Kalman filter tracking library

I. Kisel, <u>I. Kulakov</u>, H. Pabst, M. Zyzak

Tracking workshop FIAS, Frankfurt, February 28, 2012

- Kalman Filter (KF)
- KF Library
 - Intel Array Building Blocks (ArBB)
 - KF approaches
 - Propagation methods
 - Smoother
 - Deterministic Annealing Filter (DAF)
- Summary

Kalman Filter (KF) Based Track Fit

Consolidate Efforts: Common Reconstruction Package

Nowadays the Kalman Filter is used in almost all HEP experiments at almost all stages of reconstruction (track finding, track fitting, particle finding).

Common reconstruction package will be KF based.

Kalman Filter (KF) Based Track Fit

Track fit: Optimal estimation of the track parameters according to hits – Kalman Filter (KF)

4/24

Tracking Challenge in CBM

Simulation

- 1000 charged particles/collision
- Double-sided strip detectors (85% fake space points)
- Non-homogeneous magnetic field

Reconstruction

- 10⁷ AuAu collisions/sec
- Track reconstruction in STS/MVD and displaced vertex search are required in the first level trigger
- based on CA & KF

A precise, fast and stable realization of the KF algorithm is required.

28.02.2012

SIMD KF Benchmark

optimal fit quality fast Underfloy 72 Overflow 60 670.3 Constant Mean -0.02653 70 0.9287 Sigm: Fitting speed of 0.9% 50 13 ns/track/node 400 // 300 6 res 200 100 والأقرب استباست استبار المكتار -1 0 1 2 3 4 Residual (p^{reco} - p^{mc})/p^{mc}*100% -3 -2 -1 **SIMD KF benchmark** scalable alterable parallel <u>≈</u>100 2 90 single/double E 80 SIMD 70 precision 60 50

28.02.2012

multithreading

60

Igor Kulakov, FIAS, Tracking workshop

30 40 50

10 20

60 70 80 Number of cores

40

30

20

KF Library SIMD KF benchmark Image: Similar to the second second

Algorithms

Track tools:

- KF track fitter
- KF track smoother
- Deterministic Annealing Filter

KF approaches:

- Conventional KF
- Double precision KF
- Square root KF (2 implementations)
- U-D-Filtering

Track propagation:

- Runge-Kutta
- Analytic formula

Hardware support

Parallelization:

Data level:

- Header
- Vc
- ArBB

Task level:

- ITBB
- ArBB
- Open MP

Precision:

- single
- double

Track Fit Quality

residuals					pulls				
x, μ m	y, μ m	t _{x'} 10 ⁻³	t _y , 10 ⁻³	q/p, %	x	У	t _x	t _y	q/p
43	39	0.3	0.25	0.93	1.1	1.1	1.2	1.1	1.3

conventional, header, geometry with 0 & 90 degree strips

KF track fit based on ArBB has been implemented by Intel.

CBM Kalman Filter (KF) Track Fit Benchmark with ArBB

Array Building Blocks (ArBB) allows to avoid a lot of inconveniencies of parallel programming. It should be very useful for the event reconstruction.

Implementation of KF based on ArBB was the first step for the track finders ArBB-zation.

SIMD KF fit benchmark with ArBB has been implemented by Intel.

Comparison with SIMD KF fit benchmark based on Vector classes (Vc) was done.

	١	/c	ArBB		
Cores	1	16	1	16	
Time, µs	0.42	0.05	0.43	0.06	

Tests were performed on the lxir039 computer with 2 Xeon X5550 processors having 8 cores in total at 2.7 GHz

conventional, geometry with 0 & 90 degree strips

KF track fit based on ArBB has been implemented by Intel.

Scalability of Track Fit with Conventional Approach

geometry with 0 & 90 degree strips

Measure tracks throughput rather than time per track.

ITBB: Given n threads each filled with 1000 events, run them on specific n logical cores with 1 thread per 1 core. Use "header" for data level parallelization.

ArBB: auto parallelization on both task and data level

Scalabilities for single and double using ITBB precision have been measured as well.

Conventional KF Implementation

Prediction step \hat{x}_{k-1}^+ $P_{k-1}^+ \longrightarrow \hat{x}_k^ P_k^ P_{k}^{-} = F_{k-1}P_{k-1}^{+}F_{k-1}^{T} + Q_{k-1}$ $\hat{x}_{k}^{-} = F_{k-1}\hat{x}_{k-1}^{+}$ $\hat{x}_k^- P_k^- \longrightarrow \hat{x}_k^+ P_k^+$ **Filtering step** $K_{k} = P_{k}^{-}H_{k}^{T}(H_{k}P_{k}^{-}H_{k}^{T}+R_{k})^{-1}$ $P_k^+ = (I - K_k H_k) P_k^ \hat{x}_{k}^{+} = \hat{x}_{k}^{-} + K_{k}(y_{k} - H_{k}\hat{x}_{k}^{-})$

Square Root KF Implementation

 $P \rightarrow SS^T$

Twice a precision in comparison with conventional, but has more complicated computations = slower.

Scalability of Track Fit with Square Root (Potter) Approach

geometry with 0 & 90 degree strips; the analytic formula for propagation

U-D-Filtering Implementation

$$\mathbf{P} = \mathbf{U}\mathbf{D}\mathbf{U}^{\mathsf{T}}$$

$$\begin{bmatrix} 1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} d_{11} & 0 & 0 \\ 0 & d_{22} & 0 \\ 0 & 0 & d_{33} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ u_{12} & 1 & 0 \\ u_{13} & u_{23} & 1 \end{bmatrix}$$

Increase precision in comparison with conventional. Less number of computations than with square root.

Prediction step $U_{i-1} D_{i-1} \longrightarrow U_i D_i$ $W = \begin{bmatrix} FU^+ & I \end{bmatrix}$ $\hat{D} = \begin{bmatrix} D^+ & 0 \\ 0 & Q \end{bmatrix}_{orthogonalization}, v_n = w_n$ $w_k = w_k - \sum_{j=k+1}^n \frac{w_k \hat{D}v_j^T}{v_j \hat{D}v_j^T} v_j \quad k = n-1, \dots, 1$ $W = U^- V$ $D^- = V \hat{D} V^T$ Filtering step $U^- D^- \longrightarrow U^+ D^+$ $\alpha_i \equiv H_i P_{i-1} H_i^T + R_i \qquad \overline{U} \overline{D} \overline{U}^T = \left[D_{i-1} - \frac{1}{\alpha_i} (D_{i-1} U_{i-1}^T H_i^T) (D_{i-1} U_{i-1}^T H_i^T)^T \right]$

$$U_i = U_{i-1}\bar{U}$$
$$D_i = \bar{D}$$

Scalability of Track Fit with UD-filtering Approach

geometry with 0 & 90 degree strips; the analytic formula for propagation

Runge-Kutta Propagation Method

General method.

$$\frac{\mathrm{d}\mathbf{r}(z)}{\mathrm{d}z} = \begin{pmatrix} t_x \\ t_y \\ \kappa \cdot (q/p) \cdot \sqrt{1 + t_x^2 + t_y^2} \cdot \left(t_x t_y \cdot B_x - (1 + t_x^2) \cdot B_y + t_y \cdot B_z \right) \\ \kappa \cdot (q/p) \cdot \sqrt{1 + t_x^2 + t_y^2} \cdot \left(\left(1 + t_y^2 \right) \cdot B_x - t_x t_y \cdot B_y - t_x \cdot B_z \right) \\ 0 \end{pmatrix} \equiv \mathbf{f}(z, \mathbf{r})$$

$$\begin{aligned} \Delta \mathbf{r}_1 &= \mathbf{f}(z_0, \mathbf{r}_0) \cdot \Delta z ,\\ \Delta \mathbf{r}_2 &= \mathbf{f}(z_0 + \frac{\Delta z}{2}, \mathbf{r}_0 + \frac{\Delta \mathbf{r}_1}{2}) \cdot \Delta z ,\\ \Delta \mathbf{r}_3 &= \mathbf{f}(z_0 + \frac{\Delta z}{2}, \mathbf{r}_0 + \frac{\Delta \mathbf{r}_2}{2}) \cdot \Delta z ,\\ \Delta \mathbf{r}_4 &= \mathbf{f}(z_0 + \Delta z, \mathbf{r}_0 + \Delta \mathbf{r}_3) \cdot \Delta z .\end{aligned}$$

$$\mathbf{r}(z_e) = \mathbf{r}_0 + \left(\frac{1}{6}\Delta\mathbf{r}_1 + \frac{1}{3}\Delta\mathbf{r}_2 + \frac{1}{3}\Delta\mathbf{r}_3 + \frac{1}{6}\Delta\mathbf{r}_4\right) + O((\Delta z)^5)$$

Analytic Formula for Track Propagation

Allows to control precision and time consumptions.

$$\begin{array}{rcl} x' &\equiv t_{x} \\ y' &\equiv t_{y} \\ t'_{x} &= \kappa \cdot (q/p) \cdot \sqrt{1 + t_{x}^{2} + t_{y}^{2}} \cdot \left(t_{x}t_{y} \cdot B_{x} - (1 + t_{x}^{2}) \cdot B_{y} + t_{y} \cdot B_{z}\right) \\ t'_{y} &= \kappa \cdot (q/p) \cdot \sqrt{1 + t_{x}^{2} + t_{y}^{2}} \cdot \left(\left(1 + t_{y}^{2}\right) \cdot B_{x} - t_{x}t_{y} \cdot B_{y} - t_{x} \cdot B_{z}\right) \\ (q/p)' &= 0 \end{array}$$

$$\begin{array}{rcl} \text{Taylor expansion} \\ t_{x}(z_{e}) &= t_{x}(z_{0}) + \sum_{k=1}^{n} \sum_{i_{1}, \dots, i_{k} = x, y, z} t_{x_{i_{1}\dots i_{k}}}(z_{0}) \cdot \left(\sum_{z_{0}}^{z_{e}} B_{i_{1}}(z_{1}) \dots \sum_{z_{0}}^{z_{k-1}} B_{i_{k}}(z_{k}) dz_{k} \dots dz_{1}\right) \\ t_{y}(z_{e}) &= t_{y}(z_{0}) + \sum_{k=1}^{n} \sum_{i_{1}, \dots, i_{k} = x, y, z} t_{y_{i_{1}\dots i_{k}}}(z_{0}) \cdot \left(\sum_{z_{0}}^{z_{e}} B_{i_{1}}(z_{1}) \dots \sum_{z_{0}}^{z_{k-1}} B_{i_{k}}(z_{k}) dz_{k} \dots dz_{1}\right) \\ x(z_{e}) &= x(z_{0}) + \sum_{z_{0}}^{z_{e}} t_{x}(z) dz \\ y(z_{e}) &= y(z_{0}) + \sum_{z_{0}}^{z_{e}} t_{y}(z) dz \\ \end{array}$$

Scalability of Track Fit with the Analytic and Runge-Kutta Propagation

geometry with 0 & 90 degree strips; conventional approach; ITBB; header

Track Smoother

Optimal estimation of the track parameters at any station.

Use: for alignment of station positions for fake hits rejection (DAF) for track quality estimation (ghost tracks rejection)

KF based smoother:

- 1. Take 2 state vectors.
- 2. Start with an arbitrary initializations from begin and end of track.
- 3. Add one hit after another moving downstream and upstream.
- 4. Improve the state vectors.
- 5. Get two sets of parameters at the given station.
- 6. Merge them into one and get the optimal parameters.

Track Smooth Quality

 $r = \{ x, y, t_{x'} t_{y'} q/p \}$

station		residuals					pulls				
		x, μ m	y, μm	t _{x'} 10 ⁻³	t _y , 10 ⁻³	q/p, %	X	У	t _x	t _y	q/p
MVD	1	24	27	0.63	0.62	0.90	1.0	1.0	1.1	1.1	1.3
	2	19	22	0.39	0.43	0.89	1.0	1.0	1.0	1.0	1.3
	1	20	46	0.19	0.25	0.88	1.1	1.1	1.4	1.2	1.3
STS	2	15	49	0.25	0.35	0.88	1.1	1.1	1.2	1.2	1.3
	3	18	50	0.26	0.36	0.88	1.1	1.1	1.2	1.2	1.3
	4	21	56	0.22	0.34	0.88	1.1	1.1	1.2	1.2	1.3
	5	24	62	0.24	0.33	0.88	1.1	1.1	1.2	1.2	1.3
	6	30	67	0.23	0.30	0.89	1.1	1.1	1.2	1.2	1.2
	7	23	77	0.21	0.37	0.87	1.1	1.1	1.4	1.3	1.2
	8	30	101	0.50	0.60	0.90	1.1	1.1	1.1	1.2	1.2

conventional, header, geometry with 0 & 15 degree strips

KF track smoother has been implemented in KF Library.

Deterministic Annealing Filter (DAF)

Task: reduce an influence of attached distorted or noise hits on the reconstructed track parameters.

- DAF has been implemented within SIMD KF track fit package
- The KF mathematics has been modified to include weights

DAF algorithm:

• A weight is introduced to each hit

 Algorithm is iterative, with each iteration T is decreasing, weight is recalculated using smoothed track parameters from the previous iteration

R. Frühwirth and A. Strandlie, Track Fitting with ambiguities and noise: a study of elastic tracking and nonlinear filters. Comp. Phys. Comm. 120 (1999) 197-214.

DAF and Noise Hits Rejection

- The hit on the 4th STS station was displaced by a certain amount of the hit error ($\sigma_{hit} = 17$ µm) from the MC position
- The percentage of rejected hits was calculated. In ideal case for the 4th station it should be 100%, for other – 0%

Rejection probability, %								
station		unshifted	5 σ_{hit}	$10 \ \sigma_{hit}$	$20 \sigma_{hit}$			
MVD	1	0.4	0.4	0.4	0.4			
	2	0.7	0.7	0.7	0.7			
STS	1	0.3	0.3	0.3	0.3			
	2	0.4	0.4	0.4	0.4			
	3	0.4	0.7	0.8	0.5			
	4	0.5	43.9	85.0	98.7			
	5	0.5	1.6	1.6	0.8 0.6			
	6	0.6	0.6	0.6				
	7	0.6	0.6	0.6	0.6			
	8	0.1	0.1	0.1	0.1			

In collaboration with R. Frühwirth (HEPHY, Austria) and A. Strandlie (Uni-Oslo, Gjøvik University College, Norway)

		Conventional	Square root	UD-filtering
	Fit	+	+	+
ITBB	Smooth	+	+	+
	DAF	+	+	+
	Fit	+	+	+
ArBB	Smooth			
	DAF			

- ✓ KF library includes track fit, track smooth and DAF algorithms; it is fast, scalable and allows to choose between different KF approaches, two propagation methods, different parallelization libraries, as well as between single and double precision calculations.
- ✓ KF library has been fully implemented with ITBB and tested. ArBB implementation is in progress.

covariance matrix -> square root of covariance matrix

$$\mathbf{P} = \mathbf{S}\mathbf{S}^{\mathsf{T}}$$

Transport example

 $\mathbf{P'} = \mathbf{F} \mathbf{P} \mathbf{F}^{\mathsf{T}}$

$$\mathsf{P} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 10^{10} \end{array}\right) \quad \mathsf{F} = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) \quad \mathsf{P'} = \left(\begin{array}{cc} 10^{10} + 1 & 10^{10} \\ 10^{10} & 10^{10} \end{array}\right) = \left(\begin{array}{cc} 10^{10} & 10^{10} \\ 10^{10} & 10^{10} \end{array}\right)$$

Lose information!

S' = F S

$$= \left(\begin{array}{cc} 1 & 0 \\ 0 & 10^5 \end{array} \right) \quad \mathsf{F} = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right)$$

$$S' = \begin{pmatrix} 1 & 10^5 \\ 0 & 10^5 \end{pmatrix}$$

No problem with precision

28.02.2012

S