

Darmstadt, Mar. 5-9 2012

Update to day-one experiment

Huagen Xu

LuMo @ IKP: J. Ritman, T. Stockmanns, Q. Hu and T. Randriamalala

2012/3/6

Sketch of day-one experiment

Recoil arm

- 2 Si : 7.68cm x 5cm x 1mm (64ch, 1.2 mm pitch)
- 2 Ge: 8.04cm x 5cm x 4 &10mm (67ch,1.2mm pitch)₃

Goal of day-one experiment at HESR

Time schedule

- Submitting the commissioning proposal to COSY PAC in March
- Finishing the experiment preparation by the end of 2012

	Schedule	fo	r Co	omr	nis	sio	nin	g of	f da	iy-1	ex	per	ime	ent											
							20	12						2013											
Part	Resource	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
Target	Muenster																								
0. General and Specifications																									
1. Effort estimation to change the target																									
2. Replace the skimmer																									
Test the target after change																									
Move the target into COSY																									
Tuning with detector setup																									
6. Beam time phase																									
																				1					
Detector																									
Si (Micron)																									
1. Delivery to Juelich	Micron																								
2. Design of readout PCB	HG																								
Production of readout PCB	HG																								
4. Wire bonding	Semikon?																								
5. Sensor Test	HG																								
Integration in det chamber	HG																								
7. Test/Calibration	HG																								
8. Installation at COSY	COSY/HG																								
9. Beam time	HG/COSY																								
Ge (Semikon/Umicore)																									
1. Sensor Test	HG																								
Integration in det chamber	HG																								

Status of recoil arm construction

Part 1: Detector

- Ge detectors are ready and received
- Si detectors are received and waiting for assembly

Part 2: FEE

• Received including preamp, shaping amp, ADCs etc.

Part 3: DAQ and Test system

A test chamber with cooling(LN2) is being built

Part 4: Cluster target

- Using existing cluster target at ANKE location has been evaluated
- Maximum opening angle (i.e. recoil angle) is limited by 13.6 degrees

Part 5: Vacuum chamber

- Drawings of detector vacuum chamber is close to finish.
- Details on cooling plate and feedthrough layout is being discussed

Part 6: Cooling/Accessories

- HV is ordered (Iseg)
- Pumping for filling LN2 and Dewar are getting ordered

Part 1: Detectors

Both 5mm & 11mm thick Ge detectors have been fabricated and tested by Semikon

The two 1-mm-thick Silicon detectors are ready for assembly 1) Order for detector holder was made 2) Assembly and wire bonding 3) Detector test

Part 2: FEE solution

Mesytec:

MPR16: 16ch with variable gainMPR1: for rear sideMSCF16: 16ch with LEDMADC32: peak sensing ADC, input range and bit resolution selectable

Received: pcs 1. MPR-1 5 2. MSCF-16 11 3. MADC-32 6 4. MPR-16 5 of 11 5. Cabling package 5 of 11

-- Ortec 1000um, 50mm² silicon -- MADC32 (13bit, 8V)

Reference: Single channel Ortec electronics

- Ortec 142AH preamplifier
- Ortec 472A shaping amplifier
- 20cm cabling

- MPR16, preamplifier
- MSCF, shaper
- 20 cm cabling

Effect of cabling length

- MPR16, preamplifier
- MSCF, shaper
- 60 cm cabling

- MPR16, preamplifier
- MSCF, shaper
- 120 cm cabling

Part 3 : DAQ and test system

DAQ hardware:

- VME crate
- 6 MADC32 + 1 CAEN V785

DAQ software:

- Basic data taking function implemented
- IRQ mode is still missing

Test chamber with cooling:

- Chamber is available
- Old Dewar seems to be OK
- Cooling relevant parts are under design

Part 4: Evaluation of existing cluster target

recoil angle up to ~13.6° confirmed

What to be checked

- Target performance
- Maximum recoil angle
- Available space

Accepted by ANKE collaboration

Part 5: Vacuum chamber

- Mechanical design is nearly finished
- Cooling details and feedthrough layout to be fixed

CF16 SHV

CF63/40 with Sub D type

Part 6: Cooling and Accessories

Cooling for test chamber

- LN2 option
- To be ordered: Pump for filling

Cooling for Experiment

- if LN2 option, to order large volume Dewar (e.g. 20L)
- if Coldhead option, to order Coldhead

Temperature monitor & HV safety loop

- Temperature monitor module
- Safety loop for over-temperature protection

Working principle

Norhof

Temperature Monitor & safety loop

Offers:

- MA901 from RKC
- IMAGO 500 from JUMO
- 218S from Lake Shore

Relay changes the status of HV.

HV module:

- 8ch with 4ch 500V & 4ch 2000V
- High precision, e.g. 100pA
- Safety loop protection, i.e. 5-20mA Crate:
 - Mini Mpod (4 slots)
 - Versatile accessing interfaces

What to be done

Part 1: Detector

• Assembly of Silicon detector and test

Part 2: FEE

• Functional check of modules

Part 3: DAQ & test system

- Codes for online display/offline analysis
- Building test chamber with cooling

Part 4: Cluster jet target

- Double check for target performance
- Schedule confirmation

Part 5: Vacuum chamber

Fix the drawings and transfer to workshop asap

Part 6: Cooling/Accessories

- Cooling option evaluation
- Orders for missing components
- Implementation of safety loop for over-temperature case

Thanks for your attention!

Performance evaluation with pure elastic events

Parameters correlation

Parameters determination

$$\frac{d\sigma_n}{dt} = Ae^{bt}$$

for $|t| < 0.8 \text{ GeV}^2$, moderate energies (5-30GeV)

Luminosity independent analysis is feasible!

How large t-range?

Expected t range : 0.0008 – 0.1 GeV²

