
v_{n}^{\text {obs }}=\left\langle\cos \left[n\left(\phi_{i}-\Psi_{E P}\right)\right]\right\rangle \sim\left\langle\sum_{\phi_{j} \neq \phi_{i}} \cos n\left(\phi_{i}-\phi_{j}\right)\right\rangle \\
c_{n}\{2\}=\left\langle\cos n\left(\phi_{i}-\phi_{j}\right)\right\rangle \quad \text { - two particle correlations }
\end{gathered}
$$

Measure anisotropic flow with azimuthal correlations

Non-flow correlations

Non-flow: correlations among the particles unrelated to the reaction plane
In case of two particle correlations: $\left\langle\cos \left[n\left(\phi_{i}-\phi_{j}\right)\right]\right\rangle=\left\langle v_{n}^{2}\right\rangle+\delta_{2, n}$
Sources of non-flow correlations:

- Resonance decay
- Jet production
- In general - any cluster production

Non-flow correlations

Non-flow: correlations among the particles unrelated to the reaction plane
In case of two particle correlations: $\left\langle\cos \left[n\left(\phi_{i}-\phi_{j}\right)\right]\right\rangle=\left\langle v_{n}^{2}\right\rangle+\delta_{2, n}$
Sources of non-flow correlations:

- Resonance decay
- Jet production
- In general - any cluster production

Example: 2-particle decay

Probability to be correlated for one particle with another out of M-particles is $1 /(M-1)$:

$$
\delta_{2} \sim \frac{1}{M-1}
$$

To measure flow with 2-particle correlations:

$$
v_{n} \gg 1 / \sqrt{M}
$$

Collective flow:
correlations between particles through the common plane of symmetry

$$
M=200 \rightarrow v_{n} \gg 0.07
$$

For RHIC/LHC: $\quad v_{n} \approx 0.04-0.07$

[^0]
Suppressing non-flow with multi-particle correlations

Two particle correlations:

$$
\delta_{2} \sim \frac{1}{M}
$$

Measurement requirement:

$$
\begin{gathered}
v_{n} \gg \frac{1}{M^{1 / 2}} \\
M=200 \rightarrow v_{n} \gg 0.07
\end{gathered}
$$

Four-particle correlations:

$$
\delta_{4} \sim \frac{1}{M^{3}}
$$

$$
v_{n} \gg \frac{1}{M^{3 / 4}}
$$

$$
M=200 \rightarrow v_{n} \gg 0.019
$$

k-particle correlations:

$$
\delta_{k} \sim \frac{1}{M^{k-1}} \quad v_{n} \gg \frac{1}{M^{(k-1) / k}}
$$

Large $k(k \rightarrow \infty)$

$$
\begin{gathered}
v_{n} \gg \frac{1}{M} \\
M=200 \rightarrow v_{n} \gg 0.005
\end{gathered}
$$

Multi-particle cumulants

Cumulant are used to study the genuine n-particle correlations
n-particle cumulant can be defined as a correlation function which is zero if there are no n-particle correlations in the system (it is insensitive to other, $k \neq n$, correlations)

Example:

2-particle correlations

$$
\left\langle\cos \left[n\left(\phi_{1}-\phi_{2}\right)\right]\right\rangle=\left\langle e^{i n\left(\phi_{1}-\phi_{2}\right)}\right\rangle \quad \text { Note: imaginary part is zero (no sin terms) }
$$

2-particle cumulant:

$$
c_{n}\{2\}=\left\langle e^{i n\left(\phi_{1}-\phi_{2}\right)}\right\rangle-\left\langle e^{i n \phi_{1}}\right\rangle\left\langle e^{i n \phi_{2}}\right\rangle
$$

If there are no correlations in the particle distribution, but $\left\langle e^{i n \phi_{1,2}}\right\rangle \neq 0$ (for example non-uniform detector acceptance)

$$
\left\langle\cos \left[n\left(\phi_{1}-\phi_{2}\right)\right]\right\rangle \neq 0 \quad c_{n}\{2\}=0
$$

Multi-particle cumulants and relation to flow

2-particle cumulant:

$$
c_{n}\{2\}=\left\langle e^{i n\left(\phi_{1}-\phi_{2}\right)}\right\rangle=v_{n}^{2}+\delta_{2, n} \quad \delta_{2} \sim \frac{1}{M}
$$

4-particle cumulant:

$$
\begin{aligned}
& c_{n}\{4\}=\left\langle e^{i n\left(\phi_{1}+\phi_{2}-\phi_{3}-\phi_{4}\right)}\right\rangle-2\left\langle e^{i n\left(\phi_{1}-\phi_{2}\right)}\right\rangle^{2} \\
& c_{n}\{4\}=\left(v_{n}^{4}+\delta_{4, n}+4 \mathrm{v}_{n}^{2} \delta_{2, n}+2 \delta_{2, n}^{2}\right)-2\left(v_{n}^{2}+\delta_{2, n}\right)^{2} \\
& c_{n}\{4\}=\left\langle-v_{n}^{4}+\delta_{4, n}\right\rangle
\end{aligned} \quad \delta_{4} \sim \frac{1}{M^{3}}
$$

No contribution from 2-particle non-flow to the 4-particle cumulant

Multi-particle cumulants and relation to flow

2-particle cumulant:

$$
c_{n}\{2\}=\left\langle e^{i n\left(\phi_{1}-\phi_{2}\right)}\right\rangle=\left\langle v_{n}^{2}+\delta_{2, n}\right\rangle
$$

4-particle cumulant:

$$
c_{n}\{4\}=\left\langle-v_{n}^{4}+\delta_{4, n}\right\rangle
$$

Connection of cumulants to the anisotropic flow

$$
v_{n}\{2\}^{2}=c_{n}\{2\} \quad v_{n}\{4\}^{2}=-c_{n}\{4\}
$$

$$
v_{n}\{6\}^{6}=\frac{1}{4} c_{n}\{6\}
$$

Characteristic pattern of the cumulants changing sign

Estimating flow with multi-particle cumulants

Rapidity separation between correlated particles suppress short-range non-flow:

$$
v_{2}\{2\}>v_{2}\{2,|\Delta \eta|\}
$$

Large non-flow in peripheral collisions

Estimating flow with multi-particle cumulants

elliptic flow vs. centrality

Rapidity separation between correlated particles suppress short-range non-flow:

$$
v_{2}\{2\}>v_{2}\{2,|\Delta \eta|\}
$$

Large non-flow in peripheral collisions

Note:
$v_{2}\{2\}$ and $v_{2}\{4\}$ differ not only because of non-flow, but also due to flow fluctuations (discussed later)

Multi-particle cumulants remove residual non-flow:

$$
v_{2}\{4\} \approx v_{2}\{6\} \approx v_{2}\{8\}
$$

Overview of methods to measure anisotropic flow

 Based on 2-particle correlations:$$
v_{n}^{o b s}=\left\langle\sum_{\phi \neq \phi_{i}} \cos n\left(\phi-\phi_{i}\right)\right\rangle \rightarrow c_{n}\{2\}=\left\langle\cos n\left(\phi_{i}-\phi_{j}\right)\right\rangle
$$

Event plane method Scalar Product

$$
v_{n}\left(p_{T}, y\right)=\frac{\sqrt{\left\langle M_{a} M_{b}\right\rangle}}{\langle M\rangle-1} \frac{\left\langle Q_{n} u_{n, i}^{*}\left(p_{T}, y\right)\right\rangle}{\sqrt{\left\langle Q_{n}^{a} Q_{n}^{b *}\right\rangle}}
$$

Overview of methods to measure anisotropic flow

Based on 2-particle correlations:

$$
v_{n}^{o b s}=\left\langle\sum_{\phi \neq \phi_{i}} \cos n\left(\phi-\phi_{i}\right)\right\rangle \rightarrow c_{n}\{2\}=\left\langle\cos n\left(\phi_{i}-\phi_{j}\right)\right\rangle
$$

Event plane method Scalar Product

$$
v_{n}\left(p_{T}, y\right)=\frac{\sqrt{\left\langle M_{a} M_{b}\right\rangle}}{\langle M\rangle-1} \frac{\left\langle Q_{n} u_{n, i}^{*}\left(p_{T}, y\right)\right\rangle}{\sqrt{\left\langle Q_{n}^{a} Q_{n}^{b}\right\rangle}}
$$

Based on multi-particle cumulant:
Cumulants from generating function (GF):

GF: function which expanded in series gives multi-particle correlations as expansion coefficients

$$
G_{n}(z)=\prod_{j=1}^{M}\left(1+\frac{z^{*} e^{i n \phi_{j}}+z e^{-i n \phi_{j}}}{M}\right)
$$

Q-cumulants (or direct cumulants)

$$
\langle 4\rangle=\frac{\left|Q_{n}\right|^{4}+\left|Q_{2 n}\right|^{2}-2 \cdot \mathfrak{R e}\left[Q_{2 n} Q_{n}^{*} Q_{n}^{*}\right]}{M(M-1)(M-2)(M-3)}
$$

$$
\langle 2\rangle=\frac{\left|Q_{n}\right|^{2}-M}{M(M-1)}
$$

$$
v_{n}\{2\}^{2}=c_{n}\{2\} \quad v_{n}\{4\}^{4}=-c_{n}\{4\} \quad v_{n}\{6\}^{6}=\frac{1}{4} c_{n}\{6\} \quad v_{n}\{8\}^{6}=-\frac{1}{33} c_{n}\{8\}
$$

Overview of methods to measure anisotropic flow

Based on 2-particle correlations:

$$
v_{n}^{o b s}=\left\langle\sum_{\phi \neq \phi_{i}} \cos n\left(\phi-\phi_{i}\right)\right\rangle \rightarrow c_{n}\{2\}=\left\langle\cos n\left(\phi_{i}-\phi_{j}\right)\right\rangle
$$

Event plane method Scalar Product

$$
v_{n}\left(p_{T}, y\right)=\frac{\sqrt{\left\langle M_{a} M_{b}\right\rangle}}{\langle M\rangle-1} \frac{\left\langle Q_{n} u_{n, i}^{*}\left(p_{T}, y\right)\right\rangle}{\sqrt{\left\langle Q_{n}^{a} Q_{n}^{b *}\right\rangle}}
$$

Based on multi-particle cumulant:

Cumulants from generating function (GF) Q-cumulants (or direct cumulants)

$$
v_{n}\{2\}^{2}=c_{n}\{2\} \quad v_{n}\{4\}^{4}=-c_{n}\{4\} \quad v_{n}\{6\}^{6}=\frac{1}{4} c_{n}\{6\} \quad v_{n}\{8\}^{6}=-\frac{1}{33} c_{n}\{8\}
$$

Method based on the event flow vector:
Fitting Q-vector distribution

$$
\frac{d N}{d q_{n}}=\frac{q_{n}}{\sigma_{n}^{2}} e^{-\frac{v_{n}^{2} M+q_{n}^{2}}{2 \sigma_{n}^{2}}} I_{0}\left(\frac{q_{n} v_{n} \sqrt{M}}{\sigma_{n}^{2}}\right) \quad q_{n} \equiv \frac{Q_{n}}{\sqrt{M}}
$$

Lee-Yang zeros
(first minimum of the generating function)

$$
G_{2}^{\theta}(i r)=\left|\left\langle e^{i r Q_{2}^{\theta}}\right\rangle_{\mathrm{evts}}\right| \quad V_{n}^{\theta}\{\mathrm{LYZ}\}=\frac{j_{01}}{r_{0}^{\theta}}
$$

ALICE results from different techniques

Results separate into two bands: from two and multi-particle correlations

In-plane elliptic flow:

the dominant flow component at the relativistic energies

$$
\frac{d N}{d(\Delta \phi)} \sim 1+2 v_{2} \cos (2 \Delta \phi)
$$

Elliptic flow vs. collision energy

Elliptic flow: RHIC vs. LHC

p_{t} differential elliptic flow vs. collision energy

$\nu_{2}\left(\mathrm{p}_{\mathrm{t}}\right)$ has similar shape and magnitude: increase of integral v_{2} is driven by stronger radial flow (boost to higher p_{t})

Identified particle spectra: LHC vs. RHIC

Spectra shapes changed significantly from RHIC to LHC

Radial expansion (flow):
Boost particles to higher p_{t} (particles gain extra radial velocity)

From Blast wave spectra fits: 20\% stronger radial flow at LHC
\rightarrow increase of integral v_{2}

Identified particle spectra: LHC vs. RHIC

Spectra shapes changed significantly from RHIC to LHC

Radial expansion (flow):
Boost particles to higher p_{t} (particles gain extra radial velocity)

From Blast wave spectra fits: 20\% stronger radial flow at LHC
\rightarrow increase of integral v_{2}

Elliptic flow mass splitting

VISHNU: Heinz et. al, arxiv:1108.5323

Similar to spectra:
v_{2} of heavier particles
is pushed to higher p_{t}
Viscous hydrodynamics well describe flow of $\pi^{ \pm}$and $K^{ \pm}$:
\rightarrow sensitivity to QGP viscosity

Including hadronic rescattering with UrQMD model allows better reproduce proton v_{2} :
\rightarrow sensitivity to the evolution

Coalesence and v_{2} number of quarks scaling

Distribution of primordial particles reflects the distribution of original particles:
A-neutrons

$$
\frac{E_{A} d^{3} n_{A}}{d^{3} p_{A}}=B_{A}\left(\frac{E_{p} d^{3} n_{p}}{d^{3} p_{p}}\right)^{A}
$$

$$
\frac{d N}{d\left(\phi-\Psi_{R P}\right)} \sim 1+2 \sum_{i=1} v_{n}\left(p_{t}, \eta\right) \cos \left[n\left(\phi-\Psi_{R P}\right)\right]
$$

If distribution is affected by flow, it will be amplified by coalesence:

$$
v_{n, A}\left(p_{T, A}\right) \approx A v_{n, p}\left(p_{T, A} / A\right)
$$

Mesons:
Baryons:

$$
\frac{d^{3} n_{M}}{d^{3} p_{M}} \propto\left[\frac{d^{3} n_{q}}{d^{3} p_{q}}\left(p_{q} \approx p_{M} / 2\right)\right]^{2}
$$

$$
\frac{d^{3} n_{B}}{d^{3} p_{B}} \propto\left[\frac{d^{3} n_{q}}{d^{3} p_{q}}\left(p_{q} \approx p_{B} / 3\right)\right]^{3}
$$

Constituent number of quarks scaling

RHIC

LHC

Observe approximate number of quark scaling:
Strong indication that system evolved through deconfined (QGP) phase

Flow fluctuations

Flow fluctuations

Transverse distribution of nucleons inside a nuclei (e.g. can be simulated with Glauber Monte-Carlo)

Flow fluctuations

A moment just before collision:
overlayed transverse distributions of nucleons inside each nuclei

Flow fluctuations

Some of the nucleons (participants) interacted; others (spectators) passed by

Flow fluctuations

Event-by-event flow fluctuations

Flow fluctuations

Fluctuating spacial asymmetry result in the event by event fluctuations of anisotropic flow
Event2

$$
+-----x_{x_{l a b}}
$$

Flow fluctuations: participant eccentricity

How fluctuations affect the measured flow?

2-particle azimuthal correlation:

$$
c_{n}\{2\}=\left\langle\cos \left[2\left(\phi_{i}-\phi_{j}\right)\right]\right\rangle=\left\langle v_{n}^{2}\right\rangle+\delta_{n, 2}
$$

$$
\left\langle v_{n}^{2}\right\rangle \neq\left\langle v_{n}\right\rangle^{2}
$$

$$
\left\langle v_{n}^{2}\right\rangle=\left\langle v_{n}\right\rangle^{2}+\sigma_{n}^{2}
$$

$$
\left\langle\cos \left[n\left(\phi_{i}-\phi_{j}\right)\right]\right\rangle=\left\langle v_{n}\right\rangle^{2}+\sigma_{n}^{2}+\delta_{n, 2}
$$

Elliptic flow fluctuations

2-particle correlations affected by 3 effects: $v_{2}\{2\}=\sqrt{\left\langle\nu_{2}\right\rangle^{2}+\sigma_{2}^{2}+\delta_{2}}$

Residual non-flow subtracted based on HIJING Monte-Carlo:

$$
\nu_{2}^{\text {corr }}\{2\} \approx\left\langle v_{2}\right\rangle+\frac{\sigma_{2}^{2}}{2\left\langle v_{2}\right\rangle}
$$

Many-particle correlations free of non-flow:

$$
v_{2}\{4\} \approx\left\langle v_{2}\right\rangle-\frac{\sigma_{2}^{2}}{2\left\langle v_{2}\right\rangle}
$$

Fluctuations set the difference between $v_{2}^{\text {corr }}\{2\}$ and $v_{2}\{4\}$

Flow fluctuations are significant
Additional constraint on the initial condition

Estimating flow fluctuations from data

σ_{2}

$\sigma_{2} /\left\langle v_{2}\right\rangle$

Gaussian fluctuations or $\sigma_{n} \ll\left\langle v_{n}\right\rangle$

$$
\begin{aligned}
\sigma_{2} & \approx \sqrt{\frac{v_{2}\{2\}-v_{2}\{4\}}{2}} \\
\left\langle v_{2}\right\rangle & =\sqrt{\frac{v_{2}\{2\}+v_{2}\{4\}}{2}}
\end{aligned}
$$

Fluctuations can be significant
Helps to constrain initial condition

"Odd" harmonic flow and fluctuations

$$
\frac{d N_{\alpha}}{d\left(\Delta \phi_{\alpha}\right)} \sim 1+2 \sum_{i=1} v_{n, \alpha} \cos \left(n \Delta \phi_{\alpha}\right)
$$

By symmetry of the collision, odd harmonic flow $\mathrm{v}_{2 \mathrm{~m}+1}$ measured wrt. the reaction plane should vanish at mid-rapidity (or in any symmetric rapidity range):

$$
v_{2 m+1}^{\text {odd }}(-\eta)=-v_{2 m+1}^{o d d}(\eta)
$$

Fluctuations does not obey the symmetry rule of the odd harmonic flow wrt. reaction plane.
For example in case of directed flow:

$$
v_{1}\{2\}=\sqrt{\left\langle v_{1}^{2}\right\rangle}=\sqrt{\left\langle v_{1}\right\rangle^{2}+\sigma_{1}^{2}}=\sigma_{1} \neq 0
$$

Conclusion: in the symmetric rapidity range all odd harmonics originates from flow fluctuations:

$$
\nu_{2 m+1}^{\text {even }}(-\eta)=+v_{2 m+1}^{\text {even }}(\eta) \text { - rapidity "even" odd harmonic flow }
$$

Participant plane

$$
x^{\prime}=x-\langle x\rangle \quad y^{\prime}=y-\langle y\rangle
$$

Flow fluctuations: ellipticity

Flow fluctuations: triangularity
Triangularity plane

Triangular flow, v_{3}

Measured odd harmonic flow provides clean probe of fluctuations

$$
\begin{gathered}
\left\langle v_{3}\right\rangle=0 \quad \sigma_{3} \neq 0 \\
\sigma_{n} \ll\left\langle v_{n}\right\rangle \text { does not apply }
\end{gathered}
$$

Non-zero v_{3} is observed
v_{3} shows weak centrality dependence - collectivity (non-flow correlations should drop as 1/multiplicity)

Triangular flow, v_{3}

Cumulant results consistent with expectations for fluctuations:

$$
\frac{v_{3}\{2\}}{v_{3}\{4\}} \approx 2
$$

Uncorrelated to reaction plane zero v_{3} with spectators:

$$
v_{3}\left\{\Psi_{R P}\right\} \equiv v_{3}\{Z D C\}=0
$$

Mixed harmonics ($3^{\text {rd }}$ and $2^{\text {nd }}$):

$$
v_{3}\left\{\Psi_{2}\right\}=0
$$

Weak centrality dependence

Strong evidence for the geometrical (due to spacial fluctuations) origin of v_{3}

Mass splitting: test of "hydrodynamic" origin of v_{3}

- Observed mass splitting for v_{3} supports its hydrodynamic origin
- Additional strong constraint on viscosity and initial condition

Directed flow measured with spectators

$$
\frac{d N}{d(\Delta \phi)} \sim 1+2 v_{1} \cos \Delta \phi
$$

Sensitivity to spectator's directed flow with ZDC

ZDC: $7.2 \times 7.2 \mathrm{~cm}^{2}$

Observe correlation between spectators' deflection measured with neutron Zero Degree Calorimeters located 114meters on each side from the collision vertex: sensitivity to the directed flow of spectator

Directed flow: η, p_{t} and centrality dependence

- Negative slope at midrapidity:
- Same as at RHIC
v In contrast to some of the theoretical predictions
- Zero crossing around $\mathrm{p}_{\mathrm{T}} \sim 1.5 \mathrm{GeV}$

Directed flow: longitudinal scaling

STAR data: PRL 101, 252301 (2008)

Universal trend when shifted to beam rapidity

 Data follows the longitudinal scaling observed at RHIC
Two particle azimuthal correlation:

collective flow modulations or ridge \& mach cone?

$$
\begin{gathered}
? \\
C\left(\phi_{1}-\phi_{2}\right)
\end{gathered} \stackrel{\sim}{\sim}+2 \sum_{i=1} v_{n, 1} v_{n, 2} \cos \left(n\left[\phi_{1}-\phi_{2}\right]\right)
$$

Two particle azimuthal correlations

$$
\text { MixBkg } 3.0<\mathrm{p}_{\mathrm{T}, \text { trig }}<4.02 .0<\mathrm{p}_{\mathrm{T}, \text { assoc }}<3.00-20 \%
$$

2D-correlations:
$\Delta \phi=\phi_{A}-\phi_{B}$
$\Delta \eta=\eta_{A}-\eta_{B}$

Correlation function:

$$
C(\Delta \phi) \equiv \frac{N_{\text {mixed }}^{A B}}{N_{\text {same }}^{A B}} \cdot \frac{d N_{\text {same }}^{A B} / d \Delta \phi}{d N_{\text {mixed }}^{A B} / d \Delta \phi}
$$

Two particle azimuthal correlations

Correlations at small p_{t} (bulk particles)

Non-trivial shape of the correlation function

Anatomy of the two particle correlations

Correlations at small p_{t} (bulk particles)

Same side "jet" peak

Anatomy of the two particle correlations

Correlations at small p_{t} (bulk particles)

Anatomy of the two particle correlations

Correlations at small p_{t} (bulk particles)

Two particle azimuthal correlations: small and high p_{t}

Correlations at small p_{t} (bulk)
Correlations at high p_{t} (away side jet)

Lets study the azimuthal shape of the correlations outside of the jet peak in terms of collective modulations

Higher harmonics for very central collisions

At $p_{t} \sim 1.5 \mathrm{GeV}^{2}$ become larger v_{2}

Two particle correlations and higher harmonic flow

Azimuthal correlations are studied with large rapidity gap: $0.8<|\Delta \eta|<1.8$

Correlations at small p_{t} (bulk)
Pb-Pb 2.76 TeV, 0-2\% central

Correlations at high p_{t} (away side jet)

"ridge" and "mach-cone" like structures are naturally described by the collective flow effects

Power spectrum from two particle correlations

$$
C\left(\phi_{1}-\phi_{2}\right) \sim 1+2 \sum_{i=1} V_{n} \cos \left(n\left[\phi_{1}-\phi_{2}\right]\right)
$$

Anisotropic flow: summary

- Anisotropic transverse flow is an important experimental observable to study the evolution of a heavy-ion collision and understand the properties of the quark-gluon plasma (QGP).
- It provides constraints on:
- Equation of state of the created matter
- Transport properties (i.e. viscosity) of the QGP matter
- Shape of the initial conditions in a heavy-ion collision
- Helps to understand the origin of the correlations between produced particle
- Path length dependence of the parton energy loss (flow at high transverse momenta)

Backup

Elliptic flow at high p_{t}

- Non-zero elliptic flow at large transverse momenta $p_{t}>8 \mathrm{GeV}$
- Centrality dependence is consistent with suppression measure via nuclear modification factor R_{AA}

Identified particle v_{2} at high p_{t}

Direct photon v_{2}

v_{2} of heavy quarks (charm from $D^{0} \rightarrow K+\pi$)

- Charm quark v_{2} predicted to be smaller than flow of light quarks at small transverse momentum
- No particle type dependence at high p_{t}

Within large statistical errors, the flow of D^{0} is consistent with that of charged particles

[^0]: Ilya Selyuzhenkov, , 16/03/2012

