

Summary of the Review of FAIR Cryogenics 27-28 February 2012

Philippe Lebrun
CERN

7th Machine Advisory Committee meeting Forschungszentrum Jülich, 2-3 April 2012

General aspects

- Review requested by the FAIR project management and Machine Advisory Committee
- Held at GSI Darmstadt on 27-28 February 2012
- Review panel members
 - L. Evans (CERN), Chairman
 - J. Fydrych (WUT)
 - Ph. Lebrun (CERN)
 - B. Petersen (DESY)
 - T. Peterson (FNAL)
 - L. Tavian (CERN)
 - U. Wagner (CERN)

Program – Day 1

Monday 27 February 2012

10:00 - 10:15	Welcome and FAIR Update 15' (Universe (KBW Hörsaal/Lecture Hall)) Speaker: Dieter Krämer (FAIR GmbH)
10:15 - 10:35	Super-FRS: Machine and magnets 20' (KBW Hörsaal/Lecture Hall) Speaker: Hanno Leibrock (GSI Helmholtzzentrum für Schwerionenforschung GmbH(GSI))
10:35 - 11:05	Super-FRS Multiplets cooling (inner piping optimization and ANSYS simulation for cooldown) 30' Speaker: Yu XIANG
11:05 - 11:20	CoffeeBreak
11:20 - 12:05	Local cryogenics for Super-FRS (flow scheme, feedbox, cryogenic transfer lines, Branch box) 45' Speaker: Yu XIANG
	•
12:05 - 12:35	Layout (digital mock-up) of cryogenic facility in Super-FRS tunnel and buildings 30' Speaker: A. BREIDERT
12:35 - 14:00	Lunch_Break (GSI Canteen)
14:00 - 14:30	SIS100: Machine, magnets and operation cycles 30' Speaker: Jens Stadlmann (GSI Ges. für Schwerionenforschung mbH)
14:30 - 15:00	Analyses of the SIS100 SC magnets cooling 30' Speaker: Alexander BLEILE
15:00 - 15:30	Experiences at Dubna/Nuclotron 30' Speaker: Hamlet KHODZHIBAGIYAN
15:30 - 15:45	Coffee_Break
15:45 - 16:15	Hydraulic analysys, operation scenarios and special installations 30' Speaker: Marion Kauschke (Gesellschaft für Schwerionenforschung mbH)
16:15 - 16:55	Cryogenics hardware (Polish In-kind) 40' Speaker: Jaroslaw Fydrych
16:55 - 18:00	Open Discussion 1h05'

Program – Day 2

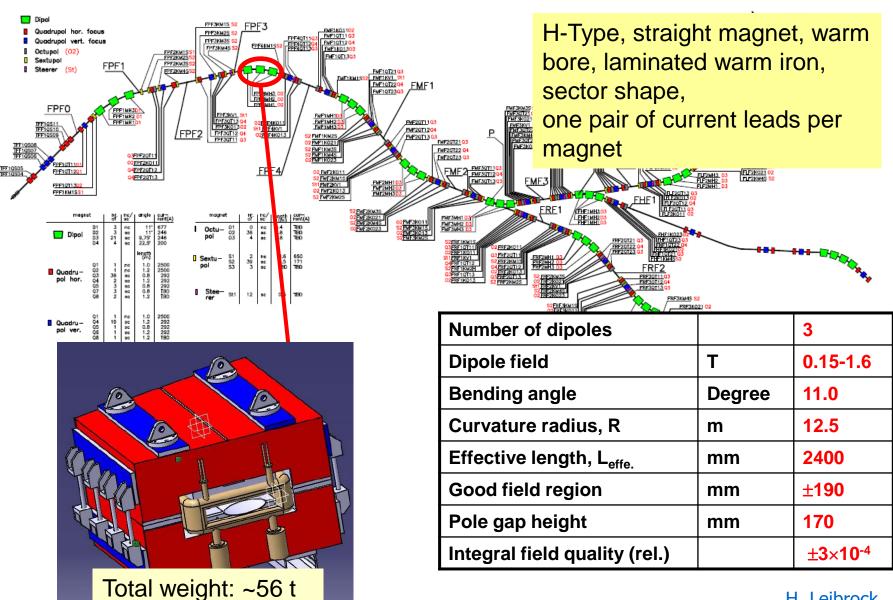
Tuesday 28 February 2012

09:00 - 10:30	Cryo 1, Cryo 2 1h30' Speaker: Marion Kauschke (Gesellschaft für Schwerionenforschung mbH)
10:30 - 10:50	Control system 20' Speaker: Ralph Bär (GSI Helmholtzzentrum für Schwerionenforschung GmbH)
10:50 - 11:00	Coffee_Break
11:00 - 11:30	Prototype Test Facility Operation, Series Test Facility Planning 30' Speaker: Claus SCHROEDER
11:30 - 11:45	Reliability at Super FRS 15' Speaker: Eugen MOMPER
11:45 - 12:00	Test of radiation hardness 15' Speaker: Edil Mustafin (GSI Helmholtzzentrum für Schwerionenforschung GmbH)
12:00 - 13:00 13:00 - 15:00	Lunch_Break (GSI Canteen) Final Discussion 2h00'

General findings [1/2]

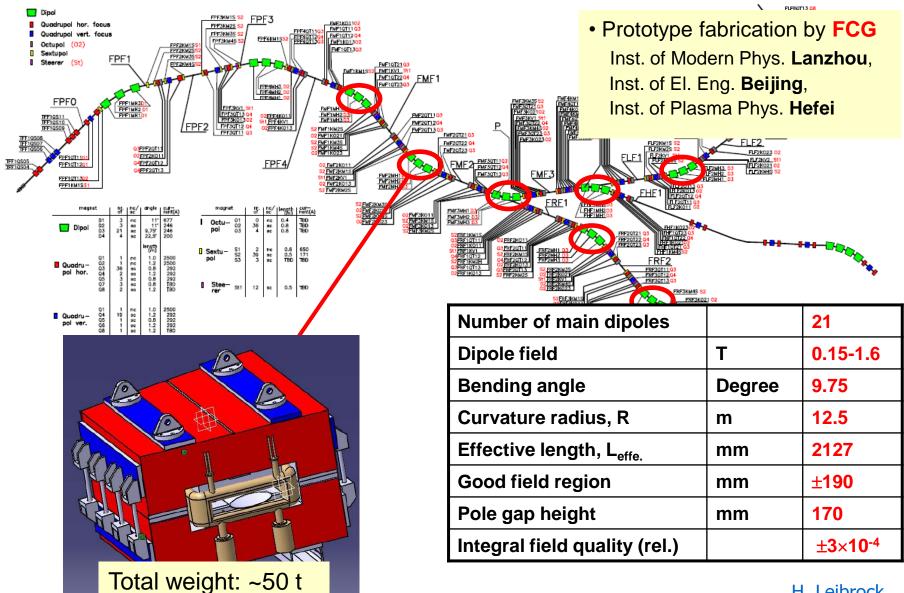
- Design of FAIR cryogenics proceeds in « concurrent engineering » mode
 - Addressing technical details in parallel with identification or revision of major requirements and boundary conditions
 - Effect amplified by the collaborative structure of the project (in-kind WPs)
 - Requires tight technical and organizational management
 - Iterative process needs technical reviews and interface management between the contributing teams
- Urgent need to implement configuration management and change control procedures
 - In particular for documenting cost implications and allowing cost tracking
 - Applies to whole project and not only cryogenics
- Need to establish basic requirements at project level
 - Stages of installation & commissioning
 - Operational flexibility, accessibility, reliability, repairability
 - Acceptable dead-time for cryogenic transients (CD, WU, quench recovery)
 - Redundancy/overcapacity in refrigeration
 - High-level technical parameters (e.g. design pressure)

General findings [2/2]

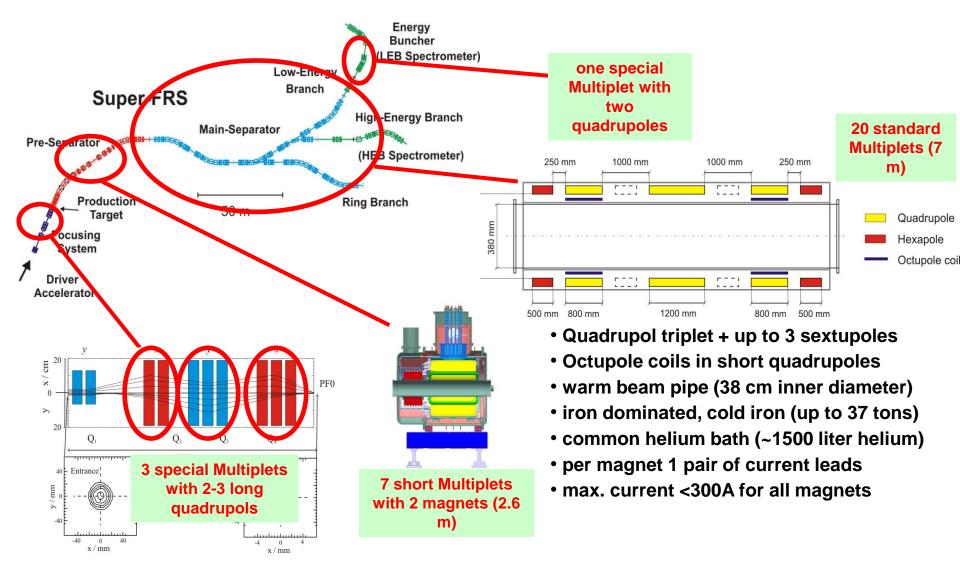


- The review panel
 - Appreciates that the FAIR cryogenics team feels responsible not only for the production and distribution of cooling, but also for proper operation of cryomagnets
 - Is of the opinion that the size of the present team is insufficient to carry out all the tasks attributed to it
- The Review was efficiently organized and the presentations of good quality

Superferric Dipoles for the FRS Pre-Separator



Superferric Dipoles for the FRS Main Separator



Multiplets for the Super-FRS

Superconducting magnets in Super-FRS

Multiplets:

- 31 Multiplets (+ 2 spare Multiplets).
- Magnet departments of GSI are preparing specification of superferric Multiplets based on principles of Toshiba's conceptual design study.
- Documents for procurement will be ready 2012.
- First Multiplet: 2015 (estimation)
- Last Multiplet: 2019 (estimation)

Dipoles:

- 24 dipoles
- Prototype built and tested
- Only very small modifications are required for the series
- France (CEA, Saclay) and Spain (CIEMAT, Madrid) are interested in superferric dipoles as contribution in kind.
- First dipole: 2014

Super-FRS cryogenics [1/2]

Superconducting magnets

 The review panel strongly recommends that the final design of the multiplet be reviewed when completed

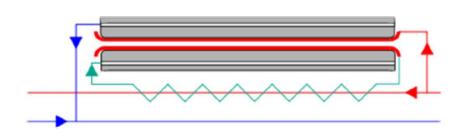
Magnet cooling scheme

- Lack of clear understanding and late changes (not documented) in the cooling method of S-FRS magnets, from forced-flow of saturated He to bath cooling
- Bath cooling requires precise level control and thus top-feed with decanting in the cryostat: avoid bottom-feed of two-phase He, particularly with high vapor quality
- Conversely, decanting in final cryostat relaxes need for subcooler in feed box and requirement for low transfer losses
- The review panel recommends documenting the choice of cooling method and adapting the design of the dipole coil and multiplet cryostats accordingly

Design pressures

- Rather low and different for the two types of magnets
- May result in large losses of He or very tight operational constraints
- The review panel recommends reviewing and substantiating the choice of design pressures

Super-FRS cryogenics [2/2]



- Temperature gradients for CD/WU
 - Very tight constraints presented, without firm design basis
 - The review panel recommends defining these constraints on the basis of actual design requirements
- Operational flexibility
 - Multiplets cooled in small clusters
 - The review panel recommends clarifying the need for full independent cryogenic mode within each cluster
- Cryogenic distribution
 - Very complex cryolines and distribution boxes, with very constrained routing, resulting in large number of singularities and large intrinsic consumption of LHe (60% lost in distribution)
 - Very long transfer line for feeding the first elements of S-FRS
 - The review panel recommends re-examining the justification for this very long line and studying simpler routing

SIS100 parallel magnet cooling scheme

Heat load:

static: 7 W

dynamic: up to 60 W (triangular cycle)

Mass flow: defined by the total heat load

<u>Pressure dprop</u>: defined by the mass flow rate

and hydraulic resistance of cooling channels:

cable inner diameter: d = 4.7 mm iron yoke: d = 10 mm

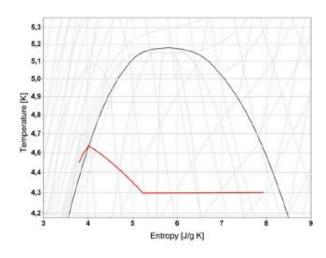
dipole: L = 54 m + 54 mquadrupole: L = 34 m + 27 m Inlet - sub-cooled helium

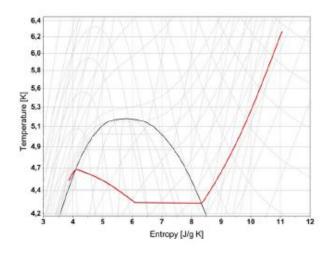
 $P_{in} = 1.5 \text{ bar}, T_{in} = 4.5 \text{ K}$

Coil out:

P = 1.1 bar, two-pase (4.3 K)

Joke out:


P = 1.1 bar, two-phase, x = 0.9 - 1.0



SIS100 dipole cooling for different magnet cycles

Busbar + Coil: 54 m + 54 mMinor losses: $\xi = 26.0$

$$P_1 = 1.6 \text{ bar}, T_1 = 4.51 \text{ K (subcooled)}$$

 $P_3 = 1.1 \text{ bar}, T_3 = 4.31 \text{ K}$

$$P_{total} = 40 \text{ W: m} = 2.4 \text{ g/s}$$

 $x_2 = 0.30$
 $x_3 = 0.88$

$$P_{total} = 70 \text{ W: } m = 2.1 \text{ g/s}$$

 $x_2 = 0.56$
 $T_3 = 6.52 \text{ K}$

Risks in two-phase cooling of SIS100 magnets

Potential problems:

- departure from nucleate boiling:
 not expected because of very small heat flux
- stratifyed flow patterns:
 - dangerous only when occures in the coil
- instabilities of two-phase flow in vertical channels: should be small (ρ_I/ρ_V ≈ 7)
- •instabilities due to parallel channels

Arrangements needed for parallel cooling: subcooled helium in the supply header bypass valve in the end box adjustments of hydraulic resistance for each channel

Compared cooling schemes of SIS100 & Nuclotron FAIR

Nuclotron:

- 2 sectors
- 100 parallel chanels / sector
- 4.0 mm cable inner diameter.
- beam vacuum chamber cooled by yoke

<u>SIS100:</u>

- 6 sectors
- 47 parallel chanels / sector
- 4.7 mm cable inner diameter.
- beam vacuum chamber cooled by helium flow

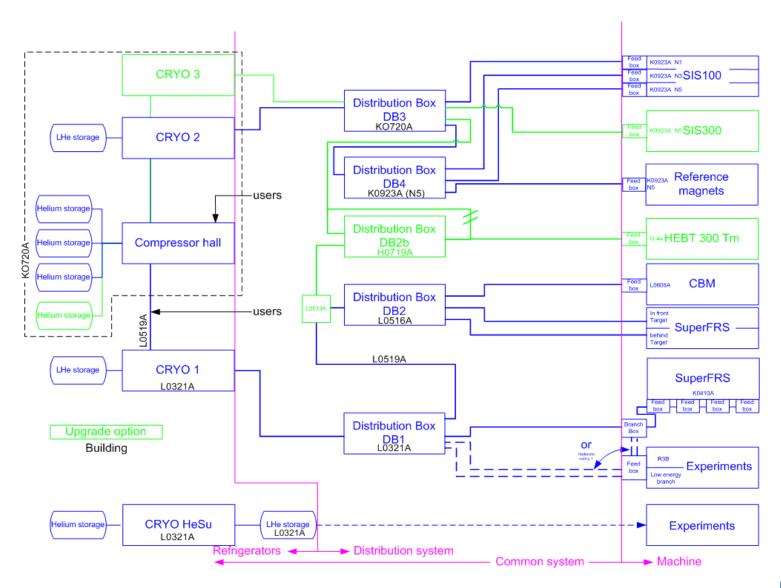
Conclusions on SIS100 magnet cooling scheme

- SIS100 cooling systems is based on Nuclotron design
- the number of parallel channels is reduced by factor of two
- the phase separation in the coil is not expected
- adjustment of hydraulic resistance has to be performed for each type of cooling channel
- additional valve can be installed on each channel for fine adjustement

SIS100 cryogenics [1/2]

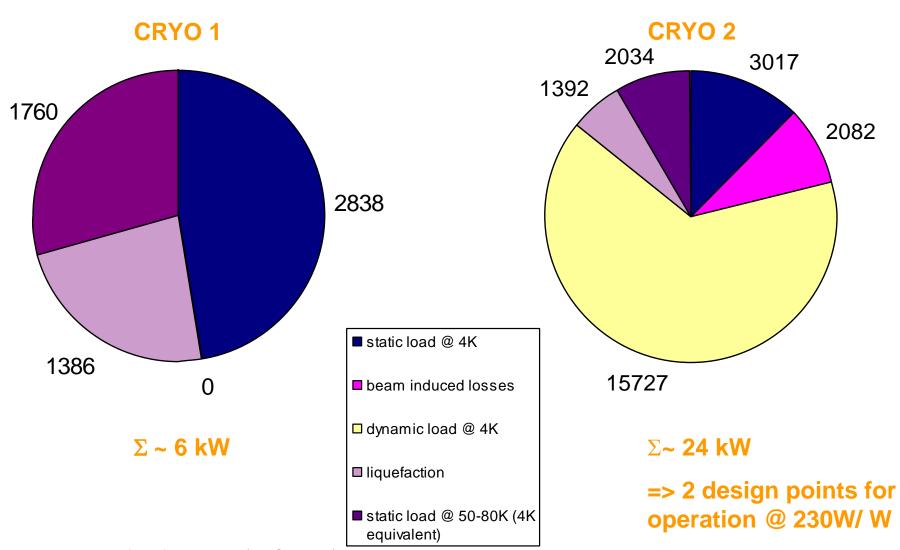
- SIS100 cryogenics govered by dynamic loads due to accelerator cycles
 - Variety of operating modes studied and corresponding heat loads defined
 - Together with static heat loads from cryostat design, this is a sound basis for specification of SIS100 cryogenic requirements
- Magnet cooling scheme based on parallel flows of two-phase helium across full liquid-to-vapor range, with no active balancing
 - Appears to violate good design practice; however works in Nuclotron!
 - Compliance provided by large cooling load and allowed temperature excursions of yoke (in series with coils), as well as excess He flow (resulting in thermodynamic inefficiency)
 - Still, precise balancing of parallel circuits required by construction and to be maintained (risk of clogging by contaminants)
 - The review panel welcomes the construction of a thermo-hydraulic model in a first stage, and the testing of magnets and a magnet string in a later stage, for full validation of the cooling scheme

SIS100 cryogenics [2/2]

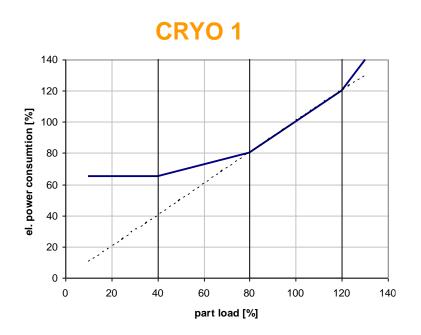


- Design pressure of 1.8 MPa
 - Should help contain He inventory in case of quench or unforeseen stop of refrigerator
- Sectorization
 - The review panel appreciates the proposed vacuum & cryogenic sectorization in 150-m long sectors, to ease leak detection and allow localized interventions on the machine
- Electrical feed-boxes with HTS leads
 - Two possible cooling schemes were presented
 - The review panel firmly favors that with LHe phase separator providing fixedtemperature heat sink for electrical connexions

Cryogenic system architecture

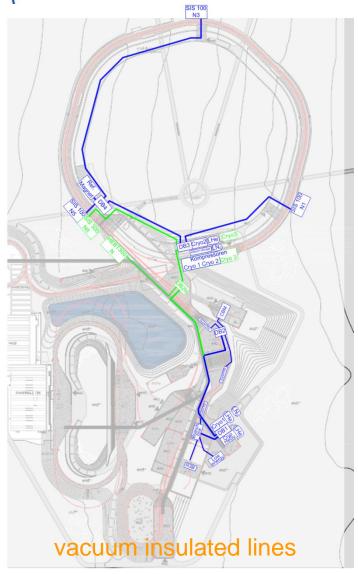


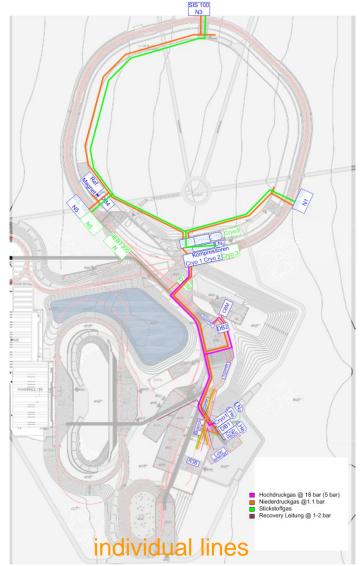
Refrigerator cooling duties



Including the safety factor 1.5 (TAC 2007)

Requested part-load efficiency of refrigerators





Cryogenic distribution layout

Cryogenic refrigeration and controls

General architecture

- Common compressor station for CRYO1 and CRYO2 provides some redundancy
- However, strict allocation of CRYO1 and CRYO2 plants to their respective users precludes mutualization of overcapacity and redundancy
- Heat loads and refrigerator cooling duties
 - Sizing method presented, including 50% overcapacity factor
 - Correspondence between calculated heat loads and plant sizing not given explicitly
- Part-load efficiency
 - The review panel appreciates the quest for preserving plant efficiency at part load
 - However, the review panel recommends reconsidering the requirement of maintaining full efficiency at 25% load for CRYO2, which will likely result in 2-in-1 coldbox construction with high investment cost
- Additional 1.5 kW @ 4.5 K cryoplant for magnet test station
 - Resources for procuring and commisioning this plant do not seem to exist
- Control system
 - The review panel supports the approach of implementing a control system based on CERN UNICOS
 - The review panel points out that resources will be needed in the cryogenics group to provide input to the controls team