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How to stabilize beam coherent modes without a loss of the brightness?  

Feedbacks, nonlinearities, impedance reduction do this.  

Any of them has its limit, cost and drawback though.    

  

I will show you two examples when this problem can be solved without 

any use of these three.   

 

1. Longitudinal loss of Landau damping and its prevention for small 

emittance 

 

2. Space charge suppression for a circular optics 
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     Longitudinal loss of Landau damping  

     and its prevention for small emittances 

 



Loss of Landau Damping (LLD): Observations  

  

  

 Tevatron, C. Y. Tan & A. Burov 
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LLD thresholds, inductance above transition, m=n=1 
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LLD thresholds, Tevatron 

• protons,  injection 

 

• protons,  top energy 
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LLD for partial water-bag distribution (PWB) 
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Thus, even a relatively small water-bagging increases the threshold 20 times!  



How to make PWB  
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How to make PWB  
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Let the RF phase be modulated near the synchrotron frequency.  

Then, equation of motion is:  
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Distribution function is changed: 
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Tevatron: before and after RF shaking 
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Tevatron  2011 



Issues and plans 

• This scheme is sensitive to the detuning from the maximal incoherent 

synchrotron frequency. Accuracy of the detuning should be at the level of 

~1% or so.  

 

• Calculated optimal detuning may differ from the actual due to the wake-

caused potential well distortion and beam loading.  

 

• As a consequence, different bunches result with somewhat different PWB 

step width.  

 

• To see importance of these and may be some other issues, MD studies 

(similar to Tevatron) are needed.  

 

• Analysis of the beam tomography at SPS and LHC and comparing 

observed LLD thresholds with the calculated. Checking the impedance 

model of the machines (Theodoros Argyropoulos). 
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     Space charge suppression with circular optics 

 



Space charge suppression for smaller emittance 

• Conventional space charge tune shift: 
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Space charge tune shift leads to lifetime reduction and loss of Landau damping  

for transverse degrees of freedom.  

It appears that it can be reduced only by means of the proper reduction of the beam 

brightness. However, this statement is not correct!   

B - bunching factor 



Circular modes 

• The space charge is determined by the beam sizes      , and for 

conventional optical modes the sizes are determined by the 2 

emittances       .  

 

• However, the family of the optical modes is much wider, than 

conventional x/y modes… For instance, circular modes are very 

different: 
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General Solution 

• Turn-by-turn particle positions and angles: 

 

 

 

 

 

 

 

• Transformation              is canonical,   
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Circular eigenvectors 

• With  lx=ly=,    alx=aly=a,    u =1/2,   and  1,2=π/2: 

 

 

 

 

 

• In a matched solenoid one of modes is a Larmor motion with center 

at the solenoid axis, and another one is a pure offset, x, y = const. 
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Planar-Circular mode transformation  
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Space charge suppression 

• For a conventional uncoupled planar modes, the SC tune shifts: 

 

 

 

• For                  , smooth approximation and equal betas: 

 

 

• The same approximation for the circular optics yields 

 

 

 

• For the circular optics, the tune shifts are finite even for               ! 

 

   

19 

,0
1,2 1,2 1,2 1,23 2

0 0 1,2 1 2

;
2 ( )

x ydsr
Q a

a a a


 

 
   



1 2 

0 1
2 1planar planar3 2

20 0 1 2

.
2

r C
Q Q

 

   
    

0
2 1 3 2circular circular

0 0 12

r C
Q Q



  
   

2 0 

2circular

2 1planar

1
Q

Q












Flat beams at LHC? 

• These “ε-flat” beams may have minor emittance as small as the 

linac has. The major emittance is filled with a multi-turn injection.     

 

• Circular (elliptical) optics in the Booster and PS would remove the 

space charge limits for the injector chain. At the SPS the modes 

could be conventional planar ones.  

 

• At the LHC, the luminosity gain for the flat beams 
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Many thanks for everyone of you! 


