4D tracking

Juan A. Garzón
LabCAF - Univ. Santiago de Compostela
Spain

OUTLOOK

- The time as a tracking variable
- 4D tracking
-The timtrack as a 4D tracking example
- 4D tracking at CBM
- Beyond 4D tracking
- Summary and Reflections

The time as a tracking variable

The time as a tracking variable

A typical tracking flow

- External $t=0$ time needed
- This scenario offers some problems. Let see some examples:

4D tracking
Juan A. Garzón/LabCAF-USC 3rd. Int. Workshop for future chalenges in Tracking \& Trigger $4 / 58$

The time as a tracking variable

Example 1: Strip detectors

Usually we reduce both times to get the arrival time and the transverse coordinate:

$$
\begin{aligned}
& \mathrm{t}_{1}=1 / 2\left(\mathrm{t}_{\text {left }}+\mathrm{t}_{\text {right }}\right)-\mathrm{L} / \mathrm{v}_{\mathrm{s}} \\
& \mathrm{x}_{1}=1 / 2\left(\mathrm{t}_{\text {left }}-\mathrm{t}_{\text {right }}\right) \mathrm{V}_{\mathrm{s}}+\mathrm{L} / 2
\end{aligned}
$$

The time as a tracking variable

Example 1: Strip detectors

2 particles hit in the same strip of the second plane

Using time reduction the second plane information is lost

Using time measurements directly in the tracking algorithm does not waste useful information

The time as a tracking variable

Example 2: Drift chambers

In a drift chamber, every channel gives 2 data:
1 coordinate (cell position)
1 time ($\mathrm{t}_{0}+$ flight + drift + wire times)

The time as a tracking variable

Example 2: Drift chambers

In a drift chamber, every channel gives 2 data:
1 coordinate (cell position)
1 time ($\mathrm{t}_{0}+$ flight + drift + wire times)

At least 4 cells (= 4 coordinates) are necessary for defining a 4-parameters track with NDF=0, (assuming an external reference time t_{0} and the velocity are well known)

+ slope correction and others
+ ghosts

The time as a tracking variable

Example 2: Drift chambers with time as a separate variable

Using coordinates and time separately:
1 coordinate (cell positions)
1 times ($t_{0}+$ flights + drifts + wire times $)$

3 cells ($=6$ parameter) are enough for defining a 6 -parameter track (4 parameters + reference t_{0} and velocity v) with NDF=0.

- Of course, the accuracy is very bad but constraints about t_{0} and v can be introduced later.
- Separating coordinates and times gives more flexibility in hybrid set-up's, for introducing weigths....

The time as a tracking variable

Example 3: Strip detectors

$t_{\text {left }}$ and $t_{\text {right }}$ are a function of all t_{0}, x and y !

The time as a tracking variable

Example 3: Strip detectors

Using the correct dependence of $t_{\text {left }}$ and $t_{\text {right }}$ on t_{0}, x and y avoids timing and position errors

The time as a tracking variable

Summary:
Using time as an independent variable has many advantages:

- More efficient
- More precise
- More powerful

Disadvantages:
Working in bigger dimensions may be more difficult:

- Some danger of settle points in the hyperspace
- The curse of dimensionality: higher the space dimension, bigger the difficulty of arriving to the good solution region.

4D tracking: 3D + time

- The timtrack approach
- 4D Kalman Filter
timtrack as a 4D tracking example

A typical tracking flow
timtrack as a 4D tracking example

timtrack as a 4D tracking example

timtrack as a 4D tracking example

External t_{0} and velocity v are let as free parameters

timtrack as a 4D tracking example

Timtrack basics:

- TimTrack is a Least Squares fitting Method using a general Matrix Formalism
- TimTracks work with the primary data, without full reduction.

Calibration parameters, or even alignment parameters, could be let free in the fit. Then, it provides a common formalism useful for tracking, calibration and alignment.

- TimTrack works always with the six parameters that define completely the movement of a particle:
- (X,Y): 2 coordinates at a given plane
- ($\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}$): 2 projected slopes
- T: The time at the given plane
- $S(=1 / \mathrm{V})$ or slowness: The inverse of the velocity at the given plane

timtrack as a 4D tracking example

The saeta

- We call the set of these six parameters a SAETA*:

$$
\mathbf{s}=\left(X_{0}, X^{\prime}, Y_{0}, Y^{\prime}, T_{0}, S\right)
$$

- The SAETA can be extended introducing a mass hypothesis:

$$
\mathbf{s}_{\mathrm{m}}=(\mathbf{s} ; m)
$$

- An extended SAETA contains everything necessary to describe all the possible effects acting on a particle: magnetic field, energy loss, multiple scattering...
*) SAETA: SmAllest sET of pArameters (三 Sagitta = Arrow, in Spanish)

timtrack as a 4D tracking example

The saeta

Why slowness S instead velocity, momentum or energy?

- S has ~gaussian uncertainties
- S is a "natural" parameter: ToF detectors provide them directly
- S allows to introduce a very useful universal constraint: $S \geq 1 / c$

timtrack as a 4D tracking example

Timtrack is a Least Squares Method:

Let suppose that we have:

- a set of n_{m} data: d
- a set of n_{s} parameters: \mathbf{s}
- a model relating both sets: $\mathbf{d}=\mathbf{m}(\mathbf{s})$

The Least Squares Method (LSM) consists in finding the set of parameters s minimizing the function S :

$$
S=\sum_{i}\left(\frac{d_{i}-m_{i}(\mathbf{s})}{\sigma_{i}}\right)^{2}
$$

timtrack as a 4D tracking example

Timtrack: summary of steps for a lineal model: m(s)
1.

$$
S=[\mathbf{d}-\mathbf{m}(\mathbf{s})]^{\prime} \cdot W \cdot[\mathbf{d}-\mathbf{m}(\mathbf{s})]
$$

$2 \mathrm{~m}(\mathbf{s})=G \cdot \mathbf{s}+\mathbf{g}(\mathbf{s})$

$$
\mathbf{g}(\mathbf{s})=\mathbf{m}(\mathbf{s})-G \cdot \mathbf{s}=\mathbf{g}_{0} \quad(\text { constant })
$$

3.

$$
\begin{aligned}
K & =G^{\prime} \cdot W \cdot G \\
\mathbf{a} & =G^{\prime} \cdot W \cdot\left(\mathbf{d}-\mathbf{g}_{0}\right) \\
s_{0} & =\left(\mathbf{d}-\mathbf{g}_{0}\right)^{\prime} \cdot W \cdot\left(\mathbf{d}-\mathbf{g}_{0}\right)
\end{aligned} \quad \longrightarrow S=\mathbf{s}^{\prime} \cdot K \cdot \mathbf{s}-2 \mathbf{s}^{\prime} \cdot \mathbf{a}+s_{0}
$$

$\partial S \quad$ (Minimum condition)
4. $\frac{\partial S}{\partial \mathbf{s}}=K \cdot \mathbf{s}_{m}-\mathbf{a}=\mathbf{0} \longrightarrow K \cdot \mathbf{s}_{m}=\mathbf{a} \quad$ (Normal equations)

$$
\mathbf{s}_{m}=K^{-1} \cdot \mathbf{a} \quad \text { (Solution) }
$$

5. $\mathcal{E}=\left(\frac{1}{2} \frac{\partial^{2} S}{\partial \mathbf{s}^{2}}\right)^{-1}=K^{-1} \quad$ (Variance-covariance matrix)

timtrack as a 4D tracking example

Corrections for non-linear models - 1
When the model $\mathbf{m}(\mathbf{s})$ to be fitted is non-linear, the S function should be minimized using an iterative process:

- We look for an initial value of the set of parameters \mathbf{s}_{0}, that is near to the minimum of S.
- Then, we follow the same steps used with the linear model with the following differences:

Step 2.
We calculate $G(\mathbf{s})$ and then, we build:

$$
\mathbf{g}(\mathbf{s})=\mathbf{m}(\mathbf{s})-G(\mathbf{s}) \cdot \mathbf{s}
$$

Step 3.
We calculate the matrix K and the vector \mathbf{a} at $\mathbf{s}=\mathbf{s}_{0}$:

$$
\begin{aligned}
K_{0} & =G^{\prime}\left(\mathbf{s}_{0}\right) \cdot W \cdot G\left(\mathbf{s}_{0}\right) \\
\mathbf{a}_{0} & =G^{\prime}\left(\mathbf{s}_{0}\right) \cdot W \cdot\left(\mathbf{d}-\mathbf{g}\left(\mathbf{s}_{0}\right)\right)
\end{aligned}
$$

timtrack as a 4D tracking example

Corrections for non-linear models - 2

Step 4.
We estimate a new set of parameters, \mathbf{s}_{1}, using the equation:

$$
\mathbf{s}_{1}=K_{0}^{-1} \cdot \mathbf{a}_{0}
$$

We repeat this step iteratively until the convergence is reached:

$$
\mathbf{s}_{i}=K_{i-1}^{-1} \cdot \mathbf{a}_{i-1}
$$

Juan A. Garzón/LabCAF-USC 3rd. Int. Workshop for future chalenges in Tracking \& Trigger

timtrack as a 4D tracking example

Corrections for non-linear model and with constraints in the parameters - 1

Let consider the case where the set parameters \mathbf{s} do fulfill:

$$
\mathbf{f}(\mathbf{s})=0 \quad\left(n_{c} \text { equations }\right)
$$

- Now, we minimize iteratively the Lagrange function defined as:

$$
L(\mathbf{s})=(\mathbf{d}-\mathbf{m}(\mathbf{s}))^{\prime} \cdot W \cdot(\mathbf{d}-\mathbf{m}(\mathbf{s}))+2 \cdot \lambda^{\prime} \cdot \mathbf{f}(\mathbf{s})
$$

where λ is a vector of n_{c} elements: the Lagrange multipliers.

- We introduce the jacobian matrix of the constraint functions:

$$
R(\mathbf{s})=\partial_{\mathbf{s}} \mathbf{f}(\mathbf{s})
$$

timtrack as a 4D tracking example

Corrections for non-linear model and with constraints in the parameters - 2

- Starting from a point, close enough to the minimum:

$$
\begin{aligned}
& \mathbf{s}=\mathbf{s}_{0}, \\
& R_{0}=R\left(\mathbf{s}_{0}\right) \\
& \mathbf{f}_{0}=\mathbf{f}\left(\mathbf{s}_{0}\right)
\end{aligned}
$$

The matrix equation:

$$
\binom{\delta \mathbf{s}_{1}}{\lambda_{1}}=\left(\begin{array}{cc}
K_{0} R_{0}^{\prime} \\
R_{0} & 0
\end{array}\right)^{-1} \cdot\binom{\mathbf{a}_{0}\left(\mathbf{s}_{0}\right)-K_{0} \cdot \mathbf{s}_{0}}{-\mathbf{f}_{0}}
$$

provides the next-step \mathbf{s} and λ vectors:

$$
\begin{aligned}
& \mathbf{s}_{1}=\mathbf{s}_{0}+\delta \mathbf{s}_{1} \\
& \lambda_{1}
\end{aligned}
$$

- The iteration is repeated until convergence and $\lambda_{i}=0$.

timtrack as a 4D tracking example

Corrections for non-linear model and with constraints in the parameters - 3

Uncertainty analysis:

- We build:

$$
\left(\begin{array}{ll}
K & R^{\prime} \\
R & 0
\end{array}\right)^{-1}=\left(\begin{array}{ll}
H & Q^{\prime} \\
Q & Z
\end{array}\right)
$$

-At the minimum, the Error Matrix is:

$$
\mathcal{E}=K^{-1}\left(I-R^{\prime} Q\right)
$$

K has dimensions: $n_{s} \times n_{s}$ R' has dimensions: $n_{s} \times n_{c}$
Q' has dimensions: $n_{c} \times n_{s}$
-The number of degrees of freedom of the fit is:

$$
n_{f}=n_{m}-n_{s}+n_{c}
$$

timtrack as a 4D tracking example

Hybrid set-ups:
If we have a set of different detectors (different models):

models:
data (f.ex):
\mathbf{m}_{1}
(x,y)
K matrices:
a vectors:
K_{1}
\mathbf{a}_{1}
and, finally:

$$
\begin{aligned}
& \mathrm{K}=\sum \mathrm{K}_{\mathrm{i}} \\
& \mathbf{a}=\sum \mathbf{a}_{\mathrm{i}}
\end{aligned} \rightarrow \mathbf{s}=K^{-1} \mathbf{a}
$$

timtrack as a 4D tracking example

Other physical corrections: Energy loss (Bethe Bloch) - 1

Energy losses are related to the velocity (β) of a particle through the BetheBloch formula:

$$
-\frac{d E}{d x} \simeq k \cdot \frac{1}{\beta^{2}}\left(\frac{1}{2} \ln \frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} T_{\max }}{I^{2}}-\beta^{2}-\frac{\delta(\beta \gamma)}{2}\right)
$$

that can be written in a simplified form as:

$$
\begin{aligned}
& -\frac{d E}{d x} \simeq k \cdot \frac{1}{\beta^{2}}\left(\frac{1}{2} \ln \frac{1}{I_{c}^{2}} \frac{\beta^{2}}{\left(1-\beta^{2}\right)}-1\right) \\
& I_{c}=\frac{I}{2 m_{e} c^{2}}
\end{aligned}
$$

with:

timtrack as a 4D tracking example

Other physical corrections: Energy loss (Bethe Bloch) - 2

The Bethe- Bloch formula can be written as funcion of the slowness $S(=1 / \mathrm{V})$ as:

$$
-\frac{d E}{d x} \simeq k \cdot S^{2}\left(\frac{1}{2} \ln \frac{2 m_{e} c^{2} T_{\max }}{\left(S^{2}-1\right)^{2} I^{2}}-\frac{1}{S^{2}}-\frac{\delta(S)}{2}\right)
$$

that can be approximated and simplified as:

$$
-\frac{d E}{d x} \simeq k\left(S^{2} \ln \frac{1}{\left(S^{2}-1\right) I_{c}}-1\right)
$$

timtrack as a 4D tracking example

Other physical corrections: Energy loss (Bethe Bloch) - 3

Observe that the equation:

$$
-\frac{d E}{d x} \simeq k\left(S^{2} \ln \frac{1}{\left(S^{2}-1\right) I_{c}}-1\right)
$$

relates the energy loss measurements to the unknown parameter S and, as consequence, those measurements (either separately for each detector or promediated to all the detectors) can be included as a new model in the formalism.

timtrack as a 4D tracking example

Other physical corrections: Multiple scattering

Following the TT formalism, we expect:
$-\mathbf{a}_{1}=\mathrm{K}_{1} \mathbf{S}_{0}$
with $\left.\mathrm{K}_{\mathrm{MS}, 2}=\left(\mathcal{E}_{M S}+\mathcal{E}_{2}\right)^{-1}\right\} \Rightarrow \mathbf{s}=\mathrm{K}_{1}^{-1} \mathbf{a}_{1}+\mathrm{K}_{\mathrm{MS}, 2^{-1}} \mathbf{a}_{2}$

timtrack as a 4D tracking example

Other physical corrections: Relationship between energy loss, slowness and mass

The slowness $S(=1 / V)$ increases with the loss of energy, ΔE, according to:

$$
\Delta S=-\frac{\left(S^{2}-1\right)^{\frac{3}{2}}}{m_{0}} \Delta E
$$

$$
\left(\Delta \beta=\frac{\left(1-\beta^{2}\right)^{\frac{3}{2}}}{\beta m_{0}} \Delta E\right)
$$

If ΔE has been well measured, the increasing in the slowness S can be introduced as a constraint to improve the fit.

timtrack as a 4D tracking example

TimTrack as a calibration tool -1:

The model of the data, \mathbf{m}, can be expanded as a function of both, the set of parameters \mathbf{s} and the set of some alignment and calibration constants α :

$$
\mathbf{m}=\mathbf{m}(\mathbf{s} ; \boldsymbol{\alpha})
$$

and

$$
\begin{aligned}
& \mathbf{m}(\mathbf{s} ; \boldsymbol{\alpha})=\left(\frac{\partial \mathbf{m}}{\partial \mathbf{s}}\right) \mathbf{s}+\left(\frac{\partial \mathbf{m}}{\partial \boldsymbol{\alpha}}\right) \boldsymbol{\alpha}+\mathbf{g}(\mathbf{s} ; \boldsymbol{\alpha}) \\
& \mathbf{m}(\mathbf{s}, \boldsymbol{\alpha})=\left(\frac{\partial \mathbf{m}}{\partial \mathbf{s}} \frac{\partial \mathbf{m}}{\partial \boldsymbol{\alpha}}\right)\binom{\mathbf{s}}{\boldsymbol{\alpha}}+\mathbf{g}(\mathbf{s} ; \boldsymbol{\alpha}) \\
& \mathbf{m}(\mathbf{s} ; \boldsymbol{\alpha})=G_{A} \cdot \mathbf{s}_{\alpha}+\mathbf{g}(\mathbf{s} ; \boldsymbol{\alpha})
\end{aligned}
$$

where: $\quad G_{A}=\left(\frac{\partial \mathbf{m}}{\partial \mathbf{s}} \frac{\partial \mathbf{m}}{\partial \boldsymbol{\alpha}}\right) \quad$ and $\quad \mathbf{s}_{\alpha}=\binom{\mathbf{s}}{\boldsymbol{\alpha}}$

timtrack as a 4D tracking example

TimTrack as a calibration tool -2:

The matrix G_{A} takes the form:

$$
G_{A}=\left(\begin{array}{ccccccccc}
\frac{\partial m_{1}}{\partial s_{1}} & \ldots & \frac{\partial m_{1}}{\partial s_{i}} & \ldots & \frac{\partial m_{1}}{\partial s_{n}} & \frac{\partial m_{1}}{\partial \alpha_{1}} & \ldots & \frac{\partial m_{1}}{\partial \alpha_{j}} & \ldots \\
\frac{\partial m_{1}}{\partial \alpha_{m}} \\
\vdots & & \vdots & & \vdots & \vdots & & \vdots & \\
\vdots & & \vdots & & \vdots & \vdots & & \vdots & \\
\frac{\partial m_{d}}{\partial s_{1}} & \ldots & \frac{\partial m_{d}}{\partial s_{i}} & \ldots & \frac{\partial m_{d}}{\partial s_{n}} & \frac{\partial m_{d}}{\partial \alpha_{1}} & \ldots & \frac{\partial m_{d}}{\partial \alpha_{j}} & \ldots \\
\frac{\partial m_{d}}{\partial \alpha_{m}}
\end{array}\right)
$$

timtrack as a 4D tracking example

TimTrack as a calibration tool -3:

Particles with well known parameters may be used to determine the unknown calibration constants.

The columns corresponding both to the known parameters and to the known calibration constants can be eliminated from G_{A} before calculating the K matrix and finding the solution:

$$
\mathbf{s}_{\alpha}=\binom{\mathbf{s}}{\boldsymbol{\alpha}}
$$

timtrack as a 4D tracking example
Algebra of saetas

- Compatibility (Mahalanobis distance)
- Reduction of saetas:

$$
\mathbf{s}_{\mathbf{m}}=\left[\left(\varepsilon_{1}^{+}\right)^{-1}+\left(\varepsilon_{2^{-}}\right)^{-1}\right]^{-1} \cdot\left[\left(\varepsilon_{1}^{+}\right)^{-1} \cdot \mathbf{s}_{1^{+}}^{+}+\left(\varepsilon_{2^{-}}\right)^{-1} \cdot \mathbf{s}_{2}^{-}\right]
$$

timtrack as a 4D tracking example
Algebra of saetas

- Compatibility (Mahalanobis distance)
- Reduction of saetas:

$$
\mathbf{s}_{\mathbf{m}}=\left[\left(\varepsilon_{1^{+}}\right)^{-1}+\left(\varepsilon_{2^{-}}\right)^{-1}\right]^{-1} \cdot\left[\left(\varepsilon_{1^{+}}\right)^{-1} \cdot \mathbf{s}_{1}++\left(\varepsilon_{2^{-}}\right)^{-1} \cdot \mathbf{s}_{2}^{-}\right]
$$

timtrack as a 4D tracking example

Tim Track flow summary

Parameter space	Linear TT	Measurement space	Parameter space	Non linear TT	Measurement space
		d, $\mathrm{W}_{d}=\mathrm{V}_{d}{ }^{-1}$	\mathbf{S}_{p}		$\mathbf{d}, \mathrm{W}_{d}=\mathrm{V}_{d^{-1}}$
	G: Measurement Matrix $\mathbf{m}(\mathbf{s})=\mathrm{G} \cdot \mathbf{s}_{\mathrm{p}}+\mathbf{g}_{0}$	$\mathrm{d}_{\mathrm{c}}=\mathbf{d}-\mathrm{g}_{0}$		G: Measurement Matrix $\mathbf{m}\left(\mathbf{s}_{\mathrm{p}}\right)=\mathrm{G} \cdot \mathbf{s}_{\mathrm{p}}+\mathbf{g}\left(\mathbf{s}_{\mathrm{p}}\right)$	$\mathbf{d}_{\mathrm{c}}=\mathbf{d - g}\left(\mathbf{s}_{\mathrm{p}}\right)$
	$\begin{aligned} & \mathbf{a}=\mathrm{G}^{\prime} \cdot \mathrm{W}_{\mathrm{d}} \cdot \mathbf{d}_{\mathrm{c}} \\ & \mathrm{~K}=\mathrm{G}^{\prime} \cdot \mathrm{W}_{d} \cdot \mathrm{G} \end{aligned}$			$\begin{gathered} \mathbf{a}_{\mathrm{p}}=\mathrm{G}\left(\mathbf{s}_{\mathrm{p}}\right)^{\prime} \cdot \mathrm{W}_{\mathrm{d}} \cdot \mathbf{d}_{\mathrm{c}} \\ \mathrm{~K}_{\mathrm{p}}=\mathrm{G}\left(\mathbf{s}_{\mathrm{p}}\right)^{\prime} \cdot \mathrm{W}_{d} \cdot \mathrm{G}\left(\mathbf{s}_{\mathrm{p}}\right) \end{gathered}$	
$\mathbf{s}=\mathrm{K}^{-1} \cdot \mathbf{a}$			$\mathbf{s}_{\mathrm{p}+1}=\mathrm{K}_{\mathrm{p}}{ }^{-1} \cdot \mathbf{a}_{\mathrm{p}}$		

timtrack as a 4D tracking example

Summary:

TimTrack provides a framework for the reconstruction of particles in hybrid environments, taking into account all possible physical effects.

- It works always in the highest dimension parameter space of the particle
- It allows to include any constraint affecting the movement of the particle
- It works with particle parameters and calibration or alignment constants at the same level

Disadvantages:

- Still not tested in many environments
- It has been tested with the HADES MDrift Chambers + RPC wall with comparable results with the existing ones (although using part of the existing tools: drif velocity parametrization...)
- Recursive and transporting approach not yet tested (\cong Kalman Filter)
- Working in higher dimension space may include new convergence problems

timtrack as a 4D tracking example

One comment:

Using time as a free parameter needs, together with the alignment, a new very important task in any spectrometer or detector setup:

SYNCHRONIZATION

4D Tracking at CBM

4D Tracking at CBM

timtrack at CBM

timtrack at CBM

Example:Do decay analysis at CBM (GSI)

timtrack at CBM

Example:Do decay analysis at CBM (GSI)

Single Track
-Track fitting model:

$$
\begin{aligned}
x_{i} & =X_{0}+X^{\prime} \cdot z_{i} \\
y_{i} & =Y_{0}+Y^{\prime} \cdot z_{i} \\
t_{i} & =T_{0}+S \cdot \sqrt{1+X^{\prime 2}+Y^{\prime 2}} \cdot z_{i}
\end{aligned}
$$

$$
S=\frac{1}{V}
$$

SAETA: $\mathbf{s}=\left(\mathrm{X}_{0}, \mathrm{X}^{\prime}, \mathrm{Y}_{0}, \mathrm{Y}^{\prime}, \mathrm{T}_{0}, \mathrm{~S}=1 / \mathrm{V}\right.$) (6 parameters)

timtrack at CBM

Single Track:"reduced" Error Matrix

σ 's are in the diagonal

(Only TOF1)

timtrack at CBM

Example:Do decay analysis at CBM (GSI)

-Track fitting model:

$$
\begin{aligned}
x_{i}^{1} & =X_{0}+X_{1}^{\prime} \cdot z_{i} \\
y_{i}^{1} & =Y_{0}+Y_{1}^{\prime} \cdot z_{i} \\
t_{i}^{1} & =T_{0}+S_{1} \cdot \sqrt{1+X_{1}^{\prime 2}+Y_{1}^{\prime 2}} \cdot z_{i} \\
x_{i}^{2} & =X_{0}+X_{2}^{\prime} \cdot z_{i} \\
y_{i}^{2} & =Y_{0}+Y_{2}^{\prime} \cdot z_{i} \\
t_{i}^{2} & =T_{0}+S_{2} \cdot \sqrt{1+X_{2}^{\prime 2}+Y_{2}^{\prime 2}} \cdot z_{i}
\end{aligned}
$$

multi-SAETA: $\boldsymbol{s}=\left(X_{0}, X_{1}, X_{2}^{\prime}, Y_{0}, Y_{1}{ }^{\prime}, Y_{2}{ }^{\prime}, S_{1}, S_{2}, T_{0}, Z_{0}\right) \quad$ (10 parameters)

timtrack at CBM

TwoTracks with common vertex:"Reduced" error matrix

X_{0}	$X^{\prime} 1$	$X^{\prime}{ }_{2}$	Y_{0}	Y'1	$Y^{\prime}{ }_{2}$	S_{1}	S_{2}	T0	Z_{0}
$5.6793 \mathrm{e}-003$	-4.5000e-001	-4.5000e-001	0	0	0	0	0	0	1.0000e-002
	3.0595e-006	$2.0000 \mathrm{e}-001$	1.0000e-002	-3.0000e-002	$3.0000 \mathrm{e}-002$	0	0	0	-8.0000e-002
		3.0595e-006	-1.0000e-002	3.0000e-002	-3.0000e-002	0	0	0	8.0000e-002
			$5.7078 \mathrm{e}-003$	-4.4000e-001	-3.9000e-001	0	0	0	-6.0000e-002
				$3.4300 \mathrm{e}-006$	1.0000e-002	0	0	0	4.1000e-001
					$3.4300 \mathrm{e}-006$	0	0		-4.1000e-001
						7.0578e-002	9.0000e-002	-3.0000e-001	- 0
							6.8720e-002	-3.0000e-001	10
								$6.1356 \mathrm{e}+001$	- 0

Numerical estimation for DO's with $\mathrm{K}=2 \mathrm{GeV}$ at polar angle 0 and decay with azimuthal angle $=45^{\circ}$

timtrack at CBM

Example:Do decay analysis at CBM (GSI)

TwoTracks with common vertex and mass constraint
-Track fitting model = Two Tracks with common vertex

- Mass constraint (f(s)=0):

$$
m\left(D_{0}\right)-\sqrt{\left(m_{K}^{2}+m_{\pi}^{2}+m_{K} \cdot m_{p i} \cdot \gamma_{K} \cdot \gamma_{p i}\left(1+\beta_{K} \cdot \beta_{\pi} \cdot \cos (\alpha)\right)\right.}=0
$$

multi-SAETA: $\mathbf{s}=\left(X_{0}, X_{1}{ }^{\prime}, X_{2}{ }^{\prime}, Y_{0}, Y_{1}{ }^{\prime}, Y_{2}{ }^{\prime}, S_{1}, S_{2}, T_{0}, Z_{0} ; m 1, m 2\right)(10$ parameters $)$

timtrack at CBM

TwoTracks with D0 mass constraint:"Reduced" error matrix

X_{0}	$X^{\prime}{ }_{1}$	$X^{\prime}{ }_{2}$	Y_{0}	Y'1	$Y^{\prime}{ }_{2}$	S_{1}	S_{2}	T0	Z_{0}
$5.6793 \mathrm{e}-003$	-4.5000e-001	-4.5000e-001	0	0	0	0		00	1.0000e-002
	3.0595e-006	$2.0000 \mathrm{e}-001$	1.0000e-002	-3.0000e-002	$3.0000 \mathrm{e}-002$	0		00	-8.0000e-002
		$3.0595 \mathrm{e}-006$	-1.0000e-002	3.0000e-002	-3.0000e-002	0		00	8.0000e-002
			$5.7078 \mathrm{e}-003$	-4.4000e-001	-3.9000e-001	0		00	-6.0000e-002
				$3.4300 \mathrm{e}-006$	1.0000e-002	0		00	4.1000e-001
					$3.4300 \mathrm{e}-006$	0		00	-4.1000e-001
						$7.0578 \mathrm{e}-002$	9.0000e-002	$2-3.0000 \mathrm{e}-001$	0
							6.8720e-002	$2-3.0000 \mathrm{e}-001$	0
								$6.1356 \mathrm{e}+001$	0

50/58

4D Kalman Filter at CBM

4D Kalman Filter

4D Kalman Filter at CBM

Kalman Filter is a very well known and broadly used track finding and track reconstruction method

4D Kalman Filter at CBM

Kalman Filter algorithm flow

4D Kalman Filter at CBM

We are implementing the ideas developed for the TimTrak in the CBM Kalman Filter environment

Status:

- Simple straight lines 4D examples are working in:
- Mathematica: good environment for calculating measurement matrices
- Matlab: good environment for developing
- C++ CbmRoot
- Analisis of performances has been started
- No significative results yet

2D+T Kalman Filter at CBM

Detector layout example:

smearing in - position: σ_{x}

Juan A. Garzón/LabCAF-USC 3rd. Int. Workshop for future chalenges in Tracking \& Trigger

2D+T Kalman Filter at CBM

Work done:

- A program for a straigth line fitting in 2-dimensions (x, z) has been adapted to include time and slowness s (s=1/velocity): 3-dimensions (x,t,z).
- We have generated pure samples of 10000 tracks each, both in 2-dimension and 3-dimension modes, for several combinations of the initial parameters:

Fixed parameters:

$x_{0}=0: x$ coordinate at $z=0$
$\mathrm{t}_{0}=0$: time at $\mathrm{z}=0$
$\beta=1$: velocity of the particle
$\sigma_{x}=0.1 \mathrm{~mm}$: gaussian smearing in the position readout at all the planes

Variable parameters:

$x^{\prime}=0,0.1,0.5$: initial slopes
$\sigma_{\mathrm{t}}=1 \mathrm{~ns}, 2 \mathrm{~ns}$
For every combination of parameters, tracks have been propagated with several multiscattering effects given by a gaussian distribution with the width:
scatt $=\tan \theta$ (being θ, the scattering angle $)=0.0,0.01,0.05,0.1$ (4 values)

2D+T Kalman Filter at CBM

8 STS stations, $D Z=10 \mathrm{~cm} / \sigma_{x}=0.1 \mathrm{~mm}, \beta=1$						
$x^{\prime}=0.0$	2D: x-x' fit		3D: $x-x^{\prime}-t_{0}-s$ fit $/ \sigma_{t}=2 n s$			
scatt	Pull(x)	Pull(x')	Pull(x)	Pull(x^{\prime})	Pull(t)	Pull(s)
0.0	0,99	0,99	1,00	1,00	0,99	0,98
0.01	0,98	0,98	0,99	1,00	0,99	0,98
0.05	0,98	0,99	0,99	1,01	0,99	0,98
0.1	0,99	1,04	0,98	1,05	0,99	0,98
scatt	$\operatorname{Res}(\mathrm{x})$	$\operatorname{Res}\left(x^{\prime}\right)$	$\operatorname{Res}(\mathrm{x})$	$\operatorname{Res}\left(x^{\prime}\right)$	$\operatorname{Res}(\mathrm{t})$	Res(s)
0.0	0,007	0,010	0,007	0,010	1,270	0,030
0.01	0,010	0,011	0,010	0,011	1,280	0,030
0.05	0,010	0,051	0,010	0,051	1,280	0,030
0.1	0,010	0,107	0,010	0,110	1,280	0,030

2D+T Kalman Filter at CBM

Summary of results for: $s c a t t=0, \sigma_{x}=0.1 \mathrm{~mm}, \sigma_{t}=1 \mathrm{~ns}, x^{\prime}=0.5$ and $\beta=1$

Beyond 4D tracking

Beyond 4D

The amplitude (or the charge) of the read-out pulses may also de related with the tracking parameter. As consequence they may be used also as a tracking variables.
Other effects (slewing corrections, walk corrections) are also related either with the time or the position

Why not introduce them also all this effects in the tracking model (without reduction)?

Let see some examples:

Beyond 4D

Example 1:

TOFtracker: combination of time-of-flight and high-accuracy bidimensional tracking in a single gaseous detector
A.Blanco ${ }^{1}$, P.Fonte ${ }^{1,2}$, L.Lopes ${ }^{1}$, P. Martins ${ }^{1}$, M. Palka ${ }^{3}$, J. Michel ${ }^{3}$, M.

XI Workshop on Resistive Plate Chambers and Related Detectors

- strip electrodes, analog charge readout and charge interpolation for position
- separate the high-frequency parts of the signal for timing and the low-frequency ones for position

Position resolution below $50 \mu \mathrm{~m}$ can be achieved in multigap RPCs by analog charge readout (high accuracy digital readout is limited to single-gap) of 4 mm pitch strips.

Beyond 4D

Example 2:

Implementation of slewing or walk corrections in the tracking model

Slewing correction in HADES tRPC TOF wall

$$
\Delta \mathrm{t}=\mathrm{t}_{\text {particle }}-\mathrm{t}_{\mathrm{RPC}}=\varepsilon \approx \mathrm{f}(\mathrm{Q})
$$

The slewing correction function $f(Q)$ can be introduced as a new equation in the fit

$$
\mathrm{t}_{\text {particle }}=\mathrm{t}_{\mathrm{RPC}}+\mathrm{f}(\mathrm{Q})(\pm \sigma)
$$

Beyond 4D

Example 3:

Working out the position resolution on large scintillating detectors, through the "light attenuation method"
A. Huerta, R. Guerrero, Q. Curiel, I. Huelgas S., P. Rodríguez, F. Favela, D. Marín, M.E. Ortiz, L. Barrón, and E. Chávez Insinuo de Fisica, Universidad Nacional Autónoma de Mexico, México D.F. 04510

Figure 5. For the large plate configuration, this plot shows the integral of each spectrum as a function of the distance between the ${ }^{60} \mathrm{Co}$ source to the photomultiplier. The two fits correspond to a pure exponential and an inverse square law.

Figure 6. Calculation. For the large plate configuration hypothetically viewed by 4 photomultipliers placed in the corners cut at 45 deg. A 1% pulse high resolution is assumed. Position information with a sensitivity better than 1 cm is obtained throughout most of the active area, near the photomultipliers, it degrades to better than 2,3 and 5 cm as we move closer to the Photomultipliers and the edge of the detector.

Beyond 4D

Beyond 4D

tracking models, constraints...
Alignment + Synchronization slewing corrections, walk corrections..

MIDAS

tracking models, constraints...
Alignment + Synchronization slewing corrections, walk corrections.. (everything is inside)

Basic idea:

- Working in a higher dimension space may make more difficult to find the solution to the tracking tasks. As consecuence any piece of useful information shouldn't thrown out.
- Pulses amplitudes or charges, when related with the particle parameters, may be also used as tracking variables.

4D tracking
Juan A. Garzón/LabCAF-USC 3rd. Int. Workshop for future chalenges in Tracking \& Trigger 66/58

MIDAS

Perhaps using all the information is a utopia but we are developing very general tools to do it. Bad information could be always thrown out later

- Basic philosophy:
- Try to make redundant systems
- Try to increase the NDF as much as possible
- Try to avoid mathematical reduction of data
- Try to put as much as possible ingredients in the tracking model

Jan A. Garzon/Labcaf-USC 3rd.
Juan A. Garzón/LabCAF-USC 3rd. Int. Workshop for future chalenges in Tracking \& Trigger 67/58

Recollections and Reflections

- The time may become a very important tracking and reconstruction parameter.
- Working separately with time and coordinates may offer important advantages mainly in hybrid environments
- It's true that time resolution is very poor compared with position resolutions. But some detectors may offer many timing data (Ex. straw tubes). Why not try to improve their timing resolution as much as possible?
- Using all the measurements separately at the tracking level could be very usefull for
- reducing the background
- increase the redundancy of data
- improve the estimation of parameters
- finding hidden correlations and relationships between particle parameters, calibration constants, alignment or synchronization parameters and others
- A lot of matrix algebra tools and multivariate analysis tools are available
- Using time separately allows to run detectors independently of external triggers or external conditions
- Every detector can run at its maximum allowed data acquisition rate: later all the information can be merged together
- Excess of information made advisable to make the reduction of information as close as possible to the detectors: FPGAs, GPUs...

aknowledgments

\author{

- G. Kornakov
 (+ J. Markert + V. Pechenov)
 - I. Kisel
 - I. Kulakov \& M. Zyzak
 - FIAS
}

Thanks!

The end

