

FOPI flow

References

FOPI publications on reaction plane related flow

Technicalities

Reaction plane estimation Fourier expansion of azimuthal distributions Flow determination without reaction plane Quadrant method

Selected results EOS from IQMD comparison Charged kaon flow

Conclusions

IPNE Bucharest, Romania CRIP/KFKI Budapest, Hungary LPC Clermont-Ferrand, France GSI Darmstadt, Germany FZ Rossendorf, Germany Univ. of Warsaw, Poland IMP Lanzhou, China SMI, Vienna, Austria ITEP Moscow, Russia Kurchatov Institute Moscow, Russia Korea University, Seoul, Korea IReS Strasbourg, France Univ. of Heidelberg, Germany RBI Zagreb, Croatia TUM, Munich, Germany

FOPI – Literature on Collective Flow

<u>1</u>) Systematics of azimuthal asymmetries in heavy ion collisions in the 1 A GeV regime. By FOPI Collaboration (<u>W. Reisdorf *et al.*</u>). Dec 2011. 70pp. Published in Nucl.Phys.A876:1-60,2012, e-Print: arXiv:1112.3180 [nucl-ex]

<u>11</u>) Systematics of pion emission in heavy ion collisions in the 1A- GeV regime. By FOPI Collaboration (<u>W. Reisdorf *et al.*</u>). Oct 2006. 56pp. Published in Nucl.Phys.A781:459-508,2007, e-Print: nucl-ex/061002

<u>12</u>) First analysis of anisotropic flow with Lee-Yang zeroes. By FOPI Collaboration (<u>N. Bastid *et al.*</u>). Apr 2005. 5pp. Published in Phys.Rev.C72:011901,2005, e-Print: nucl-ex/0504002

<u>14</u>) Excitation function of elliptic flow in Au+Au collisions and the nuclear matter equation of state. By FOPI Collaboration (<u>A. Andronic *et al.*</u>). Nov 2004. 10pp. Published in Phys.Lett.B612:173-180,2005, e-Print: nucl-ex/0411024

<u>17</u>) Nuclear stopping from 0.09-A-GeV to 1.93-A-GeV and its correlation to flow. By FOPI Collaboration (<u>W. Reisdorf *et al.*</u>). Apr 2004. 4pp. Published in Phys.Rev.Lett.92:232301,2004, e-Print: nucl-ex/0404037

<u>18</u>) Azimuthal dependence of collective expansion for symmetric heavy ion collisions. By FOPI Collaboration (<u>G. Stoicea *et al.*</u>). Jan 2004. 4pp. Published in Phys.Rev.Lett.92:072303,2004, e-Print: nucl-ex/0401041

<u>20</u>) Directed flow in Au + Au, Xe + CsI and Ni + Ni collisions and the nuclear equation of state. By FOPI Collaboration (<u>A. Andronic *et al.*</u>). Jan 2003. 20pp. Published in Phys.Rev.C67:034907,2003, e-Print: nucl-ex/0301009

22) Differential directed flow in Au+Au collisions. By FOPI Collaboration (<u>A. Andronic *et al.*</u>). Aug 2001. 5pp. Published in Phys.Rev.C64:041604,2001, e-Print: nucl-ex/0108014

Collective flow

Collective Flow

rapidity

Azimuthal distributions

Azimutal Distributions with respect to reactionplane

C.Pinkenburg et al., (E895), Phys.Rev.Lett. 83 (1999) 1295 *nucl-ex/9903010*

Reaction: Au + Au

Centrality: 0.5 < Mul < 0.75 Mul_{max} (5 fm < b < 7fm)

EMMI mini-Wc

Fourier Expansion of Azimutal Distributions

Phase space distribution with respect to reaction plane Φ_{R}

$$\varphi' := \varphi - \Phi_R$$

$$\frac{d^3 N}{p_t dp_t dy d \varphi'} \propto (1 + 2v_1 \cos(\varphi') + 2v_2 \cos(2\varphi') + ...)$$
Fourier expansion coefficients
$$v_1 = \left\langle \frac{p_x}{p_t} \right\rangle \qquad \text{sideflow}$$

$$v_2 = \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right\rangle \qquad \text{elliptic flow}$$

S. Voloshin, Y. Zhang, *hep-ph/9407082* J.Y. Ollitrault, *nucl-ex/9711003*

Reaction Plane

Transverse momentum method: P. Danielewicz, G. Odyniec, Phys. Lett. 157B, 146 (1985)

$$\vec{Q}^{(n)} = \sum_{\nu} \omega(\nu) \cdot \vec{p}_t(\nu),$$

 $\omega(\nu) = \begin{cases} 1 & y(\nu) > y_{CM} + \delta y \\ -1 & y(\nu) < y_{CM} - \delta y \end{cases}$

Generalisation:

$$\vec{Q}^{(n)} = \sum_{v} \omega^{(n)} \cdot \left| \vec{p}_{t} \right| \cdot \left(\frac{\cos(n \cdot \varphi)}{\sin(n \cdot \varphi)} \right), \quad n = 1, 2, 3, \dots$$

 $\omega(n)$ has different sign in forward/backward hemisphere for odd values of n.

Reaction plane angle:

$$\Phi_R^{(n)} = \arctan\left(Q_y^{(n)}, Q_x^{(n)}\right)/n$$

Reaction plane resolution

Reconstructed reaction plane is fluctuating around true reaction plane => measured v_i are smaller than true v_i .

Subevent method:

$$\left\langle \cos\left(n\left(\Phi_{A}^{(n)}-\Phi_{B}^{(n)}\right)\right)\right\rangle = \left\langle \cos\left(n\left(\Phi_{A}^{(n)}-\Phi_{R}\right)\right)\right\rangle \cdot \left\langle \cos\left(n\left(\Phi_{B}^{(n)}-\Phi_{R}\right)\right)\right\rangle$$

Estimate for correction factors of Fourier expansion coefficients:

$$\mathbf{v}_{m} = \mathbf{v}_{m}^{obs} / \sqrt{\left\langle \cos\left(n\left(\Phi_{A}^{(n)} - \Phi_{B}^{(n)}\right)\right)\right\rangle}$$

Ollitrault formalism

J.Y. Ollitrault, arXiv:nucl-ex/9711003

Eq.(6) can be easily integrated over Q [21] to yield the distribution of $\Delta \phi$:

$$\frac{dN}{\Delta\phi} = \frac{1}{\pi} \exp(-\chi^2) \left\{ 1 + z\sqrt{\pi} \left[1 + \operatorname{erf}(z) \right] \exp(z^2) \right\}.$$
 (7)

where $z = \chi \cos \Delta \phi$ and $\operatorname{erf}(x)$ is the error function. This distribution depends on \overline{Q} and σ only through the dimensionless parameter $\chi \equiv \overline{Q}/\sigma$. The Fourier coefficients are most easily calculated by integrating Eq.(6) first over $\Delta \phi$ and then over Q [14]:

$$\left\langle \cos n\Delta\phi\right\rangle = \frac{\sqrt{\pi}}{2}\chi e^{-\chi^2/2} \left[I_{\frac{n-1}{2}}\left(\frac{\chi^2}{2}\right) + I_{\frac{n+1}{2}}\left(\frac{\chi^2}{2}\right) \right]$$
(8)

where I_k is the modified Bessel function of order k. The variations of the first coefficients

Fourier coefficients v_i can be corrected consistently by evaluating dimensionless parameter χ !

Ollitrault formalism

Determination of χ

Inverse correction factors

Test of formalism with Monte Carlo

TABLE I. The geometric impact parameters intervals Δb_{geo} and the correction factors for the reaction plane resolution, $1/\langle \cos \Delta \phi \rangle$, for three centrality bins of Au+Au collisions at the incident energy of 400A MeV.

Centrality bin	M3	M4	M5
$\Delta b_{geo} \ (fm)$	6.1 - 7.6	1.9-6.1	0-1.9
$1/\langle \cos \Delta \phi \rangle$	1.05	1.04	1.17

TABLE II. The geometric impact parameters intervals Δb_{geo} , the reduced impact parameters $\langle b_{geo} \rangle / b_{geo}^{max}$ and the correction factors for the reaction plane resolution, $1/\langle \cos \Delta \phi \rangle$, for the three systems at the incident energy of 250A MeV, M4 centrality bin.

System	Au+Au	Xe+CsI	Ni+Ni
$\Delta b_{geo} \ (fm)$	1.9-6.1	1.7 - 4.8	1.5 - 3.4
$\langle b_{geo} \rangle / b_{geo}^{max}$	0.31	0.29	0.27
$1/\langle \cos \Delta \phi \rangle$	1.05	1.09	1.27

FIG. 2. Upper panel: the resolution of the reconstructed reaction plane (squares) and the corresponding correction factors (dots). Lower panel: v_1 values for the true (continuous line) and reconstructed and corrected (dashed line) reaction plane. IQMD HM events were used for these studies.

Uniformity of the reaction plane distribution

Ex.: Ni + Ni @ 1.92 AGeV (S325e)

Reaction plane from FOPI PLA forward wall

No corrections

Asymmetry ~ 20%

 $Q_x = \sum_i \omega_i p_{x,i}$ $Q_y = \sum_i \omega_i p_{y,i}$ $\Phi_R = \arctan 2(Q_y, Q_x)$

Uniformity of the reaction plane distribution

Ex.: Ni + Ni @ 1.92 AGeV (S325e)

Reaction plane flattening

J. Barrette et al. (E877), PRC 56, 3254 (1997)

Extraction of average fourier components

Shift of reaction plane by

$$\Delta \Phi_R = \sum_n [A_n \cos(n\Phi_R) + B_n \sin(n\Phi_R)]$$
$$A_n = -\frac{2}{n} \langle \sin(n\Phi_R) \rangle$$
$$B_n = \frac{2}{n} \langle \cos(n\Phi_R) \rangle$$

Reaction plane resolution

FOPI: Ni + Ni @ 1.91 AGeV (S325e)

Random subevents

Example for Reaction Plane Resolution

Systematic errors

Ni + Ni @ 1.91 AGeV (S325e)

Autocorrelation removed

$$Q_x^{(j)} = \sum_{i \neq j} \omega_i p_{x,i} = Q_x - \omega_j p_{x,j}$$
$$Q_y^{(j)} = \sum_{i \neq j} \omega_i p_{y,i} = Q_y - \omega_j p_{y,j}$$
$$Q_R^{(j)} = \arctan 2 \left(Q_y^{(j)}, Q_x^{(j)} \right)$$

Symmetry requirement: $v_1(y^{(0)} = 0) = 0$ $v_1^{exp} \neq 0$ $v_1^{exp} = v_1^{exp}(A_{sys}, \text{Centrality}, m_0)$

Note: recoil effect negligible for Integrated flow

Differential v_{1/2} - distributions

FIG. 5. Same as Fig. 4, but for the incident energy of 400 A MeV.

Au + Au @ 400 AMeV

Autocorrelation removed.

$$Q_x^{(j)} = \sum_{i \neq j} \omega_i p_{x,i}$$
$$Q_y^{(j)} = \sum_{i \neq j} \omega_i p_{y,i}$$
$$Q_R^{(j)} = \arctan 2 \left(Q_y^{(j)}, Q_x^{(j)} \right)$$

Result:

complex pattern

no simple scaling law

need transport models for interpretation

Alternative methods without reaction plane

Cumulant method:

N. Borghini, P.M. Dinh, and J.-Y. Ollitrault, Phys. Rev.C 64, 054901 (2001).

Lee-Yang zeroes:

R.S. Bhalerao, N. Borghini, and J.-Y.Ollitrault, Nucl. Phys. A 727, 373 (2003).

Reaction Ru + Ru @ 1.69 AGeV

Small systematic differences at high transverse momenta.

Differences of event-plane (EP) to 2nd order cumulant due to recoil corrections done for EP – method.

Differences 2nd order – 4th order cumulant most likely due to momentum conservation missed by 2nd order cumulant.

Lee-Yang zeroes follows 4th order cumulant.

No significant contribution of non-flow contributions.

Integral flow observables

Integral sideflow

$$p_x^{dir} = \sum_{v} \omega \cdot \vec{p}_t(v) \cdot \vec{Q} / \left| \vec{Q} \right|$$

(Classical) 'Sideflow' (slope of mean p_x at midrapidity)

$$F_{y} = \frac{d\langle p_{x} \rangle / A}{dy}$$

Transverse momentum tensor

$$F_{ij} = \sum_{v} p_i(v) p_j(v) / 2m_v,$$

$$i, j = x, y, z$$

Sideflow

Au+Au @ 0.4AGeV, Li-fragments

P.Crochet et al., (FOPI), NPA624, 755 (1997)

Slope at midrapidity

Hydrodynamically scale invariant

W.Reisdorf, H.G.Ritter, Ann.Rev.Nucl.Part.Sci.47,663(1997)

Autocorrelation with reaction plane has to be removed

Sideflow excitation function

 $F_{y} \propto \int F dt \approx p_{eff} A_{int} t_{pass}$ $t_{pass} = \frac{2R}{\gamma_{CM}} \cdot \frac{1}{\beta_{CM}}$

Correlation of stopping & flow

Excitation function for elliptic flow

A.Andronic et al. (FOPI), PLB 612, 173 (2005)

Excitation function of flow variables

P. Danielewicz et al. Science 298, 1592 (2002)

incomplete selection of data

Excitation function of flow variables

•Mean field effects clearly visible by difference to 'cascade' calculations.

•None of the model calculations describes all the available data.

EOS from HI – collisions

Symmetry Definitions

Relation to Fourier coefficients

 $Q_2 = Q_4$

 $Q_{24} = Q_2 + Q_4$

 $\frac{Q_1 - Q_3}{Q_0} = \frac{2\sqrt{2}}{\pi} \mathbf{v}_1$

 $\frac{Q_{24}}{Q_0} - \frac{1}{2} = -\frac{2}{\pi} \mathbf{v}_2$

 $Q_0 = Q_1 + Q_2 + Q_3 + Q_4$

Quadrant method

W. Reisdorf et al. (FOPI), NPA, 2012

1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 y_0

 $u_{t0} = (\beta_t \gamma)_0 = \left(\frac{p_t}{m}\right)_0$ or normalisation to CMS quantities

N.Herrmann, Univ. Heidelberg

Quadrant method

Analyzed data:

System	Energies (AGeV)
⁴⁰ Ca+ ⁴⁰ Ca	0.4, 0.,6 0.8,1.0, 1.5, 1.93
⁵⁸ Ni+ ⁵⁸ Ni	0.15,0.25
¹²⁹ Xe+CsI	0.15, 0.25
⁹⁶ Ru+ ⁹⁶ Ru	0.4, 1.0, 1.5
⁹⁶ Zr+ ⁹⁶ Zr	0.4, 1.5
¹⁹⁷ Au+ ¹⁹⁷ Au	0.09, 0.12, 0.15, 0.25, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5

Comparison to IQMD at 0.25 AGeV

0.5

0.4

0.3

0.1

0.0

^ح 0.2

Comparison to IQMD at 0.4 AGeV

0.8

0.8 1.0

Model comparison at 1 AGeV

W. Reisdorf et al. (FOPI), NPA, 2012

Proton yield overestimated,

Preference for EOS with SM

Model comparison at 1.5 AGeV

Au+Au 1.5A GeV 0.25<body>6.45 protons

No perfect agreement,

preference for EOS with SM

EMMI mini-Workshop on reaction plane and flow, 16-Mar-12

N.Herrmann, Univ. Heidelberg

Model comparison at 1.5 AGeV

W. Reisdorf et al. (FOPI), 2012

EMMI mini-Workshop on reaction plane and flow. 16-Mar-12

N.Herrmann, Univ. Heidelberg

preference for EOS with SM

IQMD - model comparison of midrapidity slopes

Preference for EOS with SM

80M

1.91 AGeV,	200M	(S297, 2005
1.91 AGeV,	80M	(S325, 2008
1.91 AGeV,	100M	(S338, 2009)
1.7 AGeV,	210M	(S338, 2009
	1.91 AGeV, 1.91 AGeV, 1.91 AGeV, 1.7 AGeV,	1.91 AGeV,200M1.91 AGeV,80M1.91 AGeV,100M1.7 AGeV,210M

Search for exotica in elementary reaction

existence of ppK⁻ - bound state

3 GeV. p + p

(S349, 2009)

MMRPC

FOPI III (2007 – 2010) with improved PID

Performance: $\sigma_{system} \sim 88 \text{ ps}$ $\sigma_{RPC} \sim 67 \text{ ps}$

kaon identification

30 supermodule,
150 counters,
4500 electronic channels,
6 m² active area

Differential sideflow of K⁺ in central collisions

New data are consistent with earlier data in range -1.2 < $y^{(0)}$ < -0.65, σ_{geo} =200mb P.Crochet et al., PLB 486, 6 (2000)

Conclusion:

Data favor the presence of repulsive potential $U(\rho = \rho_0) = 20 \text{ MeV}$

Predictions of transport model

Large asymmetries are predicted for semi-peripheral collisions ...

Differential flow of K⁺ - mesons

Differential sideflow in central collisions compatible with HSD & potential. Models fail to describe the centrality dependence.

Flow of charged kaons

Ni+Ni at 1.91 AGeV (S325 + S325e data) σ = 1.5 b b_{geo}= 7 fm

Models with FOPI acceptance filter

Potentials with linear density dependence.

 U_{HSD}(K⁺)
 20 MeV

 U_{IQMD}(K⁺)
 40 MeV

 U_{HSD}(K⁻)
 50 MeV

 U_{HSD}(K⁻)
 90 MeV

At $\rho = \rho_0$:

K⁺ sideflow much smaller than expectation from model calculations. K⁻ sideflow compatible with zero, in variance with model expectiations. K⁺ - elliptic flow negativ \rightarrow out of plane emission.

K⁻ - elliptic flow consistent with zero.

Summary / Conclusion

Collective flow is sensitive to pressure,

Necessary ingredient to extract equation-of-state and in-medium potentials.

Errors dominated by systematic uncertainties.

Large dataset exists for baryon and pion flow that awaits description by theoretical transport model.

Comparison to IQMD model calculations shows preference for soft EOS (SM).

Current analysis status of 'flow' of strange particles.

 First measurement of K⁻ - sideflow, first measurement of K⁺ - flow for semi peripheral reactions,

Results are in variance with theoretical expectations.

Systematic measurements (system size and incident energy dependence) and consistent analysis are needed to extract the underlying physics!

mb+f - Förderschwerpunkt adronen nd Kernphysik roßgeräte der physikalischen rundlagenforschung