# Effect of the proton layer thickness in the TNSA (1D)



Zsolt Lécz, Oliver Boine-Frankenheim, Vladimir Kornilov, Thomas Weiland

#### GSI Retreat, 10-11. Mai 2012 Hotel Haus Schönblick

#### A contribution to the LIGHT project.





#### Motivation



- The Target Normal Sheath Acceleration after 10 years of research is still not fully understood !
- This is the most relevant mechanism for the <u>PHELIX</u> laser facility at GSI, Darmstadt
- Open questions:
  - Which model can be used to interpret the experimental results?

P. Mora, Phys Rev E **72**, 056401 (2005)

M. Passoni and M. Lontano, Phys Rev Lett 101, 115001 (2008)

- What is the distribution (density, temperature) of the comoving neutralizing electrons?



#### **TNSA** from a double-layer target





- $n_h$  hot electron density
- $n_p$  proton density
- $\lambda_{DC}$  cold electron Debye-length
- $\lambda_{Dh}$  hot electron Debye-length
- d layer thickness

 $n_p > n_h, \ \lambda_{Dh} > \lambda_{DC}$ 

Always !





#### Simulation setup



#### Vorpal 5.2, TechX corporation 0.30 0.25 **Temperature** 10\*n<sub>h</sub>/n₀ , T<sub>h</sub>(MeV) Fully relativistic EM PIC plasma 0.20 simulation code. Density 0.15 0.10 Laser interacting with a plasma slab 0.05 It's difficult to define the electron parameters! 0.00 80 0 20 40 60 100 120 140 time (fs) Simplification (first step):

- Plasma expansion starting with an equilibrium electron distribution.
- Only hot electrons with well-known density and temperature are included!
- 1D electrostatic solver

#### Easier to model and understand the basic physics!



#### **Initial conditions**







#### Adding a proton layer



**UNIVERSITÄT** DARMSTADT





#### Quasi-static acceleration vs. Isothermal expansion







#### Effect of the layer thickness





Smooth transition between the two models!



#### **Intermediate regime UNIVERSITÄT** DARMSTADT $d \approx \lambda_r$ 1.00 1.0 1 **Electrons** 0 0.8 -1 0.6 E/E <sub>ຼ</sub> [ 0.10 **Protons** 0.4 -3 0.2 0.0 🕁 Trapped electrons! 5 0.01 -10 0 10 20 30 40 50 -10 0 10 20 30 40 $\chi/\lambda_{D}$ $\chi/\lambda_{\rm D}$

Expansion of a flying non-neutral plasma.

The proton bunch modifies the potential...



**TECHNISCHE** 

## Deformed potential profile





Simulation !



#### **Analytical model**





Expression for the potential:  $\frac{e\varphi(x)}{T_e} = -1 - 2\ln\left(1 + \frac{x}{\lambda_D\sqrt{2e_N}}\right) + \sigma^2 \exp\left(-\frac{(x_p - x)}{2\sigma^2}\right) \frac{n_p}{n_h}$ 

The electrons are trapped if :  $\Delta \varphi \approx \varphi(x_t - 2\sigma) - \varphi(x_t) = E_b$ 





#### **Numerical solution**







#### **Numerical solution**







#### Potential barrier (-drop)





11. Mai 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Zsolt Lécz | 14





#### **Two-temperature plasma**







#### **Final electron spectrum**





Electrons with higher energy than the potential-drop contribute to the acceleration.



#### **Energy transfer**

Final proton energy over the initial total energy of electrons.







#### **Proton energy spectrum**



1.2 10<sup>19</sup> 6 D = 0.015 1.0 0.2 10<sup>18</sup> 0.8 dN/dE (a. u.) 10 <del>ن</del> 2 کہ 3 0.6 10<sup>17</sup> Neutrality 2 Front velocity 0.2 1 **RMS** velocity 10<sup>16</sup> 0.0 0 0.01 0.10 1.00 10.00 12 14 10 2 6 O 4 8 E/T D **Full line 1**T Smooth transition between the two Dashed line – 2T

models: quasi-static acceleration and isothermal expansion



#### **Electron cooling**





The electrons are co-moving and cold ! The scaling low valid in 2D as well !



### 2D results, density



**Thick layer** 

#### Mono-layer





#### 2D results, electric field







#### **Conclusions, outlook**



- The simulations show good agreement with the analytical models in the extreme cases : D<<1, D>>1
- An analytical fit could be found to explain the energy conversion from electrons to protons
- There is no exact border between the two models

#### Outlook

Test the energy conversion model with 1D laser-plasma interaction simulations

- $\succ$  Perform the same parameter-scan in 2D
- Study the effect of layer thickness on the divergence





# Thank you for your attention!



