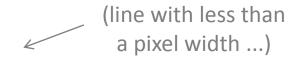
PANDA Software Trigger

K. Götzen

March 5, 2012

Why Software Trigger at all?


- Many benchmark channels (no ,golden' channel)
- Channels consist purely/predominantly of hadrons
- Signal and background events look quite similar in terms of
 - Multiplicity tracks/neutrals
 - kinematic distributions
 - event shape, ...
- Many, many, many more background events (×10⁶)
- No ,simple' hardware trigger can cope with that situation
- Need sophisticated algorithms with high selectivity
- Only possible with online reco + a lot computing power

Challenge

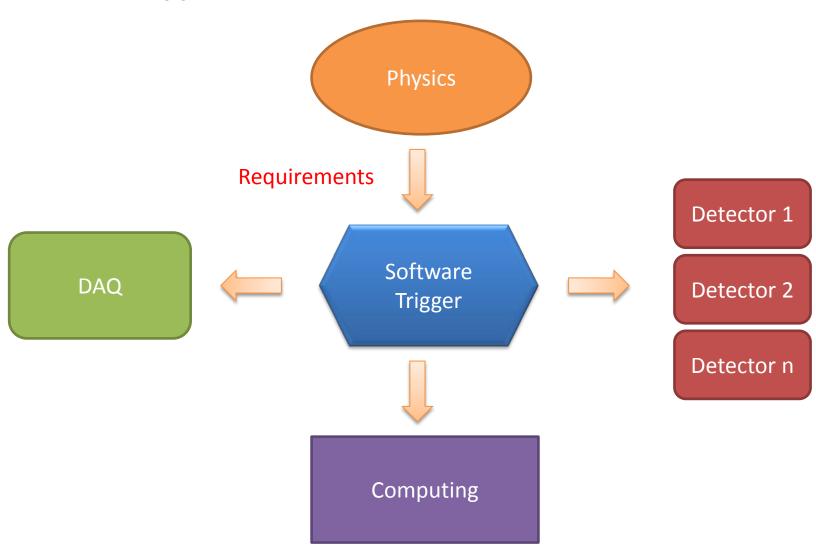
Events/Data acquired by DAQ (temporarily buffered)

Software Trigger Algorithms

"Trickle" of events stored on disc

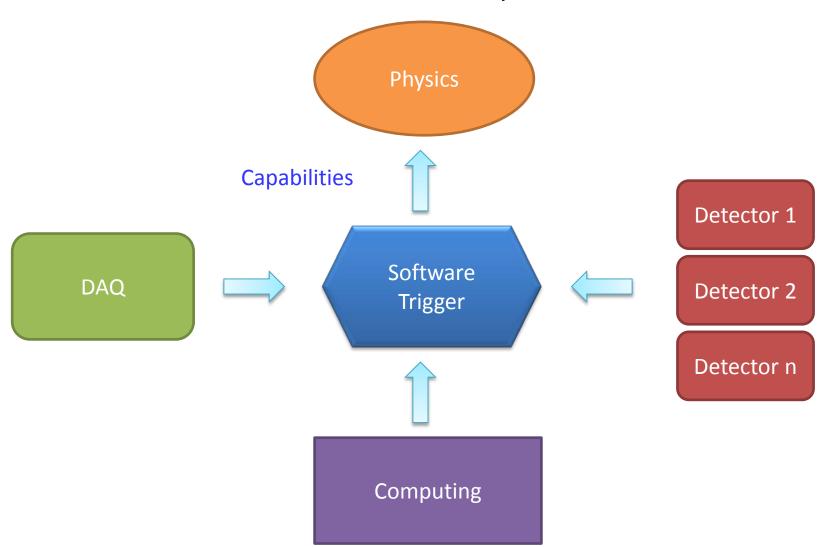
- Required reduction factor: 1/1000 (all triggers in total)
- e.g. 50 algorithms → factor 1/50000 in average

Goals


- Identify tiny fraction of interesting physics events
- Reject major part of uninteresting background events
- Reduce the stored data rate to 1/1000 of the initial one

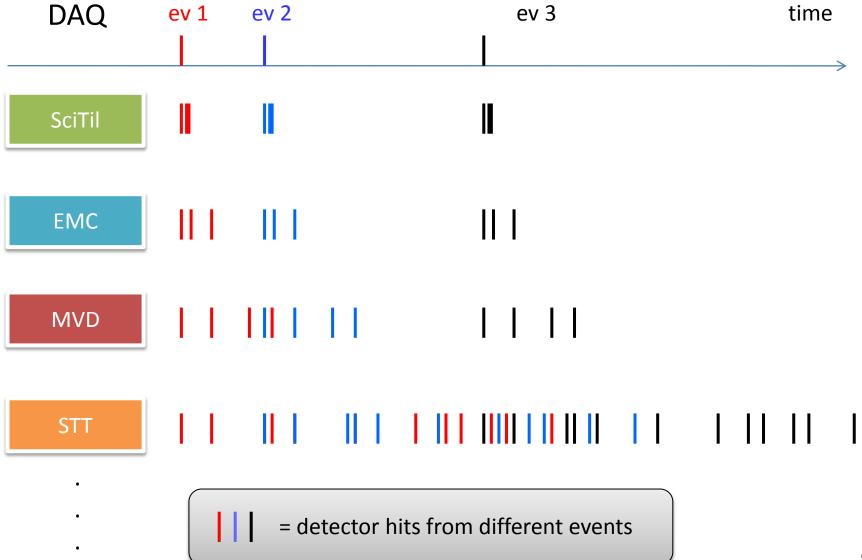
Steps

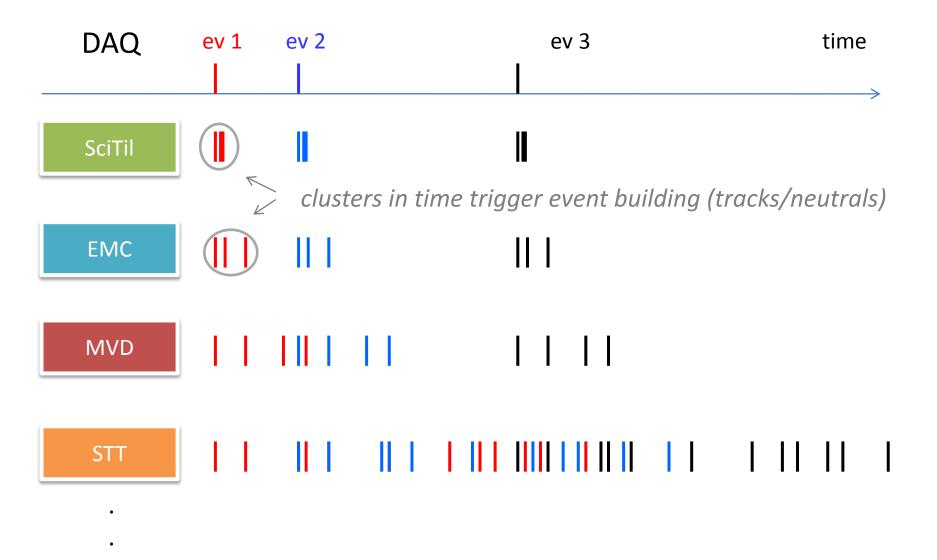
- Define the physics requirements (min. efficiency, S/N, etc..)
- Identify the criteria to separate signal from background
- Determine minimum quality of online quantities (p, E, PID, ...)
- Define selection algorithms for various physics channels
- Port algorithms to appropriate hardware (FPGA, GPU,...)
- Test the hardware performance under realistic conditions

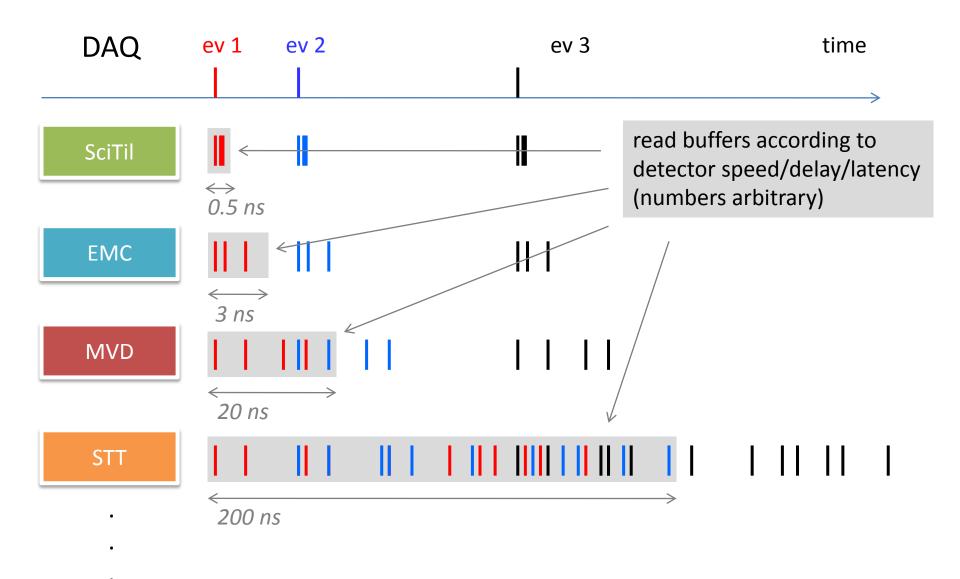

Positioning of ST Project

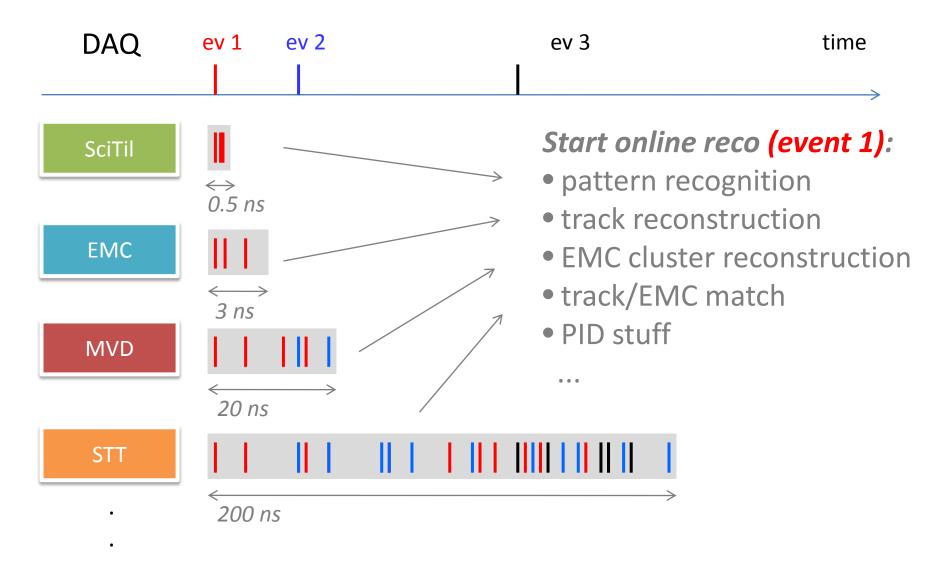
Software Trigger mediates between physics requirements...

Positioning of ST Projekt


... and available hardware/software capabilities




Positioning of ST Project


The two directions are:

- "Top down"
 - Analysis experts tell, what it required to study all channels
 - Online experts provide the required information
- "Bottom up "
 - Online experts tell, what can be reconstructed in time
 - Analysis experts determine resulting limitations to the planned physics program
- Will be a mixture of both to converge...

Approach

- Information for the trigger can be
 - direct hit information (perhaps SciTil hits, EMC hits)
 - higher reconstructed information (tracks, clusters, inv. mass, angles, ...)
- Two (not complementary!) scenarios:
 - Inclusive trigger before event building
 - e.g. 2 electron cand. (J/psi)
 - → start event building on selected buffered data
 - Exclusive trigger with reco'd events
 - reconstruct every event (candidate)
 - run event based trigger algorithm

Physics Report

Selection criteria used in the Physics Report Analyses

Channel	TRK	NEUT	Excl.	mult	PID	р	Е	ang.	inv M	dist cut	veto	4C	Vtx C	Mass C	Sig Eff[%]
J/psi pi+ pi-	4	0	Х		e, pi				Х				J/psi pi+ pi-		30
J/psi pi0 pi0	2	4	х		е		g		х		J/psi eta pi0	Х	J/psi		17
chi_c1,2 gam	2	2	Х		е		g		х			Х	J/psi		30
J/psi gam	2	1	Х		e				х			Х	J/psi		40
J/psi eta	2	2	Х		e				х			Х	J/psi		40
h_c -> 3gam	0	3	Х	3n			g	h_c	х			Х			8
h_c -> 2phi gam	4	1	Х		K		g		х		pi0	X			8
D+ D-	6	0	Х		?	D			х	z(D)		Х	D+-		8
D*+ D*-	6	0	Х		?	D*			х	z(D*)		Х	D0	D0	14
eta_c1 eta	2	7	Х		е				х			X		chi, pi0, eta	7
eta_c1 eta	4	8	х		K, pi				х		>1 comb/ev	x	K pi	D0, D0*, eta, pi0	5
J/psi omega	4	2	х		e, pi				х			Х	J/psi pi+pi-	J/psi, pi0	15
f2(2230) -> 2phi	4	0	х		K				х			Х	phi		20
Ds Ds(2317)	3	0			K, pi			K	х				Ds, phi		20
Xi- Xi+ pi0	6	2	Х		p, pi		g		х	d(IP-Xi)	>1 comb/ev	Х	Lam,Xi+-	Xi Xi pi0	16
Lam <u>Lam</u>	6	0	Х		p, pi				Х	d(IP-Xi)			Lam		11 23
Xi- Xi+	6	0	Х		p, pi				Х				Lam, Lam pi		19

no multiplicity cuts

few kinematic cuts (except mass)

a lot of fitting!

Ingredients for Algorithms

Studying the *Physics Book* (offline scenario) gives idea about necessary information, e.g.

- J/psi (→ base for many charmonia)
 - Invariant Mass: Tracking/Momentum
 - Electron ID: Tracking, cluster energy, track/cluster match
 - Muon ID: Tracking, Muon detector information
 - Vertex: Tracking
- D/Ds Mesons
 - Pi0s: EMC clusters
 - Inv. Mass: Tracking
 - Kaon, Pion ID: dE/dx, DIRC info (w/ track match), ToF (track match)
 - Vertex: Tracking
- Baryons
 - Inv. Mass: Tracking
 - proton, pion ID: DIRC info (w/ track match)
 - Vertex: Tracking
- Full events: 4C fitting

Track and momentum reconstruction is key ingredient for almost everything!

Some comments to Physics Book results

- Some of the benchmark channels reported in Physics Book seemed to be at the limit concerning
 - signal/noise ratio
 - signal statistics (due to low cross section and/or limited integrated luminosity/beam time)
- For proper efficiency determination
 - trigger efficiency
 - event building efficiency
 have to be taken into account

which might make the situation even more challenging...

Quality of Online Reco

- How different will be algorithms for online/offline reco?
- How will the reconstruction quality differ?
- Assumption: Online quality will be worse, i.e.
 - worse track finding/reco. efficiency
 - worse momentum resolution (→ inv. mass resolution)
 - worse EMC energy resolution (→ mass res. of pi0, eta, ...)
 - less precise PID information (→ worse PID efficiency)
 - no fitting (4C, vertex, mass) available

To be investigated

- Which information are mandatory for full physics program?
- What is required precision for
 - momentum resolution
 - energy resolution
 - track finding efficiency (maybe momentum dependent)
 - event building efficiency
 - PID information

to achieve the required trigger efficiencies & purities?

To Do

- Implementation of time based simulation, pattern recognition and reconstruction for all detectors
- Determination of selectivity of various selection criteria (full MC)
- Resolution/efficiency dependence of trigger algo's (perhaps sufficient with toy MC)
- Event building efficiency as function of event rate
 (+ impact of possible event bursts from pellet target)