SuperFRS Magnet Testing Strategy Update

Pierre Schnizer

MAC7

2 - 3 April 2012

@ FZJ

- Sc. Magnets for SuperFRS
- 2 Tests
 - Test Limits
 - Sequence of Tests
- 3 Latest Action
- 4 Conclusion

- Sc. Magnets for SuperFRS
- 2 Tests
 - Test Limits
 - Sequence of Tests
- 3 Latest Action
- Conclusion

Magnets

Number

	single magr	nets	cryomodules
SIS100	dipoles	109	cryodipole
	quadrupoles	169	doublet
	others	144	doublet
total		422	
SuperFRS	dipoles	24	cryodipole
	quadrupoles	66	multiplet
	others	89	multiplet
total		179	

Magnets

main parameters

	dip.	quad.	sex.	corr.	
bore	warm				
design	superferric		air coil		
				embedded	
yoke	warm		cold		
pole field	1.6	2.5	2.2	0.2	
current	≈230	\approx 300	\approx 170	≈300	Α
energy	450	1600	25.9	1.3	kJ
quench voltage		< 3000			kV
mass	50	n	nultiplet	: 60	
string	single supply				

Magnets

Units

dipol	multiplett	
24	31	
2	4	m
2	2.5	m
2.4	2.5	m
60	55	ton
splittable		
warm	cold	
warm		
bath cooled		
	24 2 2 2.4 60 splittable warm	24 31 2 4 2 2.5 2.4 2.5 60 55 splittable warm cold warm

Boundary Conditions

- Superconducting magnets: dipoles and multiplets
- Dipoles ← contributed by InKind, still open
- Multipletts ← German inkind
- first dipole expected 2014
- pre-series multiplet ready for test Q2/ 2014
- extended test for a year
- all magnets for preseparator branch on site Q4 / 2016
 (3 Dipole, 11 Multipletts)
- all magnets for SuperFRS on site Q3 / 2018

Boundary Conditions

- Superconducting magnets: dipoles and multiplets
- Dipoles ← contributed by InKind, still open
- Multipletts ← German inkind
- first dipole expected 2014
- pre-series multiplet ready for test Q2/ 2014
- extended test for a year
- all magnets for preseparator branch on site Q4 / 2016
 (3 Dipole, 11 Multipletts)
- all magnets for SuperFRS on site Q3 / 2018

Production rates

- Dipole: ≈ 1.5 month per dipole
- Multiplet: ≈ 1 per month
- ullet full units o ready for test after production

- 1 Sc. Magnets for SuperFRS
- 2 Tests
 - Test Limits
 - Sequence of Tests
- 3 Latest Action
- Conclusion

- Sc. Magnets for SuperFRS
- 2 Tests
 - Test Limits
 - Sequence of Tests
- 3 Latest Action
- 4 Conclusion

SuperFRS Targets

Test	Limit	Accuracy	
high voltage test	> 4 KV	above threshold, defined by mea- surement equipment accuracy	
sensor test			
vacuum leak cryogenic loss	$< 10^{-8} \; mbar \times l \times s$ $< 10 \; W \; static$ $< 10\% \; variation$	< 3 W	
power test	defined by magnet	above threshold, defined by mea- surement equipment accuracy	
	> 1.2 <i>I</i> _{nom}	0.1% SuperFRS Magnets	
magnetic field	0.2 %	$2.5 \cdot 10^{-4}$ for main field 20 ppm for field quality	
axis	\pm 0.2 mm	< 0.1 mm	

- Sc. Magnets for SuperFRS
- 2 Tests
 - Test Limits
 - Sequence of Tests
- 3 Latest Action
- 4 Conclusion

- reception
- preparation
- cool down
- testing @ 4.2 K
- warming up
- removal
- fiducialisation

reception

- reception (administrative at CERN)
- unloading to temporary storage
- visual check of magnet
 - readout of the shock sensors; acceptance of the transportation
 - half yokes have to be correctly fixed on the magnet (upper and lower half) so that these do not need to be turned. nitrogen in vacuum space
- high voltage tests @ RT
- testing of instrumentation
- opening of the vacuum space

III/VI

preparation

- opening of cryostat vacuum
 - remove transport restraint
 - check of the geometry
 - 3 closing vacuum space
- leak test
- transport to the test bench
- cryo connection (always the same layout, connections to be made)
- 6 electrical connections
 - power (screwing warm connections)
 - instrumentation
- vacuum test
- pre testing: pressure test, vacuum (magnet, interconnection as a vacuum barrier is in the device)
- electrical tests: instrumentation all alive, insulation test

cool down

- cool down
- purging cold volumes
- pumping insulation vacuum
- during cool down: temperature measured, He flow, vacuum
- o resistance measurements of the electrical connections
- cool down procedure (optimisation, dewar for storing liquid helium, test object on separate test cycle, split in cool down with Nitrogen/Helium)
- o end of filling

V/VI

testing at 4.2 K

- HV
- Sensor test / insulation test
- Quench detection: UPS / power converter
 Power converter: normal situation only one
- Power converter: normal situation only one system connected
- Corrector magnets: individually powered
- Before first test: disconnect one of the tabs and make the power converter trip: dump resistor in the power converter
- Power tests
- Magnetic measurement
- Insulation tests

VI/VI

warming up

- empty liquid helium volume
- 2 warm-up with circulation

removal

- electrical tests
- N₂ gas filling
- operate disconnection, cryogenic piping disconnection (welding)
 - insulation test
- removal from bench

finalisation

- opening of the vacuum system; installation of the transport restrains
- 2 loading on the truck / disposal of the reception

- Sc. Magnets for SuperFRS
- 2 Tests
 - Test Limits
 - Sequence of Tests
- 3 Latest Action
- 4 Conclusion

SuperFRS Testing

- (Informal) meeting with CERN contact person J. Bremer 25 of January
- Discussion on magnets and parameters to test

SuperFRS Testing: Status

 Π/Π

Ausblenden

Von: Johan Bremer

Betreff: Re: Testing SuperFRS Magnets @ CERN

Datum: 23. März 2012 17:59:12 MEZ

An: Pierre Schnizer

Dear Pierre,

The collaboration agreement between GSI and CERN has indeed be signed very recently. I'll be off next week for Fermi Lab for a review. I've however informed the groupleaders which could eventually be involved in this project That I'll contact them in the weeks before and after Easter. Once I've met them I would like to start to create real workpackages, make a schedule and have a look at the budget needs over time, and a manpower plan.

I'll contact you when back from Fermi (next week). Have a nice weekend, I'll pass most of my time in airports/plaines.

Johan

CERN

CH-1211 Geneve 23

Suisse

Tel: 00 41 22 7678752

Mehr anzeigen von "Pierre SCHNIZER"

- Sc. Magnets for SuperFRS
- 2 Tests
 - Test Limits
 - Sequence of Tests
- 3 Latest Action
- Conclusion

Conclusion

- 1 Not too small number of magnets tested
- Tests @ CERN
- Interaction started