The APPA Research Programm in HFHF Plans and Recent Results

APPA @ HFHF Forschungsakademie Hessen für FAIR

TECHNISCHE

UNIVERSITÄT DARMSTADT

Fachbereich Physik | Institut für Kernphysik | Prof. W. Nörtershäuser

From Fundamental to Applied Research

APPA White book: APPA at FAIR: From fundamentals to applied research NIM B 365, 680-685 (2015)

HFHF APPA Members

Prof. Dr. Stefan Schippers

Prof. Dr. Wilfried Nörtershäuser Prof. Dr. Joachim Jacoby

Prof. Dr. Gerhard Birkl

Prof. Dr. Marco Durante

PD. Dr. Olga Rosmej

Prof. Dr. Christina Trautmann

Prof. Or. Vinzent Baanoud

Prof. Dr. Yuri Litvinov

Periode 2021-2025: Focus on precision spectroscopy and ion manipulation techniques.

Content of the Scientific Program (2021-2025) HFHF FAR

Overarching Topics:

- Atomic processes in the strongest electromagnetic fields
- Precision spectroscopy of (multiply) excited atomic energy levels
- Experiments at the border between atomic and nuclear physics
- Ion Manipulation: Control of outer and inner degrees of freedom

All projects are related to GPAC proposals that have received Grade A or A-.

The Working Program: **Precision Physics and Ion Manipulation**

<u>Topic A: Precision Experiments</u>

DR and laser spectroscopy of Be-like ions Laser spectroscopy of H/Li-like ions Merging DR and Laser Spectroscopy Laser excitation of a nuclear transition Establish Reaction Microscope CRY-RIMS

Cooling: key for precision

Topic B: Ion Manipulation

External DoF:

- Laser acceleration
- Laser and electron cooling

Internal DoF:

Optical pumping and polarization

HFHF Research on Laser-Ion Acceleration

ARMSTAD

Many schemes have been proposed for accelerating light ions with lasers

Still, the scaling and even the single evidence of these remains experimentally challenging

We follow two lines of research:

- Understanding the underlying physics of laser-ion acceleration using time-resolved diagnostics
- Exploring application with the LIGHT beamline

Activities at the ESR

Dielectronic Recombination Assisted Laser Spectroscopy of ²⁰⁹**Bi**⁸⁰⁺ (W. Nörtershäuser, TU Darmstadt; Y. Litvinov, GSI; S. Schippers, Uni Gießen et al.)

Laser Spectroscopy of the Nuclear Transition in ²²⁹Th (C. Brandau, S. Schippers, Uni Gießen; W. Nörtershäuser, TU Darmstadt; Y. Litvinov, GSI et al.)

Laser Cooling of C³⁺, Laser Spectroscopy of Be-like Kr³²⁺ (D. Winters, GSI; Th. Walther, TU Darmstadt; G. Birkl, TU Darmstadt et al.)

Test of BS-QED in Highly Charged Ions

HFHF FAIR

APPA Test of BS-QED in the HFS of H-Like Heavy lons HFHF FAR

Theory: Trouble & Solution

nuclear contributions removed

Test of BS-QED in Highly Charged Ions

HFHF FAIR

Production of ²⁰⁹Bi^{80,82+}

In-situ high-voltage

History of $\Delta' E$ Measurements

Bi Isotopes of Interest

DR-Assisted Laser Spectroscopy

Lifetime Measurements of ²⁰⁹Bi^{80+,82+}

V. Hannen et al., J. Phys. B **52**, 085003 (2019)

- A laser on, repetition rate 30 Hz
- B 15 laser pulses
- C laser blocked
- undisturbed fluorescence decay observed

HFHF FAIR

Spectroscopy of ²²⁹Th: Motivation

Potential candidate for a nuclear clock

- Accuracy: less field-induced shifts than standard clocks
- ↑ Stability: Mößbauer solid-state nuclear clock could be operated with >10¹⁰ particles
- Sensitivity to variation of fundamental constants

© C. Düllmann, Uni Mainz

Spokesperson: C. Brandau, Uni Gießen

Laser Spectroscopy on ²²⁹Th

Advantages of spectroscopy on Th⁸⁹⁺:

- Transition wavelength in the vacuum UV (~140 nm) is Doppler-shifted into the UV region (~300 nm)
- Lifetime of the nuclear transition gets quenched by hyperfine induced mixing between the ground state and the isomeric state
 → transition strength comparable to ²⁰⁹Bi⁸⁰⁺

Challenges:

- small number of ions
- emission boosted into XUV
- large wavelength search range

Brandau, Schippers, Nörtershäuser, et al.

E135 Laser Spectroscopy of Be-like **Krypton**

\rightarrow electron correlations included

excitations up to 5g level considered and extrapolated to infinity

\rightarrow ~0.1 eV range can be covered by ESR cooler and laser systems

IC = intercombination line, E1 with Δ S=1

Technische Universität Darmstadt | Laser & Quantenoptik | Thomas Walther

Spokesperson: D. Winters, GSI

Blueprint and test bed: Laser Cooling of C³⁺ at ESR

Principle of laser cooling (bunched ion beam)

Phase-space Cooling of Relativistic Ion Beams (ESR & SIS100)

- Status: Successful laser cooling using cw laser (sharp δ–like frequency spike)
 - =>Electron pre-cooling required
 - Bunched beam
 - Limited by IBS

At SIS100 laser cooling is the only way for phase-space cooling

e.g. $2s \rightarrow 2p$ in Li-like ions

- Laser Cooling @ SIS100
- High brilliance ion beams
- High resolution spectroscopy
- Beam diagnostics (fluorescence)

- Cooling of "hot" ion beam (δp/p ≈10⁻³) w/o electron pre-cooling
- Stronger cooling force counteracts IBS
- laser cooling using two synchronized pulsed, high rep. rate, FT limited **UV laser systems**
- Combined laser: Laser 1: broad-band ("catches" all ions) Laser 2: narrow-band (cools to min. $\delta p/p$)

CW and Pulsed Laser Systems for FAIR

Tunable Pulsed

UV Laser Sources High rep rate. up to 10 MHz FT limited pulses Adjustable bandwidth Pulse duration 47 - 740 ps

> D. Kiefer et al., Laser Phys. Lett. **16** (2019) 075403

Tunable cw All-Solid state UV Laser Source

Narrow linewidth

HFHF FAIR

> 600 mW @ 257 nm

D. Kiefer et al., Opt. Lett. 16 (2020) 4488

HFHF FAIR

Precision collision-spectroscopy of highly charged ions in the CRYRING@ESR electron cooler (S. Schippers, Uni Gießen)

Reaction Microscope (R. Dörner, Uni Frankfurt)

Optical Pumping in a Storage Ring (R. Sanchez, GSI; W. Nörtershäuser, TU Darmstadt; Y. Litvinov, GSI)

DR provides:

- precise level and ionization energies, e.g. for tests of QED)
- access to hyperfine structure and charge radii

DR of Li-like ¹⁴²Nd⁵⁷⁺ Rate Coefficient a [10⁻⁹ cm³s⁻¹] 25 **DR-ESR** electron cooler **DR-CRYRING** electron cooler 20 C. Brandau et al., Phys. Scr. **T166**, 014022 (2015) 15 10 5 0 1.0 1.5 2.0 2.5 3.0

Local Team:

HFHF FAIR

Justus Liebig Universität Gießen | Atom und Molekülphysik | Stefan Schippers

Electron-Ion Collision Energy [eV]

Justus Liebig Universität Gießen | Atom und Molekülphysik | Stefan Schippers

CRY-RIMS: A COLTRIMS Reaction Microscope at CRYRING@ESR

Goethe Universität Frankfurt | Atomic Physics | Reinhard Dörner

First physics cases:

- Projectile double electronloss of helium like ions
- Comparison of ionizing collisions of stored ions with He and H_2 gas \Rightarrow role of projectile coherence.

A Reaction Microscope (REMI) for CRYRING@ESR

Goethe Universität Frankfurt | Atomic Physics | Reinhard Dörner

Goethe Universität Frankfurt | Atomic Physics | Reinhard Dörner

Spin-Polarized Ions in Storage Rings

During the last decade, considerable interest has been paid to experiments with spin-polarized ions at storage rings.

There are three questions to be solved:

- Production of polarized ion beams
- Detection of the polarization
- Preservation of the polarization

62.2 **– 2**p ¹P

62.0 -

61.8 •

61.6 •

61.4 -

61.2 -

61.0

60.8

60.6

60.4

60.2

60.0

59.8

59.6

59.4

59.2 ·

59.0 .

58.8 58.6 •

58.4 -

0.12 🖌

0.09 -

0.06 0.03 -

0.00

A=2.04x10⁻²H;

1s ¹S

Energy [eV]

¹S. 2s

⁷Li⁺ lons: Hyperfine Structure

 $2^{3}S_{1}: F = 5/2 \leftrightarrow 23P_{2}: F = 5/2 \leftrightarrow 2^{3}S_{1}: F = 3/2$

HFHF F(AIR

⁷Li⁺ Spectroscopy at the ESR: Setup and Result

 $\sigma^{+}(m_{\nu} = -1)$

Dark-State Population and Fluorescence Signal

-www- $F_3 = 5/2$ $F_2 = 5/2$ $F_1 = 3/2$ -5/2-3/2-1/2 +1/2+3/2 $+5/2 M_{F}$ $\sigma^+(m_{\nu} = +1)$ $\sigma^+(m_{\nu}=-1)$ (a) $\sigma^- - \sigma^+$ $F_3 = 5/2$ $F_2 = 5/2$ $F_1 = 3/2$ -3/2 -5/2 -1/2 +1/2+3/2 $+5/2 M_F$

 $\sigma^{-}(m_{\nu}=-1)$

Indicated is the level population for continuous excitation und the initial condition

$$\begin{split} N_{F_1M_{F_1}}(0) &\equiv N_{2^3S_1:F_1=3/2\,M_{F_1}}(0) = 1/10\\ N_{F_2M_{F_2}}(0) &\equiv N_{2^3S_1:F_2=5/2\,M_{F_2}}(0) = 1/10\\ N_{F_3M_{F_3}}(0) &\equiv N_{2^3P_2:F_2=5/2\,M_{F_3}}(0) = 0\,, \end{split}$$

 \rightarrow unpolarized beam !

Red dotted line indicates time-offlight to fluorescence detection region

In both cases, a full fluorescence signal should be obsevable at the detector, but this is not what we observed experimentally

Fluoresence at the detector position with **conserved sub-state population** after each round-trip

Effects of Depolarization and Impure Laser Polarization

Influence of **depolarization** δ : redistribution of M_F state population per round trip

The case $\sigma^- - \sigma^+$ is more robust to a "reshuffling" of the population. In contrast, even a small depolarization for the $\sigma^+ - \sigma^+$ case leads to a remarkable enhancement of the population of the excited state.

Influence of **impure laser polarization** *P_L*: Amount of linearly polarized light admixture

> Again, the case $\sigma^- - \sigma^+$ is more robust to small contributions of π -light, since both circularly-polarized parts pump the population quickly back to the dark state.

Conclusion

Signal disappearance can be conclusively explained by optical polarization of the ion beam, including the weak reminiscence of the signal in the $\sigma^+ - \sigma^+$ case.

But our model is very naïve! We neglected dynamics of polarized ions in the bending magnets! Further studies are needed!

 \rightarrow CRYRING@ESR

For detailled analysis, see

W. Nörtershäuser, A. Surzhykov, R. Sànchez et al.. Phys. Rev. Acc. Beams **24**, 024701 (2021).

APPA Laser Spectroscopy Setup at CRYRING@ESR HFHF FAR

Fluorescence Detection Region at CRYRING@ESR

- Multipurpose fluorescence detector system (200-800 nm) installed at CRYRING.
- Designed and built at AG Weinheimer (Institut f
 ür Kernphysik, WW-U M
 ünster) by Axel Bu
 ß, Volker Hannen et al.

Preparatory Work

ime

Optical detection and new DAQ serve as beam diagnostics

Optical pumping in ²⁴Mg⁺

Cooling of trapped highly charged ions at HITRAP (W. Nörtershäuser, TU Darmstadt; Frank Herfurth, Zoran Andelkovich, et al., GSI)

Laser Spectroscopy of ²⁰⁹Bi^{80+,82+} at HITRAP (G. Birkl, W. Nörtershäuser, TU Darmstadt)

First target system: hydrogen-like bismuth ²⁰⁹Bi⁸²⁺

HITRAP - Cooler Trap

	original trap	new trap
No. of electrodes	21	7
No. of connection	52	12
Connection system	wires in ceramic tubes	bundled cables
Potential differences	up to 18 kV	up to 8 kV
Insulator material	Sapphire	BIN77

Recently Achieved

Storage Time of Ar^{8+} ions of >100 s

APA Synchrotron Radiation Cooling of Electrons

Summary of recent achievements:

- New trap in operation
- Electrons stored and self-cooling demonstrated
- lons stored for sufficiently long times
- Simultaneous storage of electrons and ions achieved
- Cooling not yet observed

HFHF FAIR

Double-resonance spectroscopy of highly charged ions Goal: magnetic moments (g-factors) of bound electron

Technische Universität Darmstadt | ATOMS - PHOTONS - QUANTA | Gerhard Birkl

Apart from relativity, significant contributions to *g* come from QED and the nucleus

Test of QED in strong fields, higher-order Zeeman effects, Nuclear information in absence of shielding,...

Technische Universität Darmstadt | ATOMS - PHOTONS - QUANTA | Gerhard Birkl

Novel technique for high-precision spectroscopy:

Laser-microwave double-resonance spectroscopy for bound-electron g-factor measurements in hydrogen-like argon Ar¹³⁺ and bismuth ²⁰⁹Bi⁸²⁺

Technische Universität Darmstadt | ATOMS - PHOTONS - QUANTA | Gerhard Birkl

Thanks

Hessisches Ministerium ür Wissenschaft und Kunst

Bundesministerium für Bildung und Forschung

Helmholtz International Center

Deutsche DF Forschungsgemeinschaft to the LaserSpHERe Group especially Max Horst Phillip Imgram Jörg Krämer Konstantin Mohr Simon Rausch

HFHF

Vincent Bagnoud Gerhard Birkl Reinhard Dörner, Stefan Schippers, **Thomas Walther**

Helmholtz Forschungsakademie Hessen für FAIR

<u>GSI</u> Zoran Andelkovic Carsten Brandau (JLUG) Frank Herfurth Yuri Litvinov **Rodolfo Sanchez** Markus Steck **Thomas Stöhlker Danyal Winters**

Theory on Optical Pumping Andrey Surzhykov

WWU Münster Axel Buß Volker Hannen, Christian Weinheimer

+ all other collaborators on the various projects