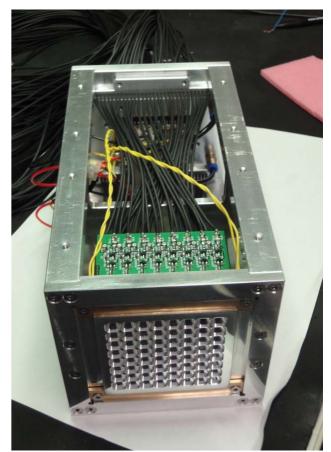
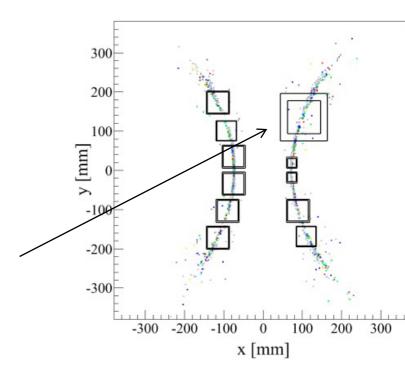


Status of the CERN test beam data analysis for the SiPM prototype

Study of Strongly Interacting Matter


T9 test beam at CERN


- Setup
 - Photo sensors are attached to an expansion volume (oil tank)
 - Our prototype sitting on the right upper corner

• SiPM prototype

- 8 x 8 SiPM array (5.6 x 5.6 cm² detection area)
- 64 Hamamatsu MPPCs (3 x 3 mm², 100 x 100 µm² pixel size)
- 4 preamplifier boards with 16 preamplifiers each
- Water- and Peltier cooling
- Light concentrator on top of the sensors

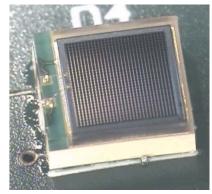
Table 1. Main parameters of the light concentrator.				
Parameter	Design value			
Dimensions (L x W x H)	$65 \text{ mm} \times 65 \text{ mm} \times 4.5 \text{ mm}$			
Detection area	$56 \text{ mm} \times 56 \text{ mm}$			
Number of cells (funnels)	64			
Funnel entrance aperture	$7 \times 7 \text{ mm}^2$			
Funnel exit aperture	$3 \times 3 \text{ mm}^2$			
Funnel height	4.5 mm			
Fill factor (incuding rim)	69 %			
Fill factor	93 %			
Basic material	Brass			
Coating	Aluminum, Chromium			

Lukas Gruber

PANDA PID meeting 06.03.2012

SiPMs for DIRC

		PMT	MCP-PMT	SiPM
PDE	Blue	20%	20%	50%
	Green - Yellow	40%	40%	40%
	Red	≤ 6%	6%	30%
Time	precision	100 ps	≤ 100 ps	130 ps
Gain		10 ⁶	10 ⁶	10 ⁵ - 10 ⁶
Threshold sensitivity		1 p.e.	1 p.e.	1 p.e.
Dark	count rate	Hz - kHz	Hz/cm²	MHz/cm ²
Operation in magnetic fields		< 10 ⁻³ T	< 2 T	Yes
Operation voltage		1 kV	3 kV	< 100 V

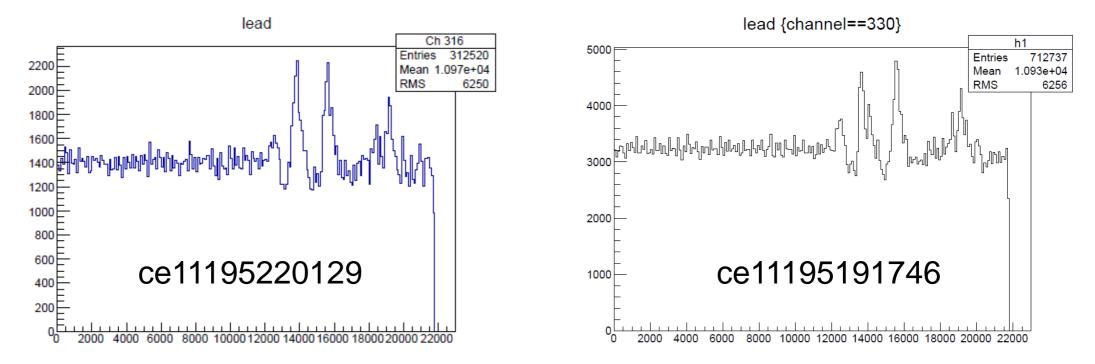

• Facts

- SiPMs have many advantages
- The main drawbacks of SiPMs are the small active area and the high dark count rate of several MHz at room temperature (for 3 x 3 mm² MPPCs)
 - \rightarrow challenge for single photon application like DIRC
- However, cooling and precise time information helps to reduce the dark count rate dramatically

MPPC S10931-100P

• Our approach for the test beam

- Since we had a combined setup (MCPs and SiPM) we had to find a compromise for the operating parameters (temperature, threshold)
- We cooled the detectors to ~10-15 °C and used nitrogen to avoid condensation inside the box
- Light concentrator on top
 - \rightarrow increased detection area
 - \rightarrow increased signal to noise (dark counts) ratio
- Rather low operating voltage to minimize dark count rate
- Eventuelly use timing from other detectors/simulation to improve S/N
- Since the prototype was assembled only a few days before the tests, we didn't have time for extensive tests in the lab and therefore our first goal is to see a Cherenkov signal/ring in the large background

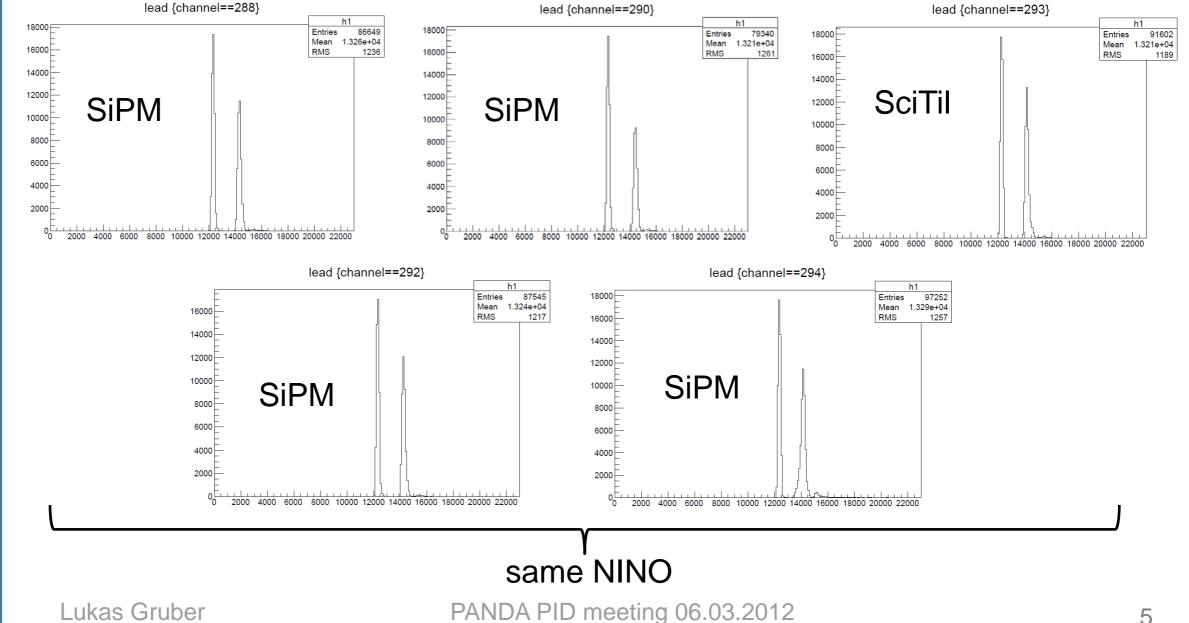


Data analysis results

• Timing histograms

- When looking at specific runs we see peaks in the timing histograms
- Timing seems to be more or less correct (compared to MCPs)
- Why do we see two or more peaks?

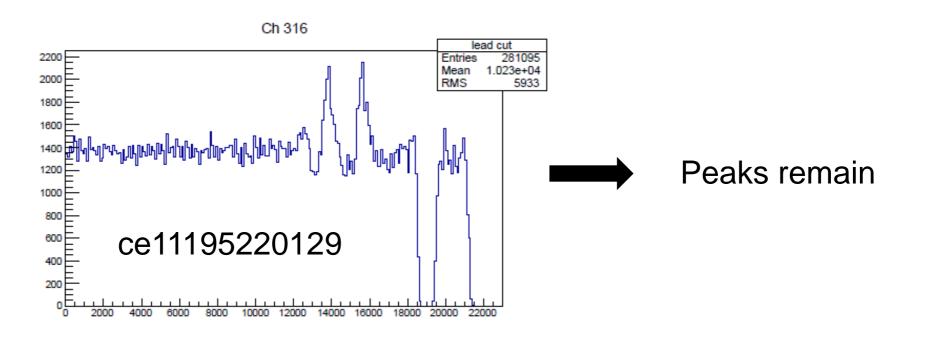
- Peaks could be real
- Peaks could be crosstalk (from channels on same NINO, TDC, TRB)
- Peaks could be some noise (electronics noise, we saw noise from preamp)


Stefan Meyer Institute

Crosstalk check

Crosstalk within NINO chip

- There is crosstalk within a NINO
- Looking at run ce11195120115: our preamp off, SciTils connected to TRB2
- We see SciTil signal although our voltage is off


Stefan Meyer Institute

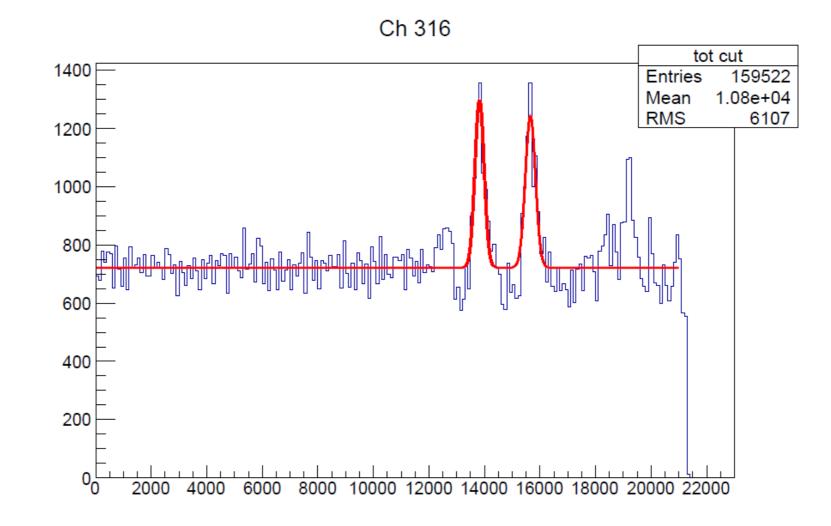
Crosstalk check

Crosstalk within NINO chip

- Since we shared TRB2 with MCPs, our peaks could be crosstalk
- This could be checked by applying a cut saying: Only one hit per NINO per event, or only one hit per NINO per event within a specified time window

Crosstalk within TDC/TRB

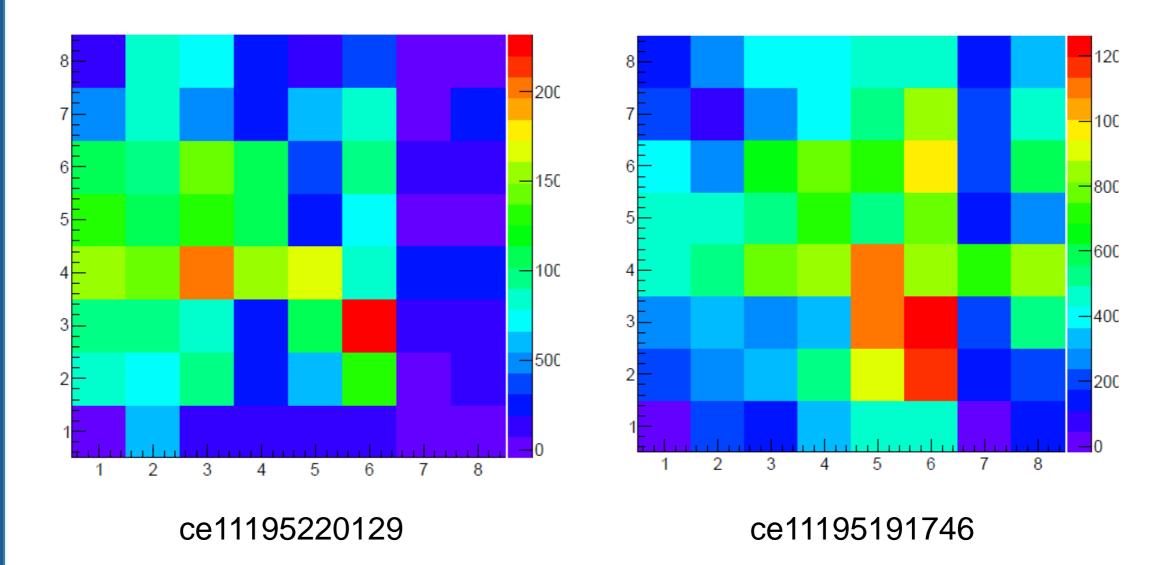
 Rather unlikely, since we don't see crosstalk from SciTils on neighbouring NINOs



Data analysis results

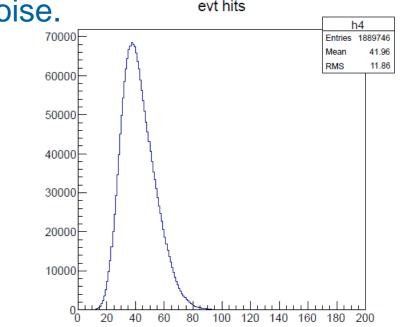
Occupancy plots

- Try to produce occupancy pattern of the detector to see if the peaks are real
- Subtracting continuous background coming from dark counts



Lukas Gruber

Occupancy plots


- We might see a ring, but
- Still not 100% sure

Stefan Meyer Institute

Summary

- Our first goal is to see the Cherenkov light within the large background coming from dark counts, crosstalk, electronics noise.
- This is challenging since we expect on average only a few (2-3) photons per event (0.2-0.3 per event on our detector), while we have 40-50 background hits per event on our detector.

- There's a clear evidence for crosstalk within a NINO chip. This problem is understood and should be worked out. The peaks we see still remain after applying a cut.
- The noise situation was unfortunately rather bad and we couldn't solve it completely during the beam time.
- We might see a Cherenkov ring on the detector, but we still cannot be a 100% sure since there are several open issues, namely
 - Why are there two or more peaks?
 - Unknown crosstalk

PANDA PID meeting 06.03.2012

Outlook

Data analysis

- The signal we see is a sum of "real" signals and background. The background dominates and comes from dark counts, crosstalk and electronics noise. We need to understand the single contributions and get a better feeling how much they contribute to answer open questions.
- A precise prediction of the photon arrival time for each pixel (simulation by Roland, Carsten) could help to increase the signal to noise ratio and see a clear ring.
- We still have the data we took with our waveform digitizer that are not yet analysed.

• Things to improve (for future measurements)

- We have to further reduce the dark count rate (go to lower temperature).
- Stable operating conditions (temperature, operating voltage) must be established. A system that controls and regulates the bias voltages would help. Cooling is crucial. A stable cooling system is mandatory. We had problems with our water pump during beam time which led to failures of the cooling system.
- Noise from electronics has to be reduced to a minimum and should be smaller than the 1 p.e. signal of 2-3 mV (proper grounding and shielding).

