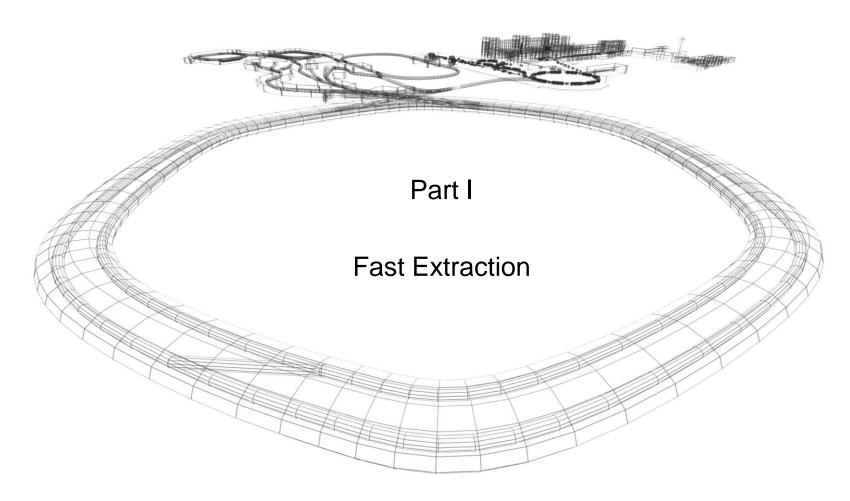
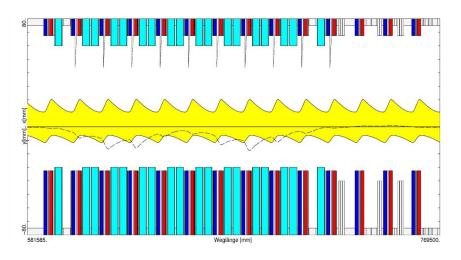
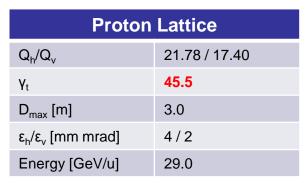


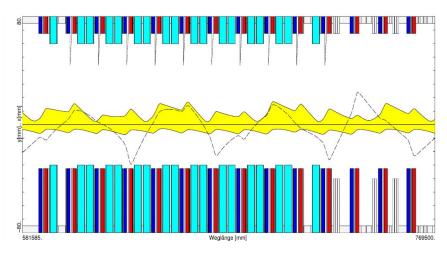
Outline



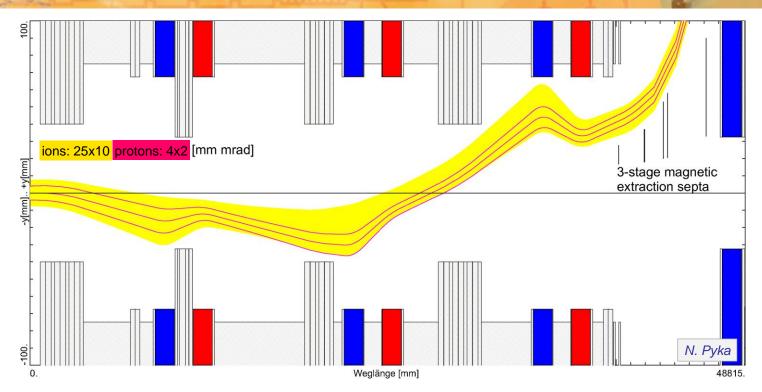
- Fast Extraction
 - lons
 - Protons
- Slow Extraction
 - Summary of status
 - Design review
 - Proposed changes
 - Simulation results
- Summary/Outlook




Lattice Comparison

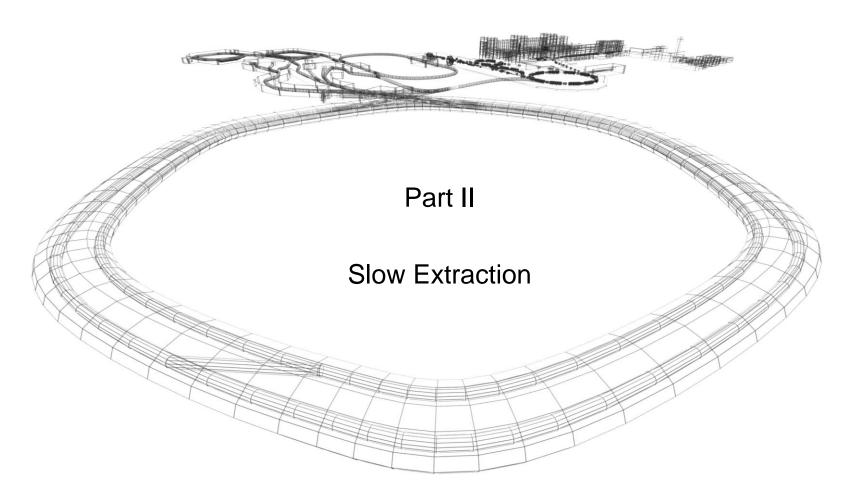


Ion Lattice			
Q_h/Q_v	18.88 / 18.80		
Yt	15.4		
D _{max} [m]	1.8		
ϵ_h/ϵ_v [mm mrad]	25 / 10		
Energy [GeV/u]	0.4 - 2.7		

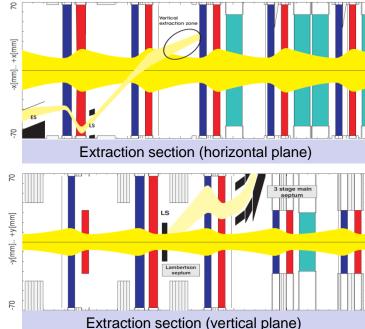

- Symmetry broken to shift γ_t (6 x DF₁, 8 x DF₂)
- Vertical plane only weakly affected

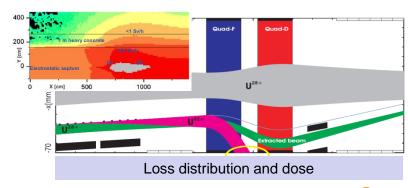
Fast Extraction of Ions and Protons

Fast extraction works for both ion and proton lattice


- Beam of twice design emittance can be extracted
- Identical settings for kicker magnets
- No further changes to fast extraction layout

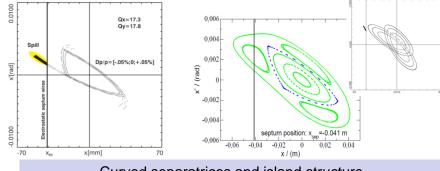
For technical details of the extraction system, see talk U. Blell

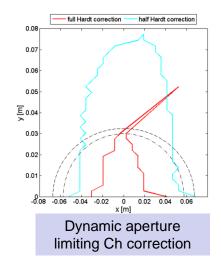


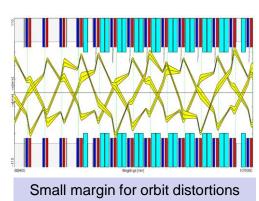

Summary of Status

Status presented to MAC (Pyka, 11.02.2010):

- Creation of 3rd order resonance 3Q_h=52 by 11 resonance sextupoles
- Correction of horizontal chromaticity by 48 chromaticity sextupoles
- RF Knockout Extraction
- Extraction devices
 - 2-stage electrostatic septum (hor.)
 - Lambertson magn. septum (vert.)
 - 3-stage magnetic septum (vert.)
- Systematic field errors can be compensated
- Machine protection issues due to beam loss
 - Protection of septum wires from heat load requires control of extraction rate and spiral step (> 8mm)
 - Installation of radiation hard warm quadrupoles behind the septum due to stripped ion losses
 - Additional shielding to protect equipment from radiation levels up to 100 Sv/h

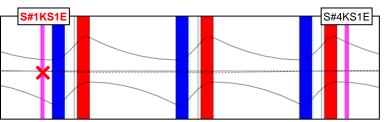


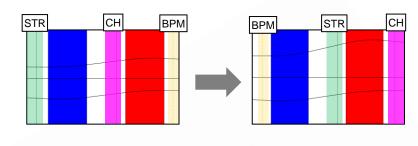

Design Review of Slow Extraction


- Design review performed with the aim of optimizing the robustness of slow extraction
 - Geometry of extraction system well established
 - · Non-linear dynamics in the strong sextupole fields challenging for controlling slow extraction
- Optimization goals
 - Decoupling of planes for hor, chromaticity sextupoles
 - Relaxation of constraints on chromaticity correction by dynamic aperture
 - Linearization of separatrices to gain freedom in adjusting size and angle
 - Increase of tolerance against closed orbit distortions

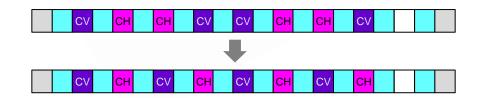
- Goals can be achieved
 - · Changes to lattice required
 - · Changes to settings required

Curved separatrices and island structure

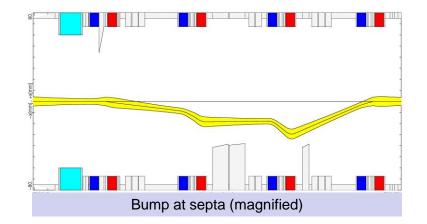


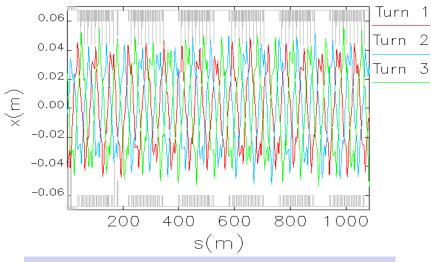


Proposed Lattice Changes



- Elimination of 5 resonance sextupoles
 - · Goal: Space and cost saving
 - Reasoning:
 - Located at position with small ratio β_x/β_v
 - Not necessary even for TDR
 - · Implications: None
- Relocation of CH sextupoles
 - · Goal: Better separation of planes
 - Reasoning:
 - Place at position with maximum possible β_x/β_y
 - · Implications: Change of element order in cryo module
 - Move steerer between D and F quad
 - Move BPM in front of D quad
 - Slightly higher beam loss on BPM (ok)
- Rearrangement of chromaticity sextupoles
 - Goal: More favorable phase advances
 - · Reasoning:
 - Minimize higher order driving terms
 - Implications: None





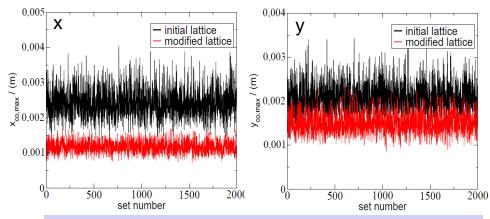
Proposed Changes to Settings

- Introduction of bump at septa
 - · Reduction of amplitude of resonant particles
 - Increase of margin for closed orbit distortions
- Correction of chromaticity using horizontal chromaticity sextupoles only
 - · Shift of vertical chromaticity remains small
- Introduction of octupole component
 - Compensation of higher order terms from strong chromaticity sextupoles

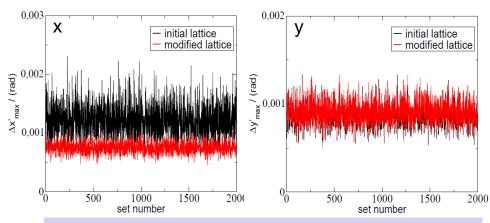
	Mod	TDR
Q_h/Q_v	17.31 / 17.80	
C_h/C_v (corr.)	-1.0 / -27.2	-5.2 / -39.4
K2L _{ch} [1/m ²]	-0.48 (28%)	-0.4 (23%)
K2L _{cv} [1/m ²]	0.0	-0.4 (23%)
K2L _{sr} [1/m ²]	0.8 (72%)	0.15 (14%)
K3L [1/m ³]	4.9 (30%)	0.0
Bump [mm]	-6.0 (40%)	0.0

Amplitude of resonant particle during last three turns

Improved Control of Closed Orbit


Comparison of closed orbit correction for TDR lattice and modified lattice

- Misalignments considered
 - · Transverse shifts of quadrupoles

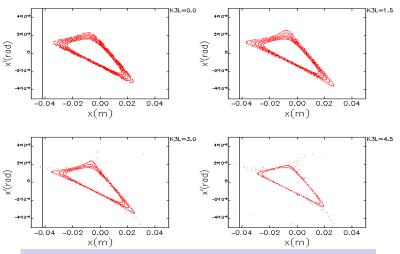

$$-\Delta x_{rms} = \Delta y_{rms} = 1 \text{ mm}$$

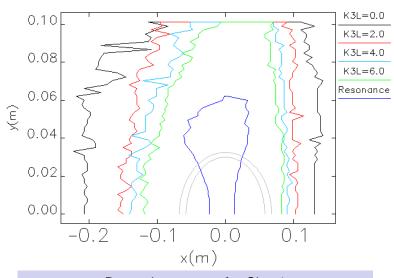
- · Dipole tilt around longitudinal axis
 - $-\Delta \psi_{rms} = 1.4 \text{ mrad}$
- Gaussian distributions, truncated at 2σ
- Residual orbit distortions significantly smaller for modified lattice
 - More favorable β functions in new position
- Corrector strengths comparable

Residual CO	TDR	Mod
x_{rms}/x_{max} [mm]	3.1 / 6.3	1.3 / 2.7
y _{rms} /y _{max} [mm]	2.6 / 5.5	1.5 / 3.2

Maximum residual orbit distortion vs. seed

Distribution of corrector settings vs. seed





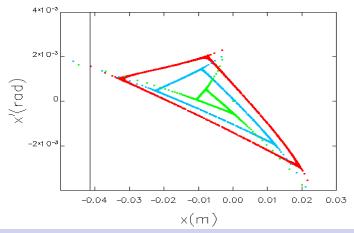
Higher Order Effects and Dynamic Aperture

- SIS100 lattice with chromaticity correction exhibits
 large amplitude dependent tune shifts
 - Dispersion small, hence large sextupole strength
 - · Second order effects give large contribution
 - Without compensation dynamics is far from perturbative theory of slow extraction (Kobayashi)
- Amplitude dependent tune shifts can be compensated by using octupole correctors

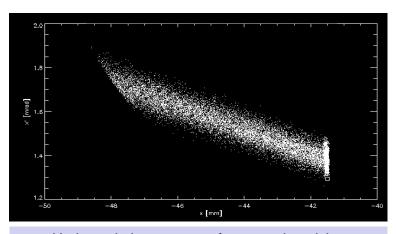
Trajectories in horizontal phase space vs. octupole strength (resonance conditions)

Dynamic aperture for Ch=-1 (with and without resonance sextupoles)

- Dynamic aperture improved compared to TDR
 - DA larger than for TDR
 - · No restriction on hor. chromaticity correction by DA



Improved Performance



- Compensation of amplitude dependent tune shift permits variation of separatrix
 - · Separatrices of different size are possible
 - · Bump allows limitation of oscillation amplitude
 - Spiral step can be controlled in all cases
 - Fallback extraction scheme using quadrupole to shift tune seems feasible

- Tracking calculations indicate high extraction efficiency
 - No losses on apertures
 - Small beam divergence at septum (±0.1mrad for extraction within 5000 turns)
 - Losses on septum ≈ 1%

Separatrices with different sizes

Horizontal phase space of extracted particles

Summary/Outlook

- Fast extraction from SIS100 works both for ion and proton lattice
- SIS100 lattice optimized for better robustness of slow extraction
 - · Improved control of closed orbit
 - Higher margin for closed orbit distortions
 - · Larger dynamic aperture
 - Separatrices linearized
 - Higher extraction efficiency
 - Additional benefit: only six resonance sextupoles required
- Further studies
 - Influence of closed orbit distortions
 - Compensation of β distortion due to warm quadrupoles
 - Extraction performance with bunched beam
 - Stabilization of coasting beam during extraction

Acknowledgements

Thanks to the following authors, who contributed to this talk:

- M. Kirk, N. Pyka (GSI, Synchrotrons)
- S. Sorge, V. Kornilov (GSI, Accelerator Theory)
- A. Saa-Hernandez (PSI, SLS)

Thank you for your attention!

